diff options
author | Ma Mingfei <mingfei.ma@intel.com> | 2018-03-30 06:25:07 +0800 |
---|---|---|
committer | Soumith Chintala <soumith@gmail.com> | 2018-03-29 15:25:07 -0700 |
commit | f8270c0225e19403038aec2d8af2697a2b5326ec (patch) | |
tree | 7dbc688871d3943a2ec3f2d896e8d4e0637d990b /aten | |
parent | e4c0bb1809fd9bf9161392bfff7d06092adc224d (diff) | |
download | pytorch-f8270c0225e19403038aec2d8af2697a2b5326ec.tar.gz pytorch-f8270c0225e19403038aec2d8af2697a2b5326ec.tar.bz2 pytorch-f8270c0225e19403038aec2d8af2697a2b5326ec.zip |
Enable MKLDNN convolution forward and backward (#6062)
* Enable MKLDNN convolution forward and backward
* minor change
* fix mkldnn build error when building ATen standalone
Diffstat (limited to 'aten')
-rw-r--r-- | aten/CMakeLists.txt | 14 | ||||
-rw-r--r-- | aten/cmake/FindMKLDNN.cmake | 32 | ||||
-rw-r--r-- | aten/src/ATen/CMakeLists.txt | 12 | ||||
-rw-r--r-- | aten/src/ATen/Config.h.in | 1 | ||||
-rw-r--r-- | aten/src/ATen/mkldnn/Runtime.cpp | 5 | ||||
-rw-r--r-- | aten/src/ATen/mkldnn/Runtime.h | 49 | ||||
-rw-r--r-- | aten/src/ATen/native/Convolution.cpp | 27 | ||||
-rw-r--r-- | aten/src/ATen/native/mkldnn/Conv.cpp | 441 | ||||
-rw-r--r-- | aten/src/ATen/native/native_functions.yaml | 12 |
9 files changed, 591 insertions, 2 deletions
diff --git a/aten/CMakeLists.txt b/aten/CMakeLists.txt index 16e7cc6790..13e4abca94 100644 --- a/aten/CMakeLists.txt +++ b/aten/CMakeLists.txt @@ -460,6 +460,20 @@ ELSE() set(AT_CUDNN_ENABLED 1) ENDIF() +if(NO_MKLDNN) + message("disabling MKLDNN because NO_MKLDNN is set") + set(AT_MKLDNN_ENABLED 0) +else() + find_package(MKLDNN) + if(NOT MKLDNN_FOUND) + message(STATUS "MKLDNN not found. Compiling without MKLDNN support") + set(AT_MKLDNN_ENABLED 0) + else() + INCLUDE_DIRECTORIES(${MKLDNN_INCLUDE_DIRS}) + set(AT_MKLDNN_ENABLED 1) + endif() +endif() + if(NO_NNPACK) message("disabling NNPACK because NO_NNPACK is set") set(AT_NNPACK_ENABLED 0) diff --git a/aten/cmake/FindMKLDNN.cmake b/aten/cmake/FindMKLDNN.cmake new file mode 100644 index 0000000000..0862d5a3ac --- /dev/null +++ b/aten/cmake/FindMKLDNN.cmake @@ -0,0 +1,32 @@ +# - Try to find MKLDNN +# +# The following variables are optionally searched for defaults +# MKLDNN_ROOT_DIR: Base directory where all MKLDNN components are found +# +# The following are set after configuration is done: +# MKLDNN_FOUND +# MKLDNN_INCLUDE_DIRS +# MKLDNN_LIBRARIES +# MKLDNN_LIBRARY_DIRS + +include(FindPackageHandleStandardArgs) + +set(MKLDNN_ROOT_DIR "" CACHE PATH "Folder contains Intel MKLDNN") + +find_path(MKLDNN_INCLUDE_DIR mkldnn.h + HINTS ${MKLDNN_ROOT_DIR} + PATH_SUFFIXES include) + +find_library(MKLDNN_LIBRARY mkldnn + HINTS ${MKLDNN_LIB_DIR} ${MKLDNN_ROOT_DIR} + PATH_SUFFIXES lib lib64) + +find_package_handle_standard_args( + MKLDNN DEFAULT_MSG MKLDNN_INCLUDE_DIR MKLDNN_LIBRARY) + +if(MKLDNN_FOUND) + set(MKLDNN_INCLUDE_DIRS ${MKLDNN_INCLUDE_DIR}) + set(MKLDNN_LIBRARIES ${MKLDNN_LIBRARY}) + message(STATUS "Found MKLDNN (include: ${MKLDNN_INCLUDE_DIR}, library: ${MKLDNN_LIBRARY})") + mark_as_advanced(MKLDNN_ROOT_DIR MKLDNN_LIBRARY MKLDNN_INCLUDE_DIR) +endif() diff --git a/aten/src/ATen/CMakeLists.txt b/aten/src/ATen/CMakeLists.txt index daf986c6bd..27f1d98461 100644 --- a/aten/src/ATen/CMakeLists.txt +++ b/aten/src/ATen/CMakeLists.txt @@ -149,6 +149,7 @@ FILE(GLOB native_cpp RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "native/*.cpp") FILE(GLOB native_cudnn_cpp RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "native/cudnn/*.cpp") FILE(GLOB native_cuda_cu RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "native/cuda/*.cu") FILE(GLOB native_mkl_cpp RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "native/mkl/*.cpp") +FILE(GLOB native_mkldnn_cpp RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "native/mkldnn/*.cpp") FILE(GLOB_RECURSE cuda_h RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" @@ -156,6 +157,7 @@ FILE(GLOB_RECURSE cuda_h FILE(GLOB cudnn_cpp RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "cudnn/*.cpp") FILE(GLOB mkl_cpp RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "mkl/*.cpp") +FILE(GLOB mkldnn_cpp RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "mkldnn/*.cpp") FILE(GLOB all_python RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "*.py") @@ -201,7 +203,7 @@ ADD_CUSTOM_TARGET(aten_files_are_generated ) -SET(all_cpp ${base_cpp} ${native_cpp} ${native_cudnn_cpp} ${native_mkl_cpp} ${generated_cpp} ${ATen_CPU_SRCS} ${cpu_kernel_cpp}) +SET(all_cpp ${base_cpp} ${native_cpp} ${native_cudnn_cpp} ${native_mkl_cpp} ${native_mkldnn_cpp} ${generated_cpp} ${ATen_CPU_SRCS} ${cpu_kernel_cpp}) INCLUDE_DIRECTORIES(${ATen_CPU_INCLUDE}) IF(NOT NO_CUDA) @@ -218,6 +220,10 @@ IF(NOT NO_CUDA) ENDIF() endif() +IF(AT_MKLDNN_ENABLED) + SET(all_cpp ${all_cpp} ${mkldnn_cpp}) +ENDIF() + filter_list(generated_h generated_cpp "\\.h$") INCLUDE_DIRECTORIES(${CMAKE_CURRENT_SOURCE_DIR}/..) @@ -315,6 +321,9 @@ if (NNPACK_FOUND) target_link_libraries(ATen ${NNPACK_LIBRARIES}) endif(NNPACK_FOUND) +if(MKLDNN_FOUND) + target_link_libraries(ATen ${MKLDNN_LIBRARIES}) +endif(MKLDNN_FOUND) # ---[ Configure cpuinfo IF(NOT TARGET cpuinfo) @@ -326,7 +335,6 @@ IF(NOT TARGET cpuinfo) ENDIF() TARGET_LINK_LIBRARIES(ATen cpuinfo) - IF(CUDA_FOUND) TARGET_LINK_LIBRARIES(ATen ${CUDA_LIBRARIES} diff --git a/aten/src/ATen/Config.h.in b/aten/src/ATen/Config.h.in index d62468fd70..1ab0ec9162 100644 --- a/aten/src/ATen/Config.h.in +++ b/aten/src/ATen/Config.h.in @@ -6,6 +6,7 @@ #define AT_CUDA_ENABLED() @AT_CUDA_ENABLED@ #define AT_CUDNN_ENABLED() @AT_CUDNN_ENABLED@ +#define AT_MKLDNN_ENABLED() @AT_MKLDNN_ENABLED@ #define AT_NNPACK_ENABLED() @AT_NNPACK_ENABLED@ #define AT_MKL_ENABLED() @AT_MKL_ENABLED@ diff --git a/aten/src/ATen/mkldnn/Runtime.cpp b/aten/src/ATen/mkldnn/Runtime.cpp new file mode 100644 index 0000000000..54f999ed14 --- /dev/null +++ b/aten/src/ATen/mkldnn/Runtime.cpp @@ -0,0 +1,5 @@ +#include "Runtime.h" + +namespace at { namespace native { + +}} // namespace at::native diff --git a/aten/src/ATen/mkldnn/Runtime.h b/aten/src/ATen/mkldnn/Runtime.h new file mode 100644 index 0000000000..c58ef2c56f --- /dev/null +++ b/aten/src/ATen/mkldnn/Runtime.h @@ -0,0 +1,49 @@ +#pragma once + +#include <mkldnn.hpp> + +using namespace mkldnn; + +namespace at { namespace native { + +// CpuEngine singleton +struct CpuEngine { + static CpuEngine& Instance() { + static CpuEngine myInstance; + return myInstance; + } + engine& get_engine() { + return _cpu_engine; + } + CpuEngine(CpuEngine const&) = delete; + CpuEngine& operator=(CpuEngine const&) = delete; + +protected: + CpuEngine():_cpu_engine(mkldnn::engine::cpu, 0) {} + ~CpuEngine() {} + +private: + engine _cpu_engine; +}; + +// Stream singleton +struct Stream { + static Stream& Instance() { + static Stream myInstance; + return myInstance; + }; + stream& get_stream() { + return _cpu_stream; + } + Stream(Stream const&) = delete; + Stream& operator=(Stream const&) = delete; + +protected: + Stream():_cpu_stream(mkldnn::stream::kind::eager) {} + ~Stream() {} + +private: + stream _cpu_stream; +}; + +}} // namespace at::native diff --git a/aten/src/ATen/native/Convolution.cpp b/aten/src/ATen/native/Convolution.cpp index b65759249a..33f7e05d26 100644 --- a/aten/src/ATen/native/Convolution.cpp +++ b/aten/src/ATen/native/Convolution.cpp @@ -32,6 +32,7 @@ struct ConvParams { bool is_padding_neg() const; void view1d_as_2d(); bool use_cudnn(const at::Tensor& input) const; + bool use_mkldnn(const at::Tensor& input) const; bool use_nnpack(const at::Tensor& input) const; bool is_depthwise(const at::Tensor& input, const at::Tensor& weight) const; }; @@ -130,6 +131,17 @@ auto ConvParams::use_cudnn(const at::Tensor& input) const -> bool { return false; } +auto ConvParams::use_mkldnn(const at::Tensor& input) const -> bool { +#if AT_MKLDNN_ENABLED() + return input.type().backend() == kCPU && + input.type().scalarType() == kFloat && // only on CPU Float Tensors + !is_dilated() && // doesn't support dilation + !transposed && // or transposed tensors + input.ndimension() == 4 && // must be in NCHW format + groups == 1; +#endif + return false; +} auto ConvParams::use_nnpack(const at::Tensor& input) const -> bool { #if AT_NNPACK_ENABLED() return input.type().backend() == kCPU && @@ -371,6 +383,21 @@ at::Tensor _convolution( params.padding, params.stride, params.dilation, params.groups, params.benchmark, params.deterministic); } #endif + } else if (params.use_mkldnn(input)) { +#if AT_MKLDNN_ENABLED() + if (input.type() != weight.type()){ + std::stringstream ss; + ss << "Input type (" << input.toString() << ") and weight type (" << weight.toString() << ") should be the same"; + throw std::runtime_error(ss.str()); + } + if (bias.defined() && input.type() != bias.type()){ + std::stringstream ss; + ss << "Input type (" << input.toString() << ") and bias type (" << bias.toString() << ") should be the same"; + throw std::runtime_error(ss.str()); + } + + output = at::mkldnn_convolution(input, weight, bias, params.padding, params.stride, params.dilation); +#endif } else { if (params.groups == 1) { output = at::_convolution_nogroup( diff --git a/aten/src/ATen/native/mkldnn/Conv.cpp b/aten/src/ATen/native/mkldnn/Conv.cpp new file mode 100644 index 0000000000..25cddef9ae --- /dev/null +++ b/aten/src/ATen/native/mkldnn/Conv.cpp @@ -0,0 +1,441 @@ +#include <ATen/ATen.h> +#include <ATen/NativeFunctions.h> +#include <ATen/Config.h> + +#if !AT_MKLDNN_ENABLED() + +namespace at { namespace native { + +at::Tensor mkldnn_convolution( + const at::Tensor& input, const at::Tensor& weight, const at::Tensor& bias, + IntList padding, IntList stride, IntList dilation) { + throw std::runtime_error("mkldnn_convolution_forward: ATen not compiled with MKLDNN support"); +} + +at::Tensor mkldnn_convolution_backward_input( + IntList input_size, const at::Tensor& grad_output, const at::Tensor& weight, + IntList padding, IntList stride, IntList dilation, bool bias_defined) { + throw std::runtime_error("mkldnn_convolution_backward_input: ATen not compiled with MKLDNN support"); +} + +std::tuple<at::Tensor,at::Tensor> mkldnn_convolution_backward_weights( + IntList weight_size, const at::Tensor& grad_output, const at::Tensor& input, + IntList padding, IntList stride, IntList dilation, bool bias_defined) { + throw std::runtime_error("mkldnn_convolution_backward_weights: ATen not compiled with MKLDNN support"); +} + +std::tuple<at::Tensor,at::Tensor,at::Tensor> mkldnn_convolution_backward( + const at::Tensor& input, const at::Tensor& grad_output_t, const at::Tensor& weight, + IntList padding, IntList stride, IntList dilation, std::array<bool,3> output_mask) { + throw std::runtime_error("mkldnn_convolution_backward: ATen not compiled with MKLDNN support"); +} + +}} + +#else // AT_MKLDNN_EBABLED + +#include <ATen/mkldnn/Runtime.h> + +using namespace mkldnn; + +namespace at { namespace native { + +constexpr int input_batch_size_dim = 0; // also grad_input +constexpr int input_channels_dim = 1; +constexpr int output_batch_size_dim = 0; // also grad_output +constexpr int output_channels_dim = 1; +constexpr int weight_output_channels_dim = 0; +constexpr int weight_input_channels_dim = 1; + +// Often written as 2 + max_dim (extra dims for batch size and channels) +constexpr int max_dim = 3; + +std::vector<int64_t> conv_output_size( + IntList input_size, IntList weight_size, + IntList padding, IntList stride, IntList dilation) +{ + auto dim = input_size.size(); + std::vector<int64_t> output_size(dim); + output_size[0] = input_size[input_batch_size_dim]; + output_size[1] = weight_size[weight_output_channels_dim]; + for (size_t d = 2; d < dim; ++d) { + auto kernel = dilation[d - 2] * (weight_size[d] - 1) + 1; + output_size[d] = (input_size[d] + (2 * padding[d - 2]) + - kernel) / stride[d - 2] + 1; + } + return output_size; +} + +at::Tensor mkldnn_convolution( + const at::Tensor& input, const at::Tensor& weight, const at::Tensor& bias, + IntList padding, IntList stride, IntList dilation) +{ + auto output = input.type().tensor(conv_output_size( + input.sizes(), weight.sizes(), padding, stride, dilation)); + + auto cpu_engine = CpuEngine::Instance().get_engine(); + + int32_t n = input.size(0); + int32_t ic = input.size(1); + int32_t ih = input.size(2); + int32_t iw = input.size(3); + + int32_t oc = output.size(1); + int32_t oh = output.size(2); + int32_t ow = output.size(3); + + int32_t kh = weight.size(2); + int32_t kw = weight.size(3); + + int32_t sh = stride[0]; + int32_t sw = stride[1]; + int32_t ph = padding[0]; + int32_t pw = padding[1]; + + auto data_t = memory::data_type::f32; + auto format_any = memory::format::any; + auto format_nchw = memory::format::nchw; + auto format_oihw = memory::format::oihw; + auto format_x = memory::format::x; + + memory::dims input_tz = {n, ic, ih, iw}; + memory::dims weight_tz = {oc, ic, kh, kw}; + memory::dims bias_tz = {oc}; + memory::dims output_tz = {n, oc, oh, ow}; + memory::dims _stride = {sh, sw}; + memory::dims _padding = {ph, pw}; + + auto input_md = memory::desc({input_tz}, data_t, format_any); + auto weight_md = memory::desc({weight_tz}, data_t, format_any); + auto bias_md = memory::desc({bias_tz}, data_t, format_any); + auto output_md = memory::desc({output_tz}, data_t, format_any); + + std::shared_ptr<convolution_forward::desc> conv_forward_desc; + if (bias.defined()) { + conv_forward_desc.reset(new convolution_forward::desc(prop_kind::forward, + convolution_direct, input_md, weight_md, bias_md, output_md, + _stride, _padding, _padding, padding_kind::zero)); + } else { + conv_forward_desc.reset(new convolution_forward::desc(prop_kind::forward, + convolution_direct, input_md, weight_md, output_md, + _stride, _padding, _padding, padding_kind::zero)); + } + + std::shared_ptr<convolution_forward::primitive_desc> conv_forward_pd; + conv_forward_pd.reset(new convolution_forward::primitive_desc( + *conv_forward_desc, cpu_engine)); + + auto input_usr_memory = memory({{{input_tz}, data_t, format_nchw}, cpu_engine}, + input.data_ptr()); + auto weight_usr_memory = memory({{{weight_tz}, data_t, format_oihw}, cpu_engine}, + weight.data_ptr()); + auto output_usr_memory = memory({{{output_tz}, data_t, format_nchw}, cpu_engine}, + output.data_ptr()); + + std::vector<primitive> net; + + auto input_pd = conv_forward_pd->src_primitive_desc(); + auto input_memory = input_usr_memory; + if (input_usr_memory.get_primitive_desc() != memory::primitive_desc(input_pd)) { + input_memory = memory(input_pd); + net.push_back(reorder(input_usr_memory, input_memory)); + } + + auto weight_pd = conv_forward_pd->weights_primitive_desc(); + auto weight_memory = weight_usr_memory; + if (weight_usr_memory.get_primitive_desc() != memory::primitive_desc(weight_pd)) { + weight_memory = memory(weight_pd); + net.push_back(reorder(weight_usr_memory, weight_memory)); + } + + auto output_pd = conv_forward_pd->dst_primitive_desc(); + auto output_memory = output_usr_memory; + if (output_usr_memory.get_primitive_desc() != memory::primitive_desc(output_pd)) { + output_memory = memory(output_pd); + } + + std::shared_ptr<convolution_forward> conv_forward; + std::shared_ptr<memory> bias_usr_memory; + if (bias.defined()) { + bias_usr_memory.reset(new memory({{{bias_tz}, data_t, format_x}, cpu_engine}, + bias.data_ptr())); + conv_forward.reset(new convolution_forward(*conv_forward_pd, input_memory, + weight_memory, *bias_usr_memory, output_memory)); + } else { + conv_forward.reset(new convolution_forward(*conv_forward_pd, input_memory, + weight_memory, output_memory)); + } + net.push_back(*conv_forward); + + if (output_memory != output_usr_memory) { + net.push_back(reorder(output_memory, output_usr_memory)); + } + + Stream::Instance().get_stream().submit(net); + + return output; +} + +Tensor mkldnn_convolution_backward_input( + IntList input_size, const at::Tensor& grad_output, const at::Tensor& weight, + IntList padding, IntList stride, IntList dilation, bool bias_defined) +{ + auto grad_input = grad_output.type().tensor(input_size); + + auto cpu_engine = CpuEngine::Instance().get_engine(); + + int32_t n = grad_input.size(0); + int32_t ic = grad_input.size(1); + int32_t ih = grad_input.size(2); + int32_t iw = grad_input.size(3); + + int32_t oc = grad_output.size(1); + int32_t oh = grad_output.size(2); + int32_t ow = grad_output.size(3); + + int32_t kh = weight.size(2); + int32_t kw = weight.size(3); + + int32_t sh = stride[0]; + int32_t sw = stride[1]; + int32_t ph = padding[0]; + int32_t pw = padding[1]; + + auto data_t = memory::data_type::f32; + auto format_any = memory::format::any; + auto format_nchw = memory::format::nchw; + auto format_oihw = memory::format::oihw; + + memory::dims input_tz = {n, ic, ih, iw}; + memory::dims weight_tz = {oc, ic, kh, kw}; + memory::dims bias_tz = {oc}; + memory::dims output_tz = {n, oc, oh, ow}; + memory::dims _stride = {sh, sw}; + memory::dims _padding = {ph, pw}; + + auto input_md = memory::desc({input_tz}, data_t, format_any); + auto weight_md = memory::desc({weight_tz}, data_t, format_any); + auto bias_md = memory::desc({bias_tz}, data_t, format_any); + auto output_md = memory::desc({output_tz}, data_t, format_any); + + // need to re-create conv_forward_pd to feed conv_backward_data_pd + std::shared_ptr<convolution_forward::desc> conv_forward_desc; + if (bias_defined) { + conv_forward_desc.reset(new convolution_forward::desc(prop_kind::forward, + convolution_direct, input_md, weight_md, bias_md, output_md, + _stride, _padding, _padding, padding_kind::zero)); + } else { + conv_forward_desc.reset(new convolution_forward::desc(prop_kind::forward, + convolution_direct, input_md, weight_md, output_md, + _stride, _padding, _padding, padding_kind::zero)); + } + + std::shared_ptr<convolution_forward::primitive_desc> conv_forward_pd; + conv_forward_pd.reset(new convolution_forward::primitive_desc( + *conv_forward_desc, cpu_engine)); + + std::shared_ptr<convolution_backward_data::desc> conv_backward_data_desc; + conv_backward_data_desc.reset(new convolution_backward_data::desc( + convolution_direct, input_md, weight_md, output_md, + _stride, _padding, _padding, padding_kind::zero)); + + std::shared_ptr<convolution_backward_data::primitive_desc> conv_backward_data_pd; + conv_backward_data_pd.reset(new convolution_backward_data::primitive_desc( + *conv_backward_data_desc, cpu_engine, *conv_forward_pd)); + + auto grad_output_usr_memory = memory({{{output_tz}, data_t, format_nchw}, cpu_engine}, + grad_output.data_ptr()); + auto weight_usr_memory = memory({{{weight_tz}, data_t, format_oihw}, cpu_engine}, + weight.data_ptr()); + auto grad_input_usr_memory = memory({{{input_tz}, data_t, format_nchw}, cpu_engine}, + grad_input.data_ptr()); + + std::vector<primitive> net; + + auto grad_output_pd = conv_backward_data_pd->diff_dst_primitive_desc(); + auto grad_output_memory = grad_output_usr_memory; + if (grad_output_usr_memory.get_primitive_desc() != memory::primitive_desc(grad_output_pd)) { + grad_output_memory = memory(grad_output_pd); + net.push_back(reorder(grad_output_usr_memory, grad_output_memory)); + } + + auto weight_pd = conv_backward_data_pd->weights_primitive_desc(); + auto weight_memory = weight_usr_memory; + if (weight_usr_memory.get_primitive_desc() != memory::primitive_desc(weight_pd)) { + weight_memory = memory(weight_pd); + net.push_back(reorder(weight_usr_memory, weight_memory)); + } + + auto grad_input_pd = conv_backward_data_pd->diff_src_primitive_desc(); + auto grad_input_memory = grad_input_usr_memory; + if (grad_input_memory.get_primitive_desc() != memory::primitive_desc(grad_input_pd)) { + grad_input_memory = memory(grad_input_pd); + } + + std::shared_ptr<convolution_backward_data> conv_backward_data; + conv_backward_data.reset(new convolution_backward_data(*conv_backward_data_pd, + grad_output_memory, weight_memory, grad_input_memory)); + net.push_back(*conv_backward_data); + + if (grad_input_memory != grad_input_usr_memory) { + net.push_back(reorder(grad_input_memory, grad_input_usr_memory)); + } + + Stream::Instance().get_stream().submit(net); + + return grad_input; +} + +std::tuple<at::Tensor, at::Tensor> mkldnn_convolution_backward_weights( + IntList weight_size, const at::Tensor& grad_output, const at::Tensor& input, + IntList padding, IntList stride, IntList dilation, bool bias_defined) +{ + auto grad_weight = grad_output.type().tensor(weight_size); + + Tensor grad_bias; + if (bias_defined) { + grad_bias = grad_output.type().tensor({grad_output.size(1)}); + } + + auto cpu_engine = CpuEngine::Instance().get_engine(); + + int32_t n = input.size(0); + int32_t ic = input.size(1); + int32_t ih = input.size(2); + int32_t iw = input.size(3); + + int32_t oc = grad_output.size(1); + int32_t oh = grad_output.size(2); + int32_t ow = grad_output.size(3); + + int32_t kh = grad_weight.size(2); + int32_t kw = grad_weight.size(3); + + int32_t sh = stride[0]; + int32_t sw = stride[1]; + int32_t ph = padding[0]; + int32_t pw = padding[1]; + + auto data_t = memory::data_type::f32; + auto format_any = memory::format::any; + auto format_nchw = memory::format::nchw; + auto format_oihw = memory::format::oihw; + auto format_x = memory::format::x; + + memory::dims input_tz = {n, ic, ih, iw}; + memory::dims weight_tz = {oc, ic, kh, kw}; + memory::dims bias_tz = {oc}; + memory::dims output_tz = {n, oc, oh, ow}; + memory::dims _stride = {sh, sw}; + memory::dims _padding = {ph, pw}; + + memory::desc input_md({input_tz}, data_t, format_any); + memory::desc weight_md({weight_tz}, data_t, format_any); + memory::desc bias_md({bias_tz}, data_t, format_any); + memory::desc output_md({output_tz}, data_t, format_any); + + // need to re-create conv_forward_pd to feed conv_backward_weight_pd + std::shared_ptr<convolution_forward::desc> conv_forward_desc; + if (bias_defined) { + conv_forward_desc.reset(new convolution_forward::desc(prop_kind::forward, + convolution_direct, input_md, weight_md, bias_md, output_md, + _stride, _padding, _padding, padding_kind::zero)); + } else { + conv_forward_desc.reset(new convolution_forward::desc(prop_kind::forward, + convolution_direct, input_md, weight_md, output_md, + _stride, _padding, _padding, padding_kind::zero)); + } + + std::shared_ptr<convolution_forward::primitive_desc> conv_forward_pd; + conv_forward_pd.reset(new convolution_forward::primitive_desc( + *conv_forward_desc, cpu_engine)); + + std::shared_ptr<convolution_backward_weights::desc> conv_backward_weight_desc; + if (bias_defined) { + conv_backward_weight_desc.reset(new convolution_backward_weights::desc( + convolution_direct, input_md, weight_md, bias_md, output_md, + _stride, _padding, _padding, padding_kind::zero)); + } else { + conv_backward_weight_desc.reset(new convolution_backward_weights::desc( + convolution_direct, input_md, weight_md, output_md, + _stride, _padding, _padding, padding_kind::zero)); + } + + std::shared_ptr<convolution_backward_weights::primitive_desc> conv_backward_weight_pd; + conv_backward_weight_pd.reset(new convolution_backward_weights::primitive_desc( + *conv_backward_weight_desc, cpu_engine, *conv_forward_pd)); + + auto input_usr_memory = memory({{{input_tz}, data_t, format_nchw}, cpu_engine}, + input.data_ptr()); + auto grad_output_usr_memory = memory({{{output_tz}, data_t, format_nchw}, cpu_engine}, + grad_output.data_ptr()); + auto grad_weight_usr_memory = memory({{{weight_tz}, data_t, format_oihw}, cpu_engine}, + grad_weight.data_ptr()); + std::shared_ptr<memory> grad_bias_memory; + + std::vector<primitive> net; + + auto input_pd = conv_backward_weight_pd->src_primitive_desc(); + auto input_memory = input_usr_memory; + if (input_usr_memory.get_primitive_desc() != memory::primitive_desc(input_pd)) { + input_memory = memory(input_pd); + net.push_back(reorder(input_usr_memory, input_memory)); + } + + auto grad_output_pd = conv_backward_weight_pd->diff_dst_primitive_desc(); + auto grad_output_memory = grad_output_usr_memory; + if (grad_output_usr_memory.get_primitive_desc() != memory::primitive_desc(grad_output_pd)) { + grad_output_memory = memory(grad_output_pd); + net.push_back(reorder(grad_output_usr_memory, grad_output_memory)); + } + + auto grad_weight_pd = conv_backward_weight_pd->diff_weights_primitive_desc(); + auto grad_weight_memory = grad_weight_usr_memory; + if (grad_weight_usr_memory.get_primitive_desc() != memory::primitive_desc(grad_weight_pd)) { + grad_weight_memory = memory(grad_weight_pd); + } + + std::shared_ptr<convolution_backward_weights> conv_backward_weight; + if (bias_defined) { + grad_bias_memory.reset(new memory({{{bias_tz}, data_t, format_x}, cpu_engine}, + grad_bias.data_ptr())); + conv_backward_weight.reset(new convolution_backward_weights(*conv_backward_weight_pd, + input_memory, grad_output_memory, grad_weight_memory, *grad_bias_memory)); + } else { + conv_backward_weight.reset(new convolution_backward_weights(*conv_backward_weight_pd, + input_memory, grad_output_memory, grad_weight_memory)); + } + + net.push_back(*conv_backward_weight); + + if (grad_weight_memory != grad_weight_usr_memory) { + net.push_back(reorder(grad_weight_memory, grad_weight_usr_memory)); + } + + Stream::Instance().get_stream().submit(net); + + return std::tuple<at::Tensor, at::Tensor>{grad_weight, grad_bias}; +} + +std::tuple<at::Tensor,at::Tensor,at::Tensor> mkldnn_convolution_backward( + const at::Tensor& input, const at::Tensor& grad_output_t, const at::Tensor& weight, + IntList padding, IntList stride, IntList dilation, std::array<bool,3> output_mask) +{ + Tensor grad_output = grad_output_t.contiguous(); + + Tensor grad_input, grad_weight, grad_bias; + if (output_mask[0]) { + grad_input = at::mkldnn_convolution_backward_input( + input.sizes(), grad_output, weight, padding, stride, dilation, output_mask[2]); + } + if (output_mask[1] || output_mask[2]) { + std::tie(grad_weight, grad_bias) = at::mkldnn_convolution_backward_weights( + weight.sizes(), grad_output, input, padding, stride, dilation, output_mask[2]); + } + + return std::tuple<Tensor, Tensor, Tensor>{grad_input, grad_weight, grad_bias}; +} + +}} // namespace at::native + +#endif diff --git a/aten/src/ATen/native/native_functions.yaml b/aten/src/ATen/native/native_functions.yaml index 7e665909d7..93fa94eac3 100644 --- a/aten/src/ATen/native/native_functions.yaml +++ b/aten/src/ATen/native/native_functions.yaml @@ -711,3 +711,15 @@ dispatch: CPU: _s_poisson_cpu CUDA: _s_poisson_cuda + +- func: mkldnn_convolution(Tensor self, Tensor weight, Tensor? bias, IntList padding, IntList stride, IntList dilation) -> Tensor + variants: function + +- func: mkldnn_convolution_backward_input(IntList self_size, Tensor grad_output, Tensor weight, IntList padding, IntList stride, IntList dilation, bool bias_defined) -> Tensor + variants: function + +- func: mkldnn_convolution_backward_weights(IntList weight_size, Tensor grad_output, Tensor self, IntList padding, IntList stride, IntList dilation, bool bias_defined) -> (Tensor, Tensor) + variants: function + +- func: mkldnn_convolution_backward(Tensor self, Tensor grad_output, Tensor weight, IntList padding, IntList stride, IntList dilation, std::array<bool,3> output_mask) -> (Tensor, Tensor, Tensor) + variants: function |