summaryrefslogtreecommitdiff
path: root/numpy/lib/shape_base.py
blob: 8d66b41d19696e5d21338e56545702a5914a53d9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
__all__ = ['atleast_1d','atleast_2d','atleast_3d','vstack','hstack',
           'column_stack','dstack','array_split','split','hsplit',
           'vsplit','dsplit','apply_over_axes','expand_dims',
           'apply_along_axis']

import numeric as _nx
from numeric import *
from oldnumeric import product

from type_check import isscalar

def apply_along_axis(func1d,axis,arr,*args):
    """ Execute func1d(arr[i],*args) where func1d takes 1-D arrays
        and arr is an N-d array.  i varies so as to apply the function
        along the given axis for each 1-d subarray in arr.
    """
    arr = asarray(arr)
    nd = arr.ndim
    if axis < 0:
        axis += nd
    if (axis >= nd):
        raise ValueError("axis must be less than arr.ndim; axis=%d, rank=%d." 
            % (axis,nd))
    ind = [0]*(nd-1)
    i = zeros(nd,'O')
    indlist = range(nd)
    indlist.remove(axis)
    i[axis] = slice(None,None)
    outshape = asarray(arr.shape).take(indlist)
    i.put(ind, indlist)
    res = func1d(arr[tuple(i.tolist())],*args)
    #  if res is a number, then we have a smaller output array
    if isscalar(res):
        outarr = zeros(outshape,asarray(res).dtypechar)
        outarr[ind] = res
        Ntot = product(outshape)
        k = 1
        while k < Ntot:
            # increment the index
            ind[-1] += 1
            n = -1
            while (ind[n] >= outshape[n]) and (n > (1-nd)):
                ind[n-1] += 1
                ind[n] = 0
                n -= 1
            i.put(ind,indlist)
            res = func1d(arr[tuple(i.tolist())],*args)
            outarr[ind] = res
            k += 1
        return outarr
    else:
        Ntot = product(outshape)
        holdshape = outshape
        outshape = list(arr.shape)
        outshape[axis] = len(res)
        outarr = zeros(outshape,asarray(res).dtypechar)
        outarr[tuple(i.tolist())] = res
        k = 1
        while k < Ntot:
            # increment the index
            ind[-1] += 1
            n = -1
            while (ind[n] >= holdshape[n]) and (n > (1-nd)):
                ind[n-1] += 1
                ind[n] = 0
                n -= 1
            i.put(ind, indlist)
            res = func1d(arr[tuple(i.tolist())],*args)
            outarr[tuple(i.tolist())] = res
            k += 1
        return outarr


def apply_over_axes(func, a, axes):
    """Apply a function repeatedly over multiple axes, keeping the same shape
    for the resulting array.

    func is called as res = func(a, axis).  The result is assumed
    to be either the same shape as a or have one less dimension.
    This call is repeated for each axis in the axes sequence.
    """
    val = asarray(a)
    N = a.ndim
    if array(axes).ndim == 0:
        axes = (axes,)
    for axis in axes:
        if axis < 0: axis = N + axis
        args = (val, axis)
        res = func(*args)
        if res.ndim == val.ndim:
            val = res
        else:
            res = expand_dims(res,axis)
            if res.ndim == val.ndim:
                val = res
            else:
                raise ValueError, "function is not returning"\
                      " an array of correct shape"
    return val

def expand_dims(a, axis):
    """Expand the shape of a by including newaxis before given axis.
    """
    a = asarray(a)
    shape = a.shape
    if axis < 0:
        axis = axis + len(shape) + 1
    return a.reshape(shape[:axis] + (1,) + shape[axis:])


def atleast_1d(*arys):
    """ Force a sequence of arrays to each be at least 1D.

         Description:
            Force an array to be at least 1D.  If an array is 0D, the
            array is converted to a single row of values.  Otherwise,
            the array is unaltered.
         Arguments:
            *arys -- arrays to be converted to 1 or more dimensional array.
         Returns:
            input array converted to at least 1D array.
    """
    res = []
    for ary in arys:
        ary = asarray(ary)
        if len(ary.shape) == 0:
            ary = ary.reshape(1)
        res.append(ary)
    if len(res) == 1:
        return res[0]
    else:
        return res

def atleast_2d(*arys):
    """ Force a sequence of arrays to each be at least 2D.

         Description:
            Force an array to each be at least 2D.  If the array
            is 0D or 1D, the array is converted to a single
            row of values.  Otherwise, the array is unaltered.
         Arguments:
            arys -- arrays to be converted to 2 or more dimensional array.
         Returns:
            input array converted to at least 2D array.
    """
    res = []
    for ary in arys:
        ary = asarray(ary)
        if len(ary.shape) == 0:
            result = ary.reshape(1,1)
        elif len(ary.shape) == 1: 
            result = ary[newaxis,:]
        else: 
            result = ary
        res.append(result)
    if len(res) == 1:
        return res[0]
    else:
        return res

def atleast_3d(*arys):
    """ Force a sequence of arrays to each be at least 3D.

         Description:
            Force an array each be at least 3D.  If the array is 0D or 1D, 
            the array is converted to a single 1xNx1 array of values where 
            N is the orginal length of the array. If the array is 2D, the 
            array is converted to a single MxNx1 array of values where MxN
            is the orginal shape of the array. Otherwise, the array is 
            unaltered.
         Arguments:
            arys -- arrays to be converted to 3 or more dimensional array.
         Returns:
            input array converted to at least 3D array.
    """
    res = []
    for ary in arys:
        ary = asarray(ary)
        if len(ary.shape) == 0:
            result = ary.reshape(1,1,1)
        elif len(ary.shape) == 1:
            result = ary[newaxis,:,newaxis]
        elif len(ary.shape) == 2:
            result = ary[:,:,newaxis]
        else: 
            result = ary
        res.append(result)
    if len(res) == 1:
        return res[0]
    else:
        return res


def vstack(tup):
    """ Stack arrays in sequence vertically (row wise)

        Description:
            Take a sequence of arrays and stack them veritcally
            to make a single array.  All arrays in the sequence
            must have the same shape along all but the first axis. 
            vstack will rebuild arrays divided by vsplit.
        Arguments:
            tup -- sequence of arrays.  All arrays must have the same 
                   shape.
        Examples:
            >>> import scipy
            >>> a = array((1,2,3))
            >>> b = array((2,3,4))
            >>> scipy.vstack((a,b))
            array([[1, 2, 3],
                   [2, 3, 4]])
            >>> a = array([[1],[2],[3]])
            >>> b = array([[2],[3],[4]])
            >>> scipy.vstack((a,b))
            array([[1],
                   [2],
                   [3],
                   [2],
                   [3],
                   [4]])

    """
    return _nx.concatenate(map(atleast_2d,tup),0)

def hstack(tup):
    """ Stack arrays in sequence horizontally (column wise)

        Description:
            Take a sequence of arrays and stack them horizontally
            to make a single array.  All arrays in the sequence
            must have the same shape along all but the second axis.
            hstack will rebuild arrays divided by hsplit.
        Arguments:
            tup -- sequence of arrays.  All arrays must have the same 
                   shape.
        Examples:
            >>> import scipy
            >>> a = array((1,2,3))
            >>> b = array((2,3,4))
            >>> scipy.hstack((a,b))
            array([1, 2, 3, 2, 3, 4])
            >>> a = array([[1],[2],[3]])
            >>> b = array([[2],[3],[4]])
            >>> scipy.hstack((a,b))
            array([[1, 2],
                   [2, 3],
                   [3, 4]])

    """
    return _nx.concatenate(map(atleast_1d,tup),1)

def column_stack(tup):
    """ Stack 1D arrays as columns into a 2D array

        Description:
            Take a sequence of 1D arrays and stack them as columns
            to make a single 2D array.  All arrays in the sequence
            must have the same length.
        Arguments:
            tup -- sequence of 1D arrays.  All arrays must have the same 
                   length.
        Examples:
            >>> import scipy
            >>> a = array((1,2,3))
            >>> b = array((2,3,4))
            >>> scipy.column_stack((a,b))
            array([[1, 2],
                   [2, 3],
                   [3, 4]])

    """
    arrays = map(_nx.transpose,map(atleast_2d,tup))
    return _nx.concatenate(arrays,1)

def dstack(tup):
    """ Stack arrays in sequence depth wise (along third dimension)

        Description:
            Take a sequence of arrays and stack them along the third axis.
            All arrays in the sequence must have the same shape along all 
            but the third axis.  This is a simple way to stack 2D arrays 
            (images) into a single 3D array for processing.
            dstack will rebuild arrays divided by dsplit.
        Arguments:
            tup -- sequence of arrays.  All arrays must have the same 
                   shape.
        Examples:
            >>> import scipy
            >>> a = array((1,2,3))
            >>> b = array((2,3,4))
            >>> scipy.dstack((a,b))
            array([       [[1, 2],
                    [2, 3],
                    [3, 4]]])
            >>> a = array([[1],[2],[3]])
            >>> b = array([[2],[3],[4]])
            >>> scipy.dstack((a,b))
            array([[        [1, 2]],
                   [        [2, 3]],
                   [        [3, 4]]])
    """
    return _nx.concatenate(map(atleast_3d,tup),2)

def _replace_zero_by_x_arrays(sub_arys):
    for i in range(len(sub_arys)):
        if len(_nx.shape(sub_arys[i])) == 0:
            sub_arys[i] = _nx.array([])
        elif _nx.sometrue(_nx.equal(_nx.shape(sub_arys[i]),0)):
            sub_arys[i] = _nx.array([])   
    return sub_arys

def array_split(ary,indices_or_sections,axis = 0):
    """ Divide an array into a list of sub-arrays.

        Description:
           Divide ary into a list of sub-arrays along the
           specified axis.  If indices_or_sections is an integer,
           ary is divided into that many equally sized arrays.
           If it is impossible to make an equal split, each of the
           leading arrays in the list have one additional member.  If
           indices_or_sections is a list of sorted integers, its
           entries define the indexes where ary is split.

        Arguments:
           ary -- N-D array.
              Array to be divided into sub-arrays.
           indices_or_sections -- integer or 1D array.
              If integer, defines the number of (close to) equal sized
              sub-arrays.  If it is a 1D array of sorted indices, it
              defines the indexes at which ary is divided.  Any empty
              list results in a single sub-array equal to the original
              array.
           axis -- integer. default=0.
              Specifies the axis along which to split ary.
        Caveats:
           Currently, the default for axis is 0.  This
           means a 2D array is divided into multiple groups
           of rows.  This seems like the appropriate default, but
           we've agreed most other functions should default to
           axis=-1.  Perhaps we should use axis=-1 for consistency.
           However, we could also make the argument that SciPy
           works on "rows" by default.  sum() sums up rows of
           values.  split() will split data into rows.  Opinions?
    """
    try:
        Ntotal = ary.shape[axis]
    except AttributeError:
        Ntotal = len(ary)
    try: # handle scalar case.
        Nsections = len(indices_or_sections) + 1
        div_points = [0] + list(indices_or_sections) + [Ntotal]
    except TypeError: #indices_or_sections is a scalar, not an array.
        Nsections = int(indices_or_sections)
        if Nsections <= 0:
            raise ValueError, 'number sections must be larger than 0.'
        Neach_section,extras = divmod(Ntotal,Nsections)
        section_sizes = [0] + \
                        extras * [Neach_section+1] + \
                        (Nsections-extras) * [Neach_section]
        div_points = _nx.array(section_sizes).cumsum()

    sub_arys = []
    sary = _nx.swapaxes(ary,axis,0)
    for i in range(Nsections):
        st = div_points[i]; end = div_points[i+1]
        sub_arys.append(_nx.swapaxes(sary[st:end],axis,0))

    # there is a wierd issue with array slicing that allows
    # 0x10 arrays and other such things.  The following cluge is needed
    # to get around this issue.
    sub_arys = _replace_zero_by_x_arrays(sub_arys)
    # end cluge.

    return sub_arys

def split(ary,indices_or_sections,axis=0):
    """ Divide an array into a list of sub-arrays.

        Description:
           Divide ary into a list of sub-arrays along the
           specified axis.  If indices_or_sections is an integer,
           ary is divided into that many equally sized arrays.
           If it is impossible to make an equal split, an error is 
           raised.  This is the only way this function differs from
           the array_split() function. If indices_or_sections is a 
           list of sorted integers, its entries define the indexes
           where ary is split.

        Arguments:
           ary -- N-D array.
              Array to be divided into sub-arrays.
           indices_or_sections -- integer or 1D array.
              If integer, defines the number of (close to) equal sized
              sub-arrays.  If it is a 1D array of sorted indices, it
              defines the indexes at which ary is divided.  Any empty
              list results in a single sub-array equal to the original
              array.
           axis -- integer. default=0.
              Specifies the axis along which to split ary.
        Caveats:
           Currently, the default for axis is 0.  This
           means a 2D array is divided into multiple groups
           of rows.  This seems like the appropriate default, but
           we've agreed most other functions should default to
           axis=-1.  Perhaps we should use axis=-1 for consistency.
           However, we could also make the argument that SciPy
           works on "rows" by default.  sum() sums up rows of
           values.  split() will split data into rows.  Opinions?
    """
    try: len(indices_or_sections)
    except TypeError:
        sections = indices_or_sections
        N = ary.shape[axis]
        if N % sections:
            raise ValueError, 'array split does not result in an equal division'
    res = array_split(ary,indices_or_sections,axis)
    return res

def hsplit(ary,indices_or_sections):
    """ Split ary into multiple columns of sub-arrays

        Description:
            Split a single array into multiple sub arrays.  The array is
            divided into groups of columns.  If indices_or_sections is
            an integer, ary is divided into that many equally sized sub arrays.
            If it is impossible to make the sub-arrays equally sized, the
            operation throws a ValueError exception. See array_split and
            split for other options on indices_or_sections.
        Arguments:
           ary -- N-D array.
              Array to be divided into sub-arrays.
           indices_or_sections -- integer or 1D array.
              If integer, defines the number of (close to) equal sized
              sub-arrays.  If it is a 1D array of sorted indices, it
              defines the indexes at which ary is divided.  Any empty
              list results in a single sub-array equal to the original
              array.
        Returns:
            sequence of sub-arrays.  The returned arrays have the same
            number of dimensions as the input array.
        Related:
            hstack, split, array_split, vsplit, dsplit.
        Examples:
            >>> import scipy
            >>> a= array((1,2,3,4))
            >>> scipy.hsplit(a,2)
            [array([1, 2]), array([3, 4])]
            >>> a = array([[1,2,3,4],[1,2,3,4]])
            [array([[1, 2],
                   [1, 2]]), array([[3, 4],
                   [3, 4]])]

    """
    if len(_nx.shape(ary)) == 0:
        raise ValueError, 'hsplit only works on arrays of 1 or more dimensions'
    if len(ary.shape) > 1:
        return split(ary,indices_or_sections,1)
    else:
        return split(ary,indices_or_sections,0)

def vsplit(ary,indices_or_sections):
    """ Split ary into multiple rows of sub-arrays

        Description:
            Split a single array into multiple sub arrays.  The array is
            divided into groups of rows.  If indices_or_sections is
            an integer, ary is divided into that many equally sized sub arrays.
            If it is impossible to make the sub-arrays equally sized, the
            operation throws a ValueError exception. See array_split and
            split for other options on indices_or_sections.
        Arguments:
           ary -- N-D array.
              Array to be divided into sub-arrays.
           indices_or_sections -- integer or 1D array.
              If integer, defines the number of (close to) equal sized
              sub-arrays.  If it is a 1D array of sorted indices, it
              defines the indexes at which ary is divided.  Any empty
              list results in a single sub-array equal to the original
              array.
        Returns:
            sequence of sub-arrays.  The returned arrays have the same
            number of dimensions as the input array.
        Caveats:
           How should we handle 1D arrays here?  I am currently raising
           an error when I encounter them.  Any better approach?

           Should we reduce the returned array to their minium dimensions
           by getting rid of any dimensions that are 1?
        Related:
            vstack, split, array_split, hsplit, dsplit.
        Examples:
            import scipy
            >>> a = array([[1,2,3,4],
            ...            [1,2,3,4]])
            >>> scipy.vsplit(a)
            [array([       [1, 2, 3, 4]]), array([       [1, 2, 3, 4]])]

    """
    if len(_nx.shape(ary)) < 2:
        raise ValueError, 'vsplit only works on arrays of 2 or more dimensions'
    return split(ary,indices_or_sections,0)

def dsplit(ary,indices_or_sections):
    """ Split ary into multiple sub-arrays along the 3rd axis (depth)

        Description:
            Split a single array into multiple sub arrays.  The array is
            divided into groups along the 3rd axis.  If indices_or_sections is
            an integer, ary is divided into that many equally sized sub arrays.
            If it is impossible to make the sub-arrays equally sized, the
            operation throws a ValueError exception. See array_split and
            split for other options on indices_or_sections.
        Arguments:
           ary -- N-D array.
              Array to be divided into sub-arrays.
           indices_or_sections -- integer or 1D array.
              If integer, defines the number of (close to) equal sized
              sub-arrays.  If it is a 1D array of sorted indices, it
              defines the indexes at which ary is divided.  Any empty
              list results in a single sub-array equal to the original
              array.
        Returns:
            sequence of sub-arrays.  The returned arrays have the same
            number of dimensions as the input array.
        Caveats:
           See vsplit caveats.
        Related:
            dstack, split, array_split, hsplit, vsplit.
        Examples:
            >>> a = array([[[1,2,3,4],[1,2,3,4]]])
            [array([       [[1, 2],
                    [1, 2]]]), array([       [[3, 4],
                    [3, 4]]])]

    """
    if len(_nx.shape(ary)) < 3:
        raise ValueError, 'vsplit only works on arrays of 3 or more dimensions'
    return split(ary,indices_or_sections,2)