summaryrefslogtreecommitdiff
path: root/docs/source
diff options
context:
space:
mode:
authorvishwakftw <cs15btech11043@iith.ac.in>2019-03-26 07:49:58 -0700
committerFacebook Github Bot <facebook-github-bot@users.noreply.github.com>2019-03-26 07:53:07 -0700
commit5e462a3ed6ec88a022e1ab4d60f9e2282e96ec44 (patch)
tree0e23d6442a8e7d39c3fd1f7b7dfc09d8303b894c /docs/source
parent9080942afb0f53be24efd3e213a39f1c270b8e5c (diff)
downloadpytorch-5e462a3ed6ec88a022e1ab4d60f9e2282e96ec44.tar.gz
pytorch-5e462a3ed6ec88a022e1ab4d60f9e2282e96ec44.tar.bz2
pytorch-5e462a3ed6ec88a022e1ab4d60f9e2282e96ec44.zip
Introduce SobolEngine (#10505)
Summary: `SobolEngine` is a quasi-random sampler used to sample points evenly between [0,1]. Here we use direction numbers to generate these samples. The maximum supported dimension for the sampler is 1111. Documentation has been added, tests have been added based on Balandat 's references. The implementation is an optimized / tensor-ized implementation of Balandat 's implementation in Cython as provided in #9332. This closes #9332 . cc: soumith Balandat Pull Request resolved: https://github.com/pytorch/pytorch/pull/10505 Reviewed By: zou3519 Differential Revision: D9330179 Pulled By: ezyang fbshipit-source-id: 01d5588e765b33b06febe99348f14d1e7fe8e55d
Diffstat (limited to 'docs/source')
-rw-r--r--docs/source/torch.rst7
1 files changed, 7 insertions, 0 deletions
diff --git a/docs/source/torch.rst b/docs/source/torch.rst
index 782f58ef31..101312817c 100644
--- a/docs/source/torch.rst
+++ b/docs/source/torch.rst
@@ -107,6 +107,13 @@ There are a few more in-place random sampling functions defined on Tensors as we
- :func:`torch.Tensor.random_` - numbers sampled from the discrete uniform distribution
- :func:`torch.Tensor.uniform_` - numbers sampled from the continuous uniform distribution
+Quasi-random sampling
+~~~~~~~~~~~~~~~~~~~~~
+
+.. autoclass:: torch.quasirandom.SobolEngine
+ :members:
+ :exclude-members: MAXBIT, MAXDIM
+ :undoc-members:
Serialization
----------------------------------