summaryrefslogtreecommitdiff
path: root/numpy/core/src/multiarray/dragon4.c
blob: 8d52672e3872a4ca4e64d3f6fb4f29fb71dc5f3e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
/*
 * Copyright (c) 2014 Ryan Juckett
 * http://www.ryanjuckett.com/
 *
 * This software is provided 'as-is', without any express or implied
 * warranty. In no event will the authors be held liable for any damages
 * arising from the use of this software.
 *
 * Permission is granted to anyone to use this software for any purpose,
 * including commercial applications, and to alter it and redistribute it
 * freely, subject to the following restrictions:
 *
 * 1. The origin of this software must not be misrepresented; you must not
 *    claim that you wrote the original software. If you use this software
 *    in a product, an acknowledgment in the product documentation would be
 *    appreciated but is not required.
 *
 * 2. Altered source versions must be plainly marked as such, and must not be
 *    misrepresented as being the original software.
 *
 * 3. This notice may not be removed or altered from any source
 *    distribution.
 */

/*
 * This file contains a modified version of Ryan Juckett's Dragon4
 * implementation, which has been ported from C++ to C and which has
 * modifications specific to printing floats in numpy.
 */

#include "dragon4.h"
#include <numpy/npy_common.h>
#include <math.h>
#include <stdio.h>
#include <string.h>

#include <assert.h>

#if 0
#define DEBUG_ASSERT(stmnt) assert(stmnt)
#else
#define DEBUG_ASSERT(stmnt) do {} while(0)
#endif

static inline npy_uint64
bitmask_u64(npy_uint32 n)
{
    return ~(~((npy_uint64)0) << n);
}

static inline npy_uint32
bitmask_u32(npy_uint32 n)
{
    return ~(~((npy_uint32)0) << n);
}

/*
 *  Get the log base 2 of a 32-bit unsigned integer.
 *  http://graphics.stanford.edu/~seander/bithacks.html#IntegerLogLookup
 */
static npy_uint32
LogBase2_32(npy_uint32 val)
{
    static const npy_uint8 logTable[256] =
    {
        0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
        4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
        5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
        5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
        6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
        6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
        6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
        6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
        7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
        7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
        7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
        7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
        7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
        7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
        7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
        7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
    };

    npy_uint32 temp;

    temp = val >> 24;
    if (temp) {
        return 24 + logTable[temp];
    }

    temp = val >> 16;
    if (temp) {
        return 16 + logTable[temp];
    }

    temp = val >> 8;
    if (temp) {
        return 8 + logTable[temp];
    }

    return logTable[val];
}

static npy_uint32
LogBase2_64(npy_uint64 val)
{
    npy_uint64 temp;

    temp = val >> 32;
    if (temp) {
        return 32 + LogBase2_32((npy_uint32)temp);
    }

    return LogBase2_32((npy_uint32)val);
}

#if defined(HAVE_LDOUBLE_IEEE_QUAD_LE) || defined(HAVE_LDOUBLE_IEEE_QUAD_BE)
static npy_uint32
LogBase2_128(npy_uint64 hi, npy_uint64 lo)
{
    if (hi) {
        return 64 + LogBase2_64(hi);
    }

    return LogBase2_64(lo);
}
#endif /* HAVE_LDOUBLE_IEEE_QUAD_LE */

/*
 * Maximum number of 32 bit blocks needed in high precision arithmetic to print
 * out 128 bit IEEE floating point values. 1023 chosen to be large enough for
 * 128 bit floats, and BigInt is exactly 4kb (nice for page/cache?)
 */
#define c_BigInt_MaxBlocks  1023

/*
 * This structure stores a high precision unsigned integer. It uses a buffer of
 * 32 bit integer blocks along with a length. The lowest bits of the integer
 * are stored at the start of the buffer and the length is set to the minimum
 * value that contains the integer. Thus, there are never any zero blocks at
 * the end of the buffer.
 */
typedef struct BigInt {
    npy_uint32 length;
    npy_uint32 blocks[c_BigInt_MaxBlocks];
} BigInt;

/*
 * Dummy implementation of a memory manager for BigInts. Currently, only
 * supports a single call to Dragon4, but that is OK because Dragon4
 * does not release the GIL.
 *
 * We try to raise an error anyway if dragon4 re-enters, and this code serves
 * as a placeholder if we want to make it re-entrant in the future.
 *
 * Each call to dragon4 uses 7 BigInts.
 */
#define BIGINT_DRAGON4_GROUPSIZE 7
typedef struct {
    BigInt bigints[BIGINT_DRAGON4_GROUPSIZE];
    char repr[16384];
} Dragon4_Scratch;

static int _bigint_static_in_use = 0;
static Dragon4_Scratch _bigint_static;

static Dragon4_Scratch*
get_dragon4_bigint_scratch(void) {
    /* this test+set is not threadsafe, but no matter because we have GIL */
    if (_bigint_static_in_use) {
        PyErr_SetString(PyExc_RuntimeError,
            "numpy float printing code is not re-entrant. "
            "Ping the devs to fix it.");
        return NULL;
    }
    _bigint_static_in_use = 1;

    /* in this dummy implementation we only return the static allocation */
    return &_bigint_static;
}

static void
free_dragon4_bigint_scratch(Dragon4_Scratch *mem){
    _bigint_static_in_use = 0;
}

/* Copy integer */
static void
BigInt_Copy(BigInt *dst, const BigInt *src)
{
    npy_uint32 length = src->length;
    npy_uint32 * dstp = dst->blocks;
    const npy_uint32 *srcp;
    for (srcp = src->blocks; srcp != src->blocks + length; ++dstp, ++srcp) {
        *dstp = *srcp;
    }
    dst->length = length;
}

/* Basic type accessors */
static void
BigInt_Set_uint64(BigInt *i, npy_uint64 val)
{
    if (val > bitmask_u64(32)) {
        i->blocks[0] = val & bitmask_u64(32);
        i->blocks[1] = (val >> 32) & bitmask_u64(32);
        i->length = 2;
    }
    else if (val != 0) {
        i->blocks[0] = val & bitmask_u64(32);
        i->length = 1;
    }
    else {
        i->length = 0;
    }
}

#if (defined(HAVE_LDOUBLE_IBM_DOUBLE_DOUBLE_LE) || \
     defined(HAVE_LDOUBLE_IBM_DOUBLE_DOUBLE_BE) || \
     defined(HAVE_LDOUBLE_IEEE_QUAD_LE) || \
     defined(HAVE_LDOUBLE_IEEE_QUAD_BE))
static void
BigInt_Set_2x_uint64(BigInt *i, npy_uint64 hi, npy_uint64 lo)
{
    if (hi > bitmask_u64(32)) {
        i->length = 4;
    }
    else if (hi != 0) {
        i->length = 3;
    }
    else if (lo > bitmask_u64(32)) {
        i->length = 2;
    }
    else if (lo != 0) {
        i->length = 1;
    }
    else {
        i->length = 0;
    }

    /* Note deliberate fallthrough in this switch */
    switch (i->length) {
        case 4:
            i->blocks[3] = (hi >> 32) & bitmask_u64(32);
        case 3:
            i->blocks[2] = hi & bitmask_u64(32);
        case 2:
            i->blocks[1] = (lo >> 32) & bitmask_u64(32);
        case 1:
            i->blocks[0] = lo & bitmask_u64(32);
    }
}
#endif /* DOUBLE_DOUBLE and QUAD */

static void
BigInt_Set_uint32(BigInt *i, npy_uint32 val)
{
    if (val != 0) {
        i->blocks[0] = val;
        i->length = 1;
    }
    else {
        i->length = 0;
    }
}

/*
 * Returns 1 if the value is zero
 */
static int
BigInt_IsZero(const BigInt *i)
{
    return i->length == 0;
}

/*
 * Returns 1 if the value is even
 */
static int
BigInt_IsEven(const BigInt *i)
{
    return (i->length == 0) || ( (i->blocks[0] % 2) == 0);
}

/*
 * Returns 0 if (lhs = rhs), negative if (lhs < rhs), positive if (lhs > rhs)
 */
static npy_int32
BigInt_Compare(const BigInt *lhs, const BigInt *rhs)
{
    int i;

    /* A bigger length implies a bigger number. */
    npy_int32 lengthDiff = lhs->length - rhs->length;
    if (lengthDiff != 0) {
        return lengthDiff;
    }

    /* Compare blocks one by one from high to low. */
    for (i = lhs->length - 1; i >= 0; --i) {
        if (lhs->blocks[i] == rhs->blocks[i]) {
            continue;
        }
        else if (lhs->blocks[i] > rhs->blocks[i]) {
            return 1;
        }
        else {
            return -1;
        }
    }

    /* no blocks differed */
    return 0;
}

/* result = lhs + rhs */
static void
BigInt_Add(BigInt *result, const BigInt *lhs, const BigInt *rhs)
{
    /* determine which operand has the smaller length */
    const BigInt *large, *small;
    npy_uint64 carry = 0;
    const npy_uint32 *largeCur, *smallCur, *largeEnd, *smallEnd;
    npy_uint32 *resultCur;

    if (lhs->length < rhs->length) {
        small = lhs;
        large = rhs;
    }
    else {
        small = rhs;
        large = lhs;
    }

    /* The output will be at least as long as the largest input */
    result->length = large->length;

    /* Add each block and add carry the overflow to the next block */
    largeCur  = large->blocks;
    largeEnd  = largeCur + large->length;
    smallCur  = small->blocks;
    smallEnd  = smallCur + small->length;
    resultCur = result->blocks;
    while (smallCur != smallEnd) {
        npy_uint64 sum = carry + (npy_uint64)(*largeCur) +
                                 (npy_uint64)(*smallCur);
        carry = sum >> 32;
        *resultCur = sum & bitmask_u64(32);
        ++largeCur;
        ++smallCur;
        ++resultCur;
    }

    /* Add the carry to any blocks that only exist in the large operand */
    while (largeCur != largeEnd) {
        npy_uint64 sum = carry + (npy_uint64)(*largeCur);
        carry = sum >> 32;
        (*resultCur) = sum & bitmask_u64(32);
        ++largeCur;
        ++resultCur;
    }

    /* If there's still a carry, append a new block */
    if (carry != 0) {
        DEBUG_ASSERT(carry == 1);
        DEBUG_ASSERT((npy_uint32)(resultCur - result->blocks) ==
               large->length && (large->length < c_BigInt_MaxBlocks));
        *resultCur = 1;
        result->length = large->length + 1;
    }
    else {
        result->length = large->length;
    }
}

/*
 * result = lhs * rhs
 */
static void
BigInt_Multiply(BigInt *result, const BigInt *lhs, const BigInt *rhs)
{
    const BigInt *large;
    const BigInt *small;
    npy_uint32 maxResultLen;
    npy_uint32 *cur, *end, *resultStart;
    const npy_uint32 *smallCur;

    DEBUG_ASSERT(result != lhs && result != rhs);

    /* determine which operand has the smaller length */
    if (lhs->length < rhs->length) {
        small = lhs;
        large = rhs;
    }
    else {
        small = rhs;
        large = lhs;
    }

    /* set the maximum possible result length */
    maxResultLen = large->length + small->length;
    DEBUG_ASSERT(maxResultLen <= c_BigInt_MaxBlocks);

    /* clear the result data */
    for (cur = result->blocks, end = cur + maxResultLen; cur != end; ++cur) {
        *cur = 0;
    }

    /* perform standard long multiplication for each small block */
    resultStart = result->blocks;
    for (smallCur = small->blocks;
            smallCur != small->blocks + small->length;
            ++smallCur, ++resultStart) {
        /*
         * if non-zero, multiply against all the large blocks and add into the
         * result
         */
        const npy_uint32 multiplier = *smallCur;
        if (multiplier != 0) {
            const npy_uint32 *largeCur = large->blocks;
            npy_uint32 *resultCur = resultStart;
            npy_uint64 carry = 0;
            do {
                npy_uint64 product = (*resultCur) +
                                     (*largeCur)*(npy_uint64)multiplier + carry;
                carry = product >> 32;
                *resultCur = product & bitmask_u64(32);
                ++largeCur;
                ++resultCur;
            } while(largeCur != large->blocks + large->length);

            DEBUG_ASSERT(resultCur < result->blocks + maxResultLen);
            *resultCur = (npy_uint32)(carry & bitmask_u64(32));
        }
    }

    /* check if the terminating block has no set bits */
    if (maxResultLen > 0 && result->blocks[maxResultLen - 1] == 0) {
        result->length = maxResultLen-1;
    }
    else {
        result->length = maxResultLen;
    }
}

/* result = lhs * rhs */
static void
BigInt_Multiply_int(BigInt *result, const BigInt *lhs, npy_uint32 rhs)
{
    /* perform long multiplication */
    npy_uint32 carry = 0;
    npy_uint32 *resultCur = result->blocks;
    const npy_uint32 *pLhsCur = lhs->blocks;
    const npy_uint32 *pLhsEnd = lhs->blocks + lhs->length;
    for ( ; pLhsCur != pLhsEnd; ++pLhsCur, ++resultCur) {
        npy_uint64 product = (npy_uint64)(*pLhsCur) * rhs + carry;
        *resultCur = (npy_uint32)(product & bitmask_u64(32));
        carry = product >> 32;
    }

    /* if there is a remaining carry, grow the array */
    if (carry != 0) {
        /* grow the array */
        DEBUG_ASSERT(lhs->length + 1 <= c_BigInt_MaxBlocks);
        *resultCur = (npy_uint32)carry;
        result->length = lhs->length + 1;
    }
    else {
        result->length = lhs->length;
    }
}

/* result = in * 2 */
static void
BigInt_Multiply2(BigInt *result, const BigInt *in)
{
    /* shift all the blocks by one */
    npy_uint32 carry = 0;

    npy_uint32 *resultCur = result->blocks;
    const npy_uint32 *pLhsCur = in->blocks;
    const npy_uint32 *pLhsEnd = in->blocks + in->length;
    for ( ; pLhsCur != pLhsEnd; ++pLhsCur, ++resultCur) {
        npy_uint32 cur = *pLhsCur;
        *resultCur = (cur << 1) | carry;
        carry = cur >> 31;
    }

    if (carry != 0) {
        /* grow the array */
        DEBUG_ASSERT(in->length + 1 <= c_BigInt_MaxBlocks);
        *resultCur = carry;
        result->length = in->length + 1;
    }
    else {
        result->length = in->length;
    }
}

/* result = result * 2 */
static void
BigInt_Multiply2_inplace(BigInt *result)
{
    /* shift all the blocks by one */
    npy_uint32 carry = 0;

    npy_uint32 *cur = result->blocks;
    npy_uint32 *end = result->blocks + result->length;
    for ( ; cur != end; ++cur) {
        npy_uint32 tmpcur = *cur;
        *cur = (tmpcur << 1) | carry;
        carry = tmpcur >> 31;
    }

    if (carry != 0) {
        /* grow the array */
        DEBUG_ASSERT(result->length + 1 <= c_BigInt_MaxBlocks);
        *cur = carry;
        ++result->length;
    }
}

/* result = result * 10 */
static void
BigInt_Multiply10(BigInt *result)
{
    /* multiply all the blocks */
    npy_uint64 carry = 0;

    npy_uint32 *cur = result->blocks;
    npy_uint32 *end = result->blocks + result->length;
    for ( ; cur != end; ++cur) {
        npy_uint64 product = (npy_uint64)(*cur) * 10ull + carry;
        (*cur) = (npy_uint32)(product & bitmask_u64(32));
        carry = product >> 32;
    }

    if (carry != 0) {
        /* grow the array */
        DEBUG_ASSERT(result->length + 1 <= c_BigInt_MaxBlocks);
        *cur = (npy_uint32)carry;
        ++result->length;
    }
}

static npy_uint32 g_PowerOf10_U32[] =
{
    1,          /* 10 ^ 0 */
    10,         /* 10 ^ 1 */
    100,        /* 10 ^ 2 */
    1000,       /* 10 ^ 3 */
    10000,      /* 10 ^ 4 */
    100000,     /* 10 ^ 5 */
    1000000,    /* 10 ^ 6 */
    10000000,   /* 10 ^ 7 */
};

/*
 * Note: This has a lot of wasted space in the big integer structures of the
 *       early table entries. It wouldn't be terribly hard to make the multiply
 *       function work on integer pointers with an array length instead of
 *       the BigInt struct which would allow us to store a minimal amount of
 *       data here.
 */
static BigInt g_PowerOf10_Big[] =
{
    /* 10 ^ 8 */
    { 1, { 100000000 } },
    /* 10 ^ 16 */
    { 2, { 0x6fc10000, 0x002386f2 } },
    /* 10 ^ 32 */
    { 4, { 0x00000000, 0x85acef81, 0x2d6d415b, 0x000004ee, } },
    /* 10 ^ 64 */
    { 7, { 0x00000000, 0x00000000, 0xbf6a1f01, 0x6e38ed64, 0xdaa797ed,
           0xe93ff9f4, 0x00184f03, } },
    /* 10 ^ 128 */
    { 14, { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x2e953e01,
            0x03df9909, 0x0f1538fd, 0x2374e42f, 0xd3cff5ec, 0xc404dc08,
            0xbccdb0da, 0xa6337f19, 0xe91f2603, 0x0000024e, } },
    /* 10 ^ 256 */
    { 27, { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
            0x00000000, 0x00000000, 0x00000000, 0x982e7c01, 0xbed3875b,
            0xd8d99f72, 0x12152f87, 0x6bde50c6, 0xcf4a6e70, 0xd595d80f,
            0x26b2716e, 0xadc666b0, 0x1d153624, 0x3c42d35a, 0x63ff540e,
            0xcc5573c0, 0x65f9ef17, 0x55bc28f2, 0x80dcc7f7, 0xf46eeddc,
            0x5fdcefce, 0x000553f7, } },
    /* 10 ^ 512 */
    { 54, { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
            0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
            0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
            0x00000000, 0xfc6cf801, 0x77f27267, 0x8f9546dc, 0x5d96976f,
            0xb83a8a97, 0xc31e1ad9, 0x46c40513, 0x94e65747, 0xc88976c1,
            0x4475b579, 0x28f8733b, 0xaa1da1bf, 0x703ed321, 0x1e25cfea,
            0xb21a2f22, 0xbc51fb2e, 0x96e14f5d, 0xbfa3edac, 0x329c57ae,
            0xe7fc7153, 0xc3fc0695, 0x85a91924, 0xf95f635e, 0xb2908ee0,
            0x93abade4, 0x1366732a, 0x9449775c, 0x69be5b0e, 0x7343afac,
            0xb099bc81, 0x45a71d46, 0xa2699748, 0x8cb07303, 0x8a0b1f13,
            0x8cab8a97, 0xc1d238d9, 0x633415d4, 0x0000001c, } },
    /* 10 ^ 1024 */
    { 107, { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x2919f001, 0xf55b2b72, 0x6e7c215b,
             0x1ec29f86, 0x991c4e87, 0x15c51a88, 0x140ac535, 0x4c7d1e1a,
             0xcc2cd819, 0x0ed1440e, 0x896634ee, 0x7de16cfb, 0x1e43f61f,
             0x9fce837d, 0x231d2b9c, 0x233e55c7, 0x65dc60d7, 0xf451218b,
             0x1c5cd134, 0xc9635986, 0x922bbb9f, 0xa7e89431, 0x9f9f2a07,
             0x62be695a, 0x8e1042c4, 0x045b7a74, 0x1abe1de3, 0x8ad822a5,
             0xba34c411, 0xd814b505, 0xbf3fdeb3, 0x8fc51a16, 0xb1b896bc,
             0xf56deeec, 0x31fb6bfd, 0xb6f4654b, 0x101a3616, 0x6b7595fb,
             0xdc1a47fe, 0x80d98089, 0x80bda5a5, 0x9a202882, 0x31eb0f66,
             0xfc8f1f90, 0x976a3310, 0xe26a7b7e, 0xdf68368a, 0x3ce3a0b8,
             0x8e4262ce, 0x75a351a2, 0x6cb0b6c9, 0x44597583, 0x31b5653f,
             0xc356e38a, 0x35faaba6, 0x0190fba0, 0x9fc4ed52, 0x88bc491b,
             0x1640114a, 0x005b8041, 0xf4f3235e, 0x1e8d4649, 0x36a8de06,
             0x73c55349, 0xa7e6bd2a, 0xc1a6970c, 0x47187094, 0xd2db49ef,
             0x926c3f5b, 0xae6209d4, 0x2d433949, 0x34f4a3c6, 0xd4305d94,
             0xd9d61a05, 0x00000325, } },
    /* 10 ^ 2048 */
    { 213, { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x1333e001,
             0xe3096865, 0xb27d4d3f, 0x49e28dcf, 0xec2e4721, 0xee87e354,
             0xb6067584, 0x368b8abb, 0xa5e5a191, 0x2ed56d55, 0xfd827773,
             0xea50d142, 0x51b78db2, 0x98342c9e, 0xc850dabc, 0x866ed6f1,
             0x19342c12, 0x92794987, 0xd2f869c2, 0x66912e4a, 0x71c7fd8f,
             0x57a7842d, 0x235552eb, 0xfb7fedcc, 0xf3861ce0, 0x38209ce1,
             0x9713b449, 0x34c10134, 0x8c6c54de, 0xa7a8289c, 0x2dbb6643,
             0xe3cb64f3, 0x8074ff01, 0xe3892ee9, 0x10c17f94, 0xa8f16f92,
             0xa8281ed6, 0x967abbb3, 0x5a151440, 0x9952fbed, 0x13b41e44,
             0xafe609c3, 0xa2bca416, 0xf111821f, 0xfb1264b4, 0x91bac974,
             0xd6c7d6ab, 0x8e48ff35, 0x4419bd43, 0xc4a65665, 0x685e5510,
             0x33554c36, 0xab498697, 0x0dbd21fe, 0x3cfe491d, 0x982da466,
             0xcbea4ca7, 0x9e110c7b, 0x79c56b8a, 0x5fc5a047, 0x84d80e2e,
             0x1aa9f444, 0x730f203c, 0x6a57b1ab, 0xd752f7a6, 0x87a7dc62,
             0x944545ff, 0x40660460, 0x77c1a42f, 0xc9ac375d, 0xe866d7ef,
             0x744695f0, 0x81428c85, 0xa1fc6b96, 0xd7917c7b, 0x7bf03c19,
             0x5b33eb41, 0x5715f791, 0x8f6cae5f, 0xdb0708fd, 0xb125ac8e,
             0x785ce6b7, 0x56c6815b, 0x6f46eadb, 0x4eeebeee, 0x195355d8,
             0xa244de3c, 0x9d7389c0, 0x53761abd, 0xcf99d019, 0xde9ec24b,
             0x0d76ce39, 0x70beb181, 0x2e55ecee, 0xd5f86079, 0xf56d9d4b,
             0xfb8886fb, 0x13ef5a83, 0x408f43c5, 0x3f3389a4, 0xfad37943,
             0x58ccf45c, 0xf82df846, 0x415c7f3e, 0x2915e818, 0x8b3d5cf4,
             0x6a445f27, 0xf8dbb57a, 0xca8f0070, 0x8ad803ec, 0xb2e87c34,
             0x038f9245, 0xbedd8a6c, 0xc7c9dee0, 0x0eac7d56, 0x2ad3fa14,
             0xe0de0840, 0xf775677c, 0xf1bd0ad5, 0x92be221e, 0x87fa1fb9,
             0xce9d04a4, 0xd2c36fa9, 0x3f6f7024, 0xb028af62, 0x907855ee,
             0xd83e49d6, 0x4efac5dc, 0xe7151aab, 0x77cd8c6b, 0x0a753b7d,
             0x0af908b4, 0x8c983623, 0xe50f3027, 0x94222771, 0x1d08e2d6,
             0xf7e928e6, 0xf2ee5ca6, 0x1b61b93c, 0x11eb962b, 0x9648b21c,
             0xce2bcba1, 0x34f77154, 0x7bbebe30, 0xe526a319, 0x8ce329ac,
             0xde4a74d2, 0xb5dc53d5, 0x0009e8b3, } },
    /* 10 ^ 4096 */
    { 426, { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
             0x00000000, 0x00000000, 0x00000000, 0x2a67c001, 0xd4724e8d,
             0x8efe7ae7, 0xf89a1e90, 0xef084117, 0x54e05154, 0x13b1bb51,
             0x506be829, 0xfb29b172, 0xe599574e, 0xf0da6146, 0x806c0ed3,
             0xb86ae5be, 0x45155e93, 0xc0591cc2, 0x7e1e7c34, 0x7c4823da,
             0x1d1f4cce, 0x9b8ba1e8, 0xd6bfdf75, 0xe341be10, 0xc2dfae78,
             0x016b67b2, 0x0f237f1a, 0x3dbeabcd, 0xaf6a2574, 0xcab3e6d7,
             0x142e0e80, 0x61959127, 0x2c234811, 0x87009701, 0xcb4bf982,
             0xf8169c84, 0x88052f8c, 0x68dde6d4, 0xbc131761, 0xff0b0905,
             0x54ab9c41, 0x7613b224, 0x1a1c304e, 0x3bfe167b, 0x441c2d47,
             0x4f6cea9c, 0x78f06181, 0xeb659fb8, 0x30c7ae41, 0x947e0d0e,
             0xa1ebcad7, 0xd97d9556, 0x2130504d, 0x1a8309cb, 0xf2acd507,
             0x3f8ec72a, 0xfd82373a, 0x95a842bc, 0x280f4d32, 0xf3618ac0,
             0x811a4f04, 0x6dc3a5b4, 0xd3967a1b, 0x15b8c898, 0xdcfe388f,
             0x454eb2a0, 0x8738b909, 0x10c4e996, 0x2bd9cc11, 0x3297cd0c,
             0x655fec30, 0xae0725b1, 0xf4090ee8, 0x037d19ee, 0x398c6fed,
             0x3b9af26b, 0xc994a450, 0xb5341743, 0x75a697b2, 0xac50b9c1,
             0x3ccb5b92, 0xffe06205, 0xa8329761, 0xdfea5242, 0xeb83cadb,
             0xe79dadf7, 0x3c20ee69, 0x1e0a6817, 0x7021b97a, 0x743074fa,
             0x176ca776, 0x77fb8af6, 0xeca19beb, 0x92baf1de, 0xaf63b712,
             0xde35c88b, 0xa4eb8f8c, 0xe137d5e9, 0x40b464a0, 0x87d1cde8,
             0x42923bbd, 0xcd8f62ff, 0x2e2690f3, 0x095edc16, 0x59c89f1b,
             0x1fa8fd5d, 0x5138753d, 0x390a2b29, 0x80152f18, 0x2dd8d925,
             0xf984d83e, 0x7a872e74, 0xc19e1faf, 0xed4d542d, 0xecf9b5d0,
             0x9462ea75, 0xc53c0adf, 0x0caea134, 0x37a2d439, 0xc8fa2e8a,
             0x2181327e, 0x6e7bb827, 0x2d240820, 0x50be10e0, 0x5893d4b8,
             0xab312bb9, 0x1f2b2322, 0x440b3f25, 0xbf627ede, 0x72dac789,
             0xb608b895, 0x78787e2a, 0x86deb3f0, 0x6fee7aab, 0xbb9373f4,
             0x27ecf57b, 0xf7d8b57e, 0xfca26a9f, 0x3d04e8d2, 0xc9df13cb,
             0x3172826a, 0xcd9e8d7c, 0xa8fcd8e0, 0xb2c39497, 0x307641d9,
             0x1cc939c1, 0x2608c4cf, 0xb6d1c7bf, 0x3d326a7e, 0xeeaf19e6,
             0x8e13e25f, 0xee63302b, 0x2dfe6d97, 0x25971d58, 0xe41d3cc4,
             0x0a80627c, 0xab8db59a, 0x9eea37c8, 0xe90afb77, 0x90ca19cf,
             0x9ee3352c, 0x3613c850, 0xfe78d682, 0x788f6e50, 0x5b060904,
             0xb71bd1a4, 0x3fecb534, 0xb32c450c, 0x20c33857, 0xa6e9cfda,
             0x0239f4ce, 0x48497187, 0xa19adb95, 0xb492ed8a, 0x95aca6a8,
             0x4dcd6cd9, 0xcf1b2350, 0xfbe8b12a, 0x1a67778c, 0x38eb3acc,
             0xc32da383, 0xfb126ab1, 0xa03f40a8, 0xed5bf546, 0xe9ce4724,
             0x4c4a74fd, 0x73a130d8, 0xd9960e2d, 0xa2ebd6c1, 0x94ab6feb,
             0x6f233b7c, 0x49126080, 0x8e7b9a73, 0x4b8c9091, 0xd298f999,
             0x35e836b5, 0xa96ddeff, 0x96119b31, 0x6b0dd9bc, 0xc6cc3f8d,
             0x282566fb, 0x72b882e7, 0xd6769f3b, 0xa674343d, 0x00fc509b,
             0xdcbf7789, 0xd6266a3f, 0xae9641fd, 0x4e89541b, 0x11953407,
             0x53400d03, 0x8e0dd75a, 0xe5b53345, 0x108f19ad, 0x108b89bc,
             0x41a4c954, 0xe03b2b63, 0x437b3d7f, 0x97aced8e, 0xcbd66670,
             0x2c5508c2, 0x650ebc69, 0x5c4f2ef0, 0x904ff6bf, 0x9985a2df,
             0x9faddd9e, 0x5ed8d239, 0x25585832, 0xe3e51cb9, 0x0ff4f1d4,
             0x56c02d9a, 0x8c4ef804, 0xc1a08a13, 0x13fd01c8, 0xe6d27671,
             0xa7c234f4, 0x9d0176cc, 0xd0d73df2, 0x4d8bfa89, 0x544f10cd,
             0x2b17e0b2, 0xb70a5c7d, 0xfd86fe49, 0xdf373f41, 0x214495bb,
             0x84e857fd, 0x00d313d5, 0x0496fcbe, 0xa4ba4744, 0xe8cac982,
             0xaec29e6e, 0x87ec7038, 0x7000a519, 0xaeee333b, 0xff66e42c,
             0x8afd6b25, 0x03b4f63b, 0xbd7991dc, 0x5ab8d9c7, 0x2ed4684e,
             0x48741a6c, 0xaf06940d, 0x2fdc6349, 0xb03d7ecd, 0xe974996f,
             0xac7867f9, 0x52ec8721, 0xbcdd9d4a, 0x8edd2d00, 0x3557de06,
             0x41c759f8, 0x3956d4b9, 0xa75409f2, 0x123cd8a1, 0xb6100fab,
             0x3e7b21e2, 0x2e8d623b, 0x92959da2, 0xbca35f77, 0x200c03a5,
             0x35fcb457, 0x1bb6c6e4, 0xf74eb928, 0x3d5d0b54, 0x87cc1d21,
             0x4964046f, 0x18ae4240, 0xd868b275, 0x8bd2b496, 0x1c5563f4,
             0xc234d8f5, 0xf868e970, 0xf9151fff, 0xae7be4a2, 0x271133ee,
             0xbb0fd922, 0x25254932, 0xa60a9fc0, 0x104bcd64, 0x30290145,
             0x00000062, } },
};

/* result = 10^exponent */
static void
BigInt_Pow10(BigInt *result, npy_uint32 exponent, BigInt *temp)
{
    /* use two temporary values to reduce large integer copy operations */
    BigInt *curTemp = result;
    BigInt *pNextTemp = temp;
    npy_uint32 smallExponent;
    npy_uint32 tableIdx = 0;

    /* make sure the exponent is within the bounds of the lookup table data */
    DEBUG_ASSERT(exponent < 8192);

    /*
     * initialize the result by looking up a 32-bit power of 10 corresponding to
     * the first 3 bits
     */
    smallExponent = exponent & bitmask_u32(3);
    BigInt_Set_uint32(curTemp, g_PowerOf10_U32[smallExponent]);

    /* remove the low bits that we used for the 32-bit lookup table */
    exponent >>= 3;

    /* while there are remaining bits in the exponent to be processed */
    while (exponent != 0) {
        /* if the current bit is set, multiply by this power of 10 */
        if (exponent & 1) {
            BigInt *pSwap;

            /* multiply into the next temporary */
            BigInt_Multiply(pNextTemp, curTemp, &g_PowerOf10_Big[tableIdx]);

            /* swap to the next temporary */
            pSwap = curTemp;
            curTemp = pNextTemp;
            pNextTemp = pSwap;
        }

        /* advance to the next bit */
        ++tableIdx;
        exponent >>= 1;
    }

    /* output the result */
    if (curTemp != result) {
        BigInt_Copy(result, curTemp);
    }
}

/* in = in * 10^exponent */
static void
BigInt_MultiplyPow10(BigInt *in, npy_uint32 exponent, BigInt *temp)
{
    /* use two temporary values to reduce large integer copy operations */
    BigInt *curTemp, *pNextTemp;
    npy_uint32 smallExponent;
    npy_uint32 tableIdx = 0;

    /* make sure the exponent is within the bounds of the lookup table data */
    DEBUG_ASSERT(exponent < 8192);

    /*
     * initialize the result by looking up a 32-bit power of 10 corresponding to
     * the first 3 bits
     */
    smallExponent = exponent & bitmask_u32(3);
    if (smallExponent != 0) {
        BigInt_Multiply_int(temp, in, g_PowerOf10_U32[smallExponent]);
        curTemp = temp;
        pNextTemp = in;
    }
    else {
        curTemp = in;
        pNextTemp = temp;
    }

    /* remove the low bits that we used for the 32-bit lookup table */
    exponent >>= 3;

    /* while there are remaining bits in the exponent to be processed */
    while (exponent != 0) {
        /* if the current bit is set, multiply by this power of 10 */
        if (exponent & 1) {
            BigInt *pSwap;

            /* multiply into the next temporary */
            BigInt_Multiply(pNextTemp, curTemp, &g_PowerOf10_Big[tableIdx]);

            /* swap to the next temporary */
            pSwap = curTemp;
            curTemp = pNextTemp;
            pNextTemp = pSwap;
        }

        /* advance to the next bit */
        ++tableIdx;
        exponent >>= 1;
    }

    /* output the result */
    if (curTemp != in){
        BigInt_Copy(in, curTemp);
    }
}

/* result = 2^exponent */
static inline void
BigInt_Pow2(BigInt *result, npy_uint32 exponent)
{
    npy_uint32 bitIdx;
    npy_uint32 blockIdx = exponent / 32;
    npy_uint32 i;

    DEBUG_ASSERT(blockIdx < c_BigInt_MaxBlocks);

    for (i = 0; i <= blockIdx; ++i) {
        result->blocks[i] = 0;
    }

    result->length = blockIdx + 1;

    bitIdx = (exponent % 32);
    result->blocks[blockIdx] |= ((npy_uint32)1 << bitIdx);
}

/*
 * This function will divide two large numbers under the assumption that the
 * result is within the range [0,10) and the input numbers have been shifted
 * to satisfy:
 * - The highest block of the divisor is greater than or equal to 8 such that
 *   there is enough precision to make an accurate first guess at the quotient.
 * - The highest block of the divisor is less than the maximum value on an
 *   unsigned 32-bit integer such that we can safely increment without overflow.
 * - The dividend does not contain more blocks than the divisor such that we
 *   can estimate the quotient by dividing the equivalently placed high blocks.
 *
 * quotient  = floor(dividend / divisor)
 * remainder = dividend - quotient*divisor
 *
 * dividend is updated to be the remainder and the quotient is returned.
 */
static npy_uint32
BigInt_DivideWithRemainder_MaxQuotient9(BigInt *dividend, const BigInt *divisor)
{
    npy_uint32 length, quotient;
    const npy_uint32 *finalDivisorBlock;
    npy_uint32 *finalDividendBlock;

    /*
     * Check that the divisor has been correctly shifted into range and that it
     * is not smaller than the dividend in length.
     */
    DEBUG_ASSERT(!divisor->length == 0 &&
                divisor->blocks[divisor->length-1] >= 8 &&
                divisor->blocks[divisor->length-1] < bitmask_u64(32) &&
                dividend->length <= divisor->length);

    /*
     * If the dividend is smaller than the divisor, the quotient is zero and the
     * divisor is already the remainder.
     */
    length = divisor->length;
    if (dividend->length < divisor->length) {
        return 0;
    }

    finalDivisorBlock = divisor->blocks + length - 1;
    finalDividendBlock = dividend->blocks + length - 1;

    /*
     * Compute an estimated quotient based on the high block value. This will
     * either match the actual quotient or undershoot by one.
     */
    quotient = *finalDividendBlock / (*finalDivisorBlock + 1);
    DEBUG_ASSERT(quotient <= 9);

    /* Divide out the estimated quotient */
    if (quotient != 0) {
        /* dividend = dividend - divisor*quotient */
        const npy_uint32 *divisorCur = divisor->blocks;
        npy_uint32 *dividendCur = dividend->blocks;

        npy_uint64 borrow = 0;
        npy_uint64 carry = 0;
        do {
            npy_uint64 difference, product;

            product = (npy_uint64)*divisorCur * (npy_uint64)quotient + carry;
            carry = product >> 32;

            difference = (npy_uint64)*dividendCur
                       - (product & bitmask_u64(32)) - borrow;
            borrow = (difference >> 32) & 1;

            *dividendCur = difference & bitmask_u64(32);

            ++divisorCur;
            ++dividendCur;
        } while(divisorCur <= finalDivisorBlock);

        /* remove all leading zero blocks from dividend */
        while (length > 0 && dividend->blocks[length - 1] == 0) {
            --length;
        }

        dividend->length = length;
    }

    /*
     * If the dividend is still larger than the divisor, we overshot our
     * estimate quotient. To correct, we increment the quotient and subtract one
     * more divisor from the dividend.
     */
    if (BigInt_Compare(dividend, divisor) >= 0) {
        /* dividend = dividend - divisor */
        const npy_uint32 *divisorCur = divisor->blocks;
        npy_uint32 *dividendCur = dividend->blocks;
        npy_uint64 borrow = 0;

        ++quotient;

        do {
            npy_uint64 difference = (npy_uint64)*dividendCur
                                  - (npy_uint64)*divisorCur - borrow;
            borrow = (difference >> 32) & 1;

            *dividendCur = difference & bitmask_u64(32);

            ++divisorCur;
            ++dividendCur;
        } while(divisorCur <= finalDivisorBlock);

        /* remove all leading zero blocks from dividend */
        while (length > 0 && dividend->blocks[length - 1] == 0) {
            --length;
        }

        dividend->length = length;
    }

    return quotient;
}

/* result = result << shift */
static void
BigInt_ShiftLeft(BigInt *result, npy_uint32 shift)
{
    npy_uint32 shiftBlocks = shift / 32;
    npy_uint32 shiftBits = shift % 32;

    /* process blocks high to low so that we can safely process in place */
    const npy_uint32 *pInBlocks = result->blocks;
    npy_int32 inLength = result->length;
    npy_uint32 *pInCur, *pOutCur;

    DEBUG_ASSERT(inLength + shiftBlocks < c_BigInt_MaxBlocks);
    DEBUG_ASSERT(shift != 0);

    /* check if the shift is block aligned */
    if (shiftBits == 0) {
        npy_uint32 i;

        /* copy blocks from high to low */
        for (pInCur = result->blocks + result->length,
                 pOutCur = pInCur + shiftBlocks;
                 pInCur >= pInBlocks;
                 --pInCur, --pOutCur) {
            *pOutCur = *pInCur;
        }

        /* zero the remaining low blocks */
        for (i  = 0; i < shiftBlocks; ++i) {
            result->blocks[i] = 0;
        }

        result->length += shiftBlocks;
    }
    /* else we need to shift partial blocks */
    else {
        npy_uint32 i;
        npy_int32 inBlockIdx = inLength - 1;
        npy_uint32 outBlockIdx = inLength + shiftBlocks;

        /* output the initial blocks */
        const npy_uint32 lowBitsShift = (32 - shiftBits);
        npy_uint32 highBits = 0;
        npy_uint32 block = result->blocks[inBlockIdx];
        npy_uint32 lowBits = block >> lowBitsShift;

        /* set the length to hold the shifted blocks */
        DEBUG_ASSERT(outBlockIdx < c_BigInt_MaxBlocks);
        result->length = outBlockIdx + 1;

        while (inBlockIdx > 0) {
            result->blocks[outBlockIdx] = highBits | lowBits;
            highBits = block << shiftBits;

            --inBlockIdx;
            --outBlockIdx;

            block = result->blocks[inBlockIdx];
            lowBits = block >> lowBitsShift;
        }

        /* output the final blocks */
        DEBUG_ASSERT(outBlockIdx == shiftBlocks + 1);
        result->blocks[outBlockIdx] = highBits | lowBits;
        result->blocks[outBlockIdx-1] = block << shiftBits;

        /* zero the remaining low blocks */
        for (i = 0; i < shiftBlocks; ++i) {
            result->blocks[i] = 0;
        }

        /* check if the terminating block has no set bits */
        if (result->blocks[result->length - 1] == 0) {
            --result->length;
        }
    }
}


/*
 * This is an implementation the Dragon4 algorithm to convert a binary number in
 * floating point format to a decimal number in string format. The function
 * returns the number of digits written to the output buffer and the output is
 * not NUL terminated.
 *
 * The floating point input value is (mantissa * 2^exponent).
 *
 * See the following papers for more information on the algorithm:
 *  "How to Print Floating-Point Numbers Accurately"
 *    Steele and White
 *    http://kurtstephens.com/files/p372-steele.pdf
 *  "Printing Floating-Point Numbers Quickly and Accurately"
 *    Burger and Dybvig
 *    http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.72.4656
 *
 * This implementation is essentially a port of the "Figure 3" Scheme code from
 * Burger and Dybvig, but with the following additional differences:
 *   1. Instead of finding the highest k such that high < B**k, we search
 *      for the one where v < B**k. This has a downside that if a power
 *      of 10 exists between v and high, we will output a 9 instead of a 1 as
 *      first digit, violating the "no-carry" guarantee of the paper. This is
 *      accounted for in a new post-processing loop which implements a carry
 *      operation. The upside is one less BigInt multiplication.
 *   2. The approximate value of k found is offset by a different amount
 *      (0.69), in order to hit the "fast" branch more often. This is
 *      extensively described on Ryan Juckett's website.
 *   3. The fixed precision mode is much simpler than proposed in the paper.
 *      It simply outputs digits by repeatedly dividing by 10. The new "carry"
 *      loop at the end rounds this output nicely.
 *  There is also some new code to account for details of the BigInt
 *  implementation, which are not present in the paper since it does not specify
 *  details of the integer calculations.
 *
 * There is some more documentation of these changes on Ryan Juckett's website
 * at http://www.ryanjuckett.com/programming/printing-floating-point-numbers/
 *
 * This code also has a few implementation differences from Ryan Juckett's
 * version:
 *  1. fixed overflow problems when mantissa was 64 bits (in float128 types),
 *     by replacing multiplication by 2 or 4 by BigInt_ShiftLeft calls.
 *  2. Increased c_BigInt_MaxBlocks, for 128-bit floats
 *  3. Added more entries to the g_PowerOf10_Big table, for 128-bit floats.
 *  4. Added unbiased rounding calculation with isEven. Ryan Juckett's
 *     implementation did not implement "IEEE unbiased rounding", except in the
 *     last digit. This has been added back, following the Burger & Dybvig
 *     code, using the isEven variable.
 *
 * Arguments:
 *   * bigints - memory to store all bigints needed (7) for dragon4 computation.
 *               The first BigInt should be filled in with the mantissa.
 *   * exponent - value exponent in base 2
 *   * mantissaBit - index of the highest set mantissa bit
 *   * hasUnequalMargins - is the high margin twice as large as the low margin
 *   * cutoffMode - how to interpret cutoffNumber: fractional or total digits?
 *   * cutoffNumber - cut off printing after this many digits. -1 for no cutoff
 *   * pOutBuffer - buffer to output into
 *   * bufferSize - maximum characters that can be printed to pOutBuffer
 *   * pOutExponent - the base 10 exponent of the first digit
 *
 * Returns the number of digits written to the output buffer.
 */
static npy_uint32
Dragon4(BigInt *bigints, const npy_int32 exponent,
        const npy_uint32 mantissaBit, const npy_bool hasUnequalMargins,
        const DigitMode digitMode, const CutoffMode cutoffMode,
        npy_int32 cutoffNumber, char *pOutBuffer,
        npy_uint32 bufferSize, npy_int32 *pOutExponent)
{
    char *curDigit = pOutBuffer;

    /*
     * We compute values in integer format by rescaling as
     *   mantissa = scaledValue / scale
     *   marginLow = scaledMarginLow / scale
     *   marginHigh = scaledMarginHigh / scale
     * Here, marginLow and marginHigh represent 1/2 of the distance to the next
     * floating point value above/below the mantissa.
     *
     * scaledMarginHigh will point to scaledMarginLow in the case they must be
     * equal to each other, otherwise it will point to optionalMarginHigh.
     */
    BigInt *mantissa = &bigints[0];  /* the only initialized bigint */
    BigInt *scale = &bigints[1];
    BigInt *scaledValue = &bigints[2];
    BigInt *scaledMarginLow = &bigints[3];
    BigInt *scaledMarginHigh;
    BigInt *optionalMarginHigh = &bigints[4];

    BigInt *temp1 = &bigints[5];
    BigInt *temp2 = &bigints[6];

    const npy_float64 log10_2 = 0.30102999566398119521373889472449;
    npy_int32 digitExponent, cutoffExponent, hiBlock;
    npy_uint32 outputDigit;    /* current digit being output */
    npy_uint32 outputLen;
    npy_bool isEven = BigInt_IsEven(mantissa);
    npy_int32 cmp;

    /* values used to determine how to round */
    npy_bool low, high, roundDown;

    DEBUG_ASSERT(bufferSize > 0);

    /* if the mantissa is zero, the value is zero regardless of the exponent */
    if (BigInt_IsZero(mantissa)) {
        *curDigit = '0';
        *pOutExponent = 0;
        return 1;
    }

    BigInt_Copy(scaledValue, mantissa);

    if (hasUnequalMargins) {
        /* if we have no fractional component */
        if (exponent > 0) {
            /*
             * 1) Expand the input value by multiplying out the mantissa and
             *    exponent. This represents the input value in its whole number
             *    representation.
             * 2) Apply an additional scale of 2 such that later comparisons
             *    against the margin values are simplified.
             * 3) Set the margin value to the lowest mantissa bit's scale.
             */

            /* scaledValue      = 2 * 2 * mantissa*2^exponent */
            BigInt_ShiftLeft(scaledValue, exponent + 2);
            /* scale            = 2 * 2 * 1 */
            BigInt_Set_uint32(scale,  4);
            /* scaledMarginLow  = 2 * 2^(exponent-1) */
            BigInt_Pow2(scaledMarginLow, exponent);
            /* scaledMarginHigh = 2 * 2 * 2^(exponent-1) */
            BigInt_Pow2(optionalMarginHigh, exponent + 1);
        }
        /* else we have a fractional exponent */
        else {
            /*
             * In order to track the mantissa data as an integer, we store it as
             * is with a large scale
             */

            /* scaledValue      = 2 * 2 * mantissa */
            BigInt_ShiftLeft(scaledValue, 2);
            /* scale            = 2 * 2 * 2^(-exponent) */
            BigInt_Pow2(scale, -exponent + 2);
            /* scaledMarginLow  = 2 * 2^(-1) */
            BigInt_Set_uint32(scaledMarginLow, 1);
            /* scaledMarginHigh = 2 * 2 * 2^(-1) */
            BigInt_Set_uint32(optionalMarginHigh, 2);
        }

        /* the high and low margins are different */
        scaledMarginHigh = optionalMarginHigh;
    }
    else {
        /* if we have no fractional component */
        if (exponent > 0) {
            /* scaledValue     = 2 * mantissa*2^exponent */
            BigInt_ShiftLeft(scaledValue, exponent + 1);
            /* scale           = 2 * 1 */
            BigInt_Set_uint32(scale, 2);
            /* scaledMarginLow = 2 * 2^(exponent-1) */
            BigInt_Pow2(scaledMarginLow, exponent);
        }
        /* else we have a fractional exponent */
        else {
            /*
             * In order to track the mantissa data as an integer, we store it as
             * is with a large scale
             */

            /* scaledValue     = 2 * mantissa */
            BigInt_ShiftLeft(scaledValue, 1);
            /* scale           = 2 * 2^(-exponent) */
            BigInt_Pow2(scale, -exponent + 1);
            /* scaledMarginLow = 2 * 2^(-1) */
            BigInt_Set_uint32(scaledMarginLow, 1);
        }

        /* the high and low margins are equal */
        scaledMarginHigh = scaledMarginLow;
    }

    /*
     * Compute an estimate for digitExponent that will be correct or undershoot
     * by one.  This optimization is based on the paper "Printing Floating-Point
     * Numbers Quickly and Accurately" by Burger and Dybvig
     * http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.72.4656
     * We perform an additional subtraction of 0.69 to increase the frequency of
     * a failed estimate because that lets us take a faster branch in the code.
     * 0.69 is chosen because 0.69 + log10(2) is less than one by a reasonable
     * epsilon that will account for any floating point error.
     *
     * We want to set digitExponent to floor(log10(v)) + 1
     *  v = mantissa*2^exponent
     *  log2(v) = log2(mantissa) + exponent;
     *  log10(v) = log2(v) * log10(2)
     *  floor(log2(v)) = mantissaBit + exponent;
     *  log10(v) - log10(2) < (mantissaBit + exponent) * log10(2) <= log10(v)
     *  log10(v) < (mantissaBit + exponent) * log10(2) + log10(2)
     *                                                 <= log10(v) + log10(2)
     *  floor(log10(v)) < ceil((mantissaBit + exponent) * log10(2))
     *                                                 <= floor(log10(v)) + 1
     *
     *  Warning: This calculation assumes npy_float64 is an IEEE-binary64
     *  float. This line may need to be updated if this is not the case.
     */
    digitExponent = (npy_int32)(
       ceil((npy_float64)((npy_int32)mantissaBit + exponent) * log10_2 - 0.69));

    /*
     * if the digit exponent is smaller than the smallest desired digit for
     * fractional cutoff, pull the digit back into legal range at which point we
     * will round to the appropriate value.  Note that while our value for
     * digitExponent is still an estimate, this is safe because it only
     * increases the number. This will either correct digitExponent to an
     * accurate value or it will clamp it above the accurate value.
     */
    if (cutoffNumber >= 0 && cutoffMode == CutoffMode_FractionLength &&
            digitExponent <= -cutoffNumber) {
        digitExponent = -cutoffNumber + 1;
    }


    /* Divide value by 10^digitExponent. */
    if (digitExponent > 0) {
        /* A positive exponent creates a division so we multiply the scale. */
        BigInt_MultiplyPow10(scale, digitExponent, temp1);
    }
    else if (digitExponent < 0) {
        /*
         * A negative exponent creates a multiplication so we multiply up the
         * scaledValue, scaledMarginLow and scaledMarginHigh.
         */
        BigInt *temp=temp1, *pow10=temp2;
        BigInt_Pow10(pow10, -digitExponent, temp);

        BigInt_Multiply(temp, scaledValue, pow10);
        BigInt_Copy(scaledValue, temp);

        BigInt_Multiply(temp, scaledMarginLow, pow10);
        BigInt_Copy(scaledMarginLow, temp);

        if (scaledMarginHigh != scaledMarginLow) {
            BigInt_Multiply2(scaledMarginHigh, scaledMarginLow);
        }
    }

    /* If (value >= 1), our estimate for digitExponent was too low */
    if (BigInt_Compare(scaledValue, scale) >= 0) {
        /*
         * The exponent estimate was incorrect.
         * Increment the exponent and don't perform the premultiply needed
         * for the first loop iteration.
         */
        digitExponent = digitExponent + 1;
    }
    else {
        /*
         * The exponent estimate was correct.
         * Multiply larger by the output base to prepare for the first loop
         * iteration.
         */
        BigInt_Multiply10(scaledValue);
        BigInt_Multiply10(scaledMarginLow);
        if (scaledMarginHigh != scaledMarginLow) {
            BigInt_Multiply2(scaledMarginHigh, scaledMarginLow);
        }
    }

    /*
     * Compute the cutoff exponent (the exponent of the final digit to print).
     * Default to the maximum size of the output buffer.
     */
    cutoffExponent = digitExponent - bufferSize;
    if (cutoffNumber >= 0) {
        npy_int32 desiredCutoffExponent;

        if (cutoffMode == CutoffMode_TotalLength) {
            desiredCutoffExponent = digitExponent - cutoffNumber;
            if (desiredCutoffExponent > cutoffExponent) {
                cutoffExponent = desiredCutoffExponent;
            }
        }
        /* Otherwise it's CutoffMode_FractionLength. Print cutoffNumber digits
         * past the decimal point or until we reach the buffer size
         */
        else {
            desiredCutoffExponent = -cutoffNumber;
            if (desiredCutoffExponent > cutoffExponent) {
                cutoffExponent = desiredCutoffExponent;
            }
        }
    }

    /* Output the exponent of the first digit we will print */
    *pOutExponent = digitExponent-1;

    /*
     * In preparation for calling BigInt_DivideWithRemainder_MaxQuotient9(), we
     * need to scale up our values such that the highest block of the
     * denominator is greater than or equal to 8. We also need to guarantee that
     * the numerator can never have a length greater than the denominator after
     * each loop iteration.  This requires the highest block of the denominator
     * to be less than or equal to 429496729 which is the highest number that
     * can be multiplied by 10 without overflowing to a new block.
     */
    DEBUG_ASSERT(scale->length > 0);
    hiBlock = scale->blocks[scale->length - 1];
    if (hiBlock < 8 || hiBlock > 429496729) {
        npy_uint32 hiBlockLog2, shift;

        /*
         * Perform a bit shift on all values to get the highest block of the
         * denominator into the range [8,429496729]. We are more likely to make
         * accurate quotient estimations in
         * BigInt_DivideWithRemainder_MaxQuotient9() with higher denominator
         * values so we shift the denominator to place the highest bit at index
         * 27 of the highest block.  This is safe because (2^28 - 1) = 268435455
         * which is less than 429496729. This means that all values with a
         * highest bit at index 27 are within range.
         */
        hiBlockLog2 = LogBase2_32(hiBlock);
        DEBUG_ASSERT(hiBlockLog2 < 3 || hiBlockLog2 > 27);
        shift = (32 + 27 - hiBlockLog2) % 32;

        BigInt_ShiftLeft(scale, shift);
        BigInt_ShiftLeft(scaledValue, shift);
        BigInt_ShiftLeft(scaledMarginLow, shift);
        if (scaledMarginHigh != scaledMarginLow) {
            BigInt_Multiply2(scaledMarginHigh, scaledMarginLow);
        }
    }

    if (digitMode == DigitMode_Unique) {
        /*
         * For the unique cutoff mode, we will try to print until we have
         * reached a level of precision that uniquely distinguishes this value
         * from its neighbors. If we run out of space in the output buffer, we
         * terminate early.
         */
        for (;;) {
            BigInt *scaledValueHigh = temp1;

            digitExponent = digitExponent-1;

            /* divide out the scale to extract the digit */
            outputDigit =
                BigInt_DivideWithRemainder_MaxQuotient9(scaledValue, scale);
            DEBUG_ASSERT(outputDigit < 10);

            /* update the high end of the value */
            BigInt_Add(scaledValueHigh, scaledValue, scaledMarginHigh);

            /*
             * stop looping if we are far enough away from our neighboring
             * values or if we have reached the cutoff digit
             */
            cmp = BigInt_Compare(scaledValue, scaledMarginLow);
            low = isEven ? (cmp <= 0) : (cmp < 0);
            cmp = BigInt_Compare(scaledValueHigh, scale);
            high = isEven ? (cmp >= 0) : (cmp > 0);
            if (low | high | (digitExponent == cutoffExponent))
                break;

            /* store the output digit */
            *curDigit = (char)('0' + outputDigit);
            ++curDigit;

            /* multiply larger by the output base */
            BigInt_Multiply10(scaledValue);
            BigInt_Multiply10(scaledMarginLow);
            if (scaledMarginHigh != scaledMarginLow) {
                BigInt_Multiply2(scaledMarginHigh, scaledMarginLow);
            }
        }
    }
    else {
        /*
         * For exact digit mode, we will try to print until we
         * have exhausted all precision (i.e. all remaining digits are zeros) or
         * until we reach the desired cutoff digit.
         */
        low = NPY_FALSE;
        high = NPY_FALSE;

        for (;;) {
            digitExponent = digitExponent-1;

            /* divide out the scale to extract the digit */
            outputDigit =
                BigInt_DivideWithRemainder_MaxQuotient9(scaledValue, scale);
            DEBUG_ASSERT(outputDigit < 10);

            if ((scaledValue->length == 0) |
                    (digitExponent == cutoffExponent)) {
                break;
            }

            /* store the output digit */
            *curDigit = (char)('0' + outputDigit);
            ++curDigit;

            /* multiply larger by the output base */
            BigInt_Multiply10(scaledValue);
        }
    }

    /* default to rounding down the final digit if value got too close to 0 */
    roundDown = low;

    /* if it is legal to round up and down */
    if (low == high) {
        npy_int32 compare;

        /*
         * round to the closest digit by comparing value with 0.5. To do this we
         * need to convert the inequality to large integer values.
         *  compare( value, 0.5 )
         *  compare( scale * value, scale * 0.5 )
         *  compare( 2 * scale * value, scale )
         */
        BigInt_Multiply2_inplace(scaledValue);
        compare = BigInt_Compare(scaledValue, scale);
        roundDown = compare < 0;

        /*
         * if we are directly in the middle, round towards the even digit (i.e.
         * IEEE rounding rules)
         */
        if (compare == 0) {
            roundDown = (outputDigit & 1) == 0;
        }
    }

    /* print the rounded digit */
    if (roundDown) {
        *curDigit = (char)('0' + outputDigit);
        ++curDigit;
    }
    else {
        /* handle rounding up */
        if (outputDigit == 9) {
            /* find the first non-nine prior digit */
            for (;;) {
                /* if we are at the first digit */
                if (curDigit == pOutBuffer) {
                    /* output 1 at the next highest exponent */
                    *curDigit = '1';
                    ++curDigit;
                    *pOutExponent += 1;
                    break;
                }

                --curDigit;
                if (*curDigit != '9') {
                    /* increment the digit */
                    *curDigit += 1;
                    ++curDigit;
                    break;
                }
            }
        }
        else {
            /* values in the range [0,8] can perform a simple round up */
            *curDigit = (char)('0' + outputDigit + 1);
            ++curDigit;
        }
    }

    /* return the number of digits output */
    outputLen = (npy_uint32)(curDigit - pOutBuffer);
    DEBUG_ASSERT(outputLen <= bufferSize);
    return outputLen;
}


/*
 * The FormatPositional and FormatScientific functions have been more
 * significantly rewritten relative to Ryan Juckett's code.
 *
 * The binary16 and the various 128-bit float functions are new, and adapted
 * from the 64 bit version. The python interface functions are new.
 */


/* Options struct for easy passing of Dragon4 options.
 *
 *   scientific - boolean controlling whether scientific notation is used
 *   digit_mode - whether to use unique or fixed fracional output
 *   cutoff_mode - whether 'precision' refers to toal digits, or digits past
 *                 the decimal point.
 *   precision - When negative, prints as many digits as needed for a unique
 *               number. When positive specifies the maximum number of
 *               significant digits to print.
 *   sign - whether to always show sign
 *   trim_mode - how to treat trailing 0s and '.'. See TrimMode comments.
 *   digits_left - pad characters to left of decimal point. -1 for no padding
 *   digits_right - pad characters to right of decimal point. -1 for no padding.
 *                  Padding adds whitespace until there are the specified
 *                  number characters to sides of decimal point. Applies after
 *                  trim_mode characters were removed. If digits_right is
 *                  positive and the decimal point was trimmed, decimal point
 *                  will be replaced by a whitespace character.
 *   exp_digits - Only affects scientific output. If positive, pads the
 *                exponent with 0s until there are this many digits. If
 *                negative, only use sufficient digits.
 */
typedef struct Dragon4_Options {
    npy_bool scientific;
    DigitMode digit_mode;
    CutoffMode cutoff_mode;
    npy_int32 precision;
    npy_bool sign;
    TrimMode trim_mode;
    npy_int32 digits_left;
    npy_int32 digits_right;
    npy_int32 exp_digits;
} Dragon4_Options;

/*
 * Outputs the positive number with positional notation: ddddd.dddd
 * The output is always NUL terminated and the output length (not including the
 * NUL) is returned.
 *
 * Arguments:
 *    buffer - buffer to output into
 *    bufferSize - maximum characters that can be printed to buffer
 *    mantissa - value significand
 *    exponent - value exponent in base 2
 *    signbit - value of the sign position. Should be '+', '-' or ''
 *    mantissaBit - index of the highest set mantissa bit
 *    hasUnequalMargins - is the high margin twice as large as the low margin
 *
 * See Dragon4_Options for description of remaining arguments.
 */
static npy_uint32
FormatPositional(char *buffer, npy_uint32 bufferSize, BigInt *mantissa,
                 npy_int32 exponent, char signbit, npy_uint32 mantissaBit,
                 npy_bool hasUnequalMargins, DigitMode digit_mode,
                 CutoffMode cutoff_mode, npy_int32 precision,
                 TrimMode trim_mode, npy_int32 digits_left,
                 npy_int32 digits_right)
{
    npy_int32 printExponent;
    npy_int32 numDigits, numWholeDigits=0, has_sign=0;

    npy_int32 maxPrintLen = (npy_int32)bufferSize - 1, pos = 0;

    /* track the # of digits past the decimal point that have been printed */
    npy_int32 numFractionDigits = 0, desiredFractionalDigits;

    DEBUG_ASSERT(bufferSize > 0);

    if (digit_mode != DigitMode_Unique) {
        DEBUG_ASSERT(precision >= 0);
    }

    if (signbit == '+' && pos < maxPrintLen) {
        buffer[pos++] = '+';
        has_sign = 1;
    }
    else if (signbit == '-' && pos < maxPrintLen) {
        buffer[pos++] = '-';
        has_sign = 1;
    }

    numDigits = Dragon4(mantissa, exponent, mantissaBit, hasUnequalMargins,
                        digit_mode, cutoff_mode, precision, buffer + has_sign,
                        maxPrintLen - has_sign, &printExponent);

    DEBUG_ASSERT(numDigits > 0);
    DEBUG_ASSERT(numDigits <= bufferSize);

    /* if output has a whole number */
    if (printExponent >= 0) {
        /* leave the whole number at the start of the buffer */
        numWholeDigits = printExponent+1;
        if (numDigits <= numWholeDigits) {
            npy_int32 count = numWholeDigits - numDigits;
            pos += numDigits;

            /* don't overflow the buffer */
            if (pos + count > maxPrintLen) {
                count = maxPrintLen - pos;
            }

            /* add trailing zeros up to the decimal point */
            numDigits += count;
            for ( ; count > 0; count--) {
                buffer[pos++] = '0';
            }
        }
        /* insert the decimal point prior to the fraction */
        else if (numDigits > numWholeDigits) {
            npy_int32 maxFractionDigits;

            numFractionDigits = numDigits - numWholeDigits;
            maxFractionDigits = maxPrintLen - numWholeDigits - 1 - pos;
            if (numFractionDigits > maxFractionDigits) {
                numFractionDigits = maxFractionDigits;
            }

            memmove(buffer + pos + numWholeDigits + 1,
                    buffer + pos + numWholeDigits, numFractionDigits);
            pos += numWholeDigits;
            buffer[pos] = '.';
            numDigits = numWholeDigits + 1 + numFractionDigits;
            pos += 1 + numFractionDigits;
        }
    }
    else {
        /* shift out the fraction to make room for the leading zeros */
        npy_int32 numFractionZeros = 0;
        if (pos + 2 < maxPrintLen) {
            npy_int32 maxFractionZeros, digitsStartIdx, maxFractionDigits, i;

            maxFractionZeros = maxPrintLen - 2 - pos;
            numFractionZeros = -(printExponent + 1);
            if (numFractionZeros > maxFractionZeros) {
                numFractionZeros = maxFractionZeros;
            }

            digitsStartIdx = 2 + numFractionZeros;

            /*
             * shift the significant digits right such that there is room for
             * leading zeros
             */
            numFractionDigits = numDigits;
            maxFractionDigits = maxPrintLen - digitsStartIdx - pos;
            if (numFractionDigits > maxFractionDigits) {
                numFractionDigits = maxFractionDigits;
            }

            memmove(buffer + pos + digitsStartIdx, buffer + pos,
                    numFractionDigits);

            /* insert the leading zeros */
            for (i = 2; i < digitsStartIdx; ++i) {
                buffer[pos + i] = '0';
            }

            /* update the counts */
            numFractionDigits += numFractionZeros;
            numDigits = numFractionDigits;
        }

        /* add the decimal point */
        if (pos + 1 < maxPrintLen) {
            buffer[pos+1] = '.';
        }

        /* add the initial zero */
        if (pos < maxPrintLen) {
            buffer[pos] = '0';
            numDigits += 1;
        }
        numWholeDigits = 1;
        pos += 2 + numFractionDigits;
    }

    /* always add decimal point, except for DprZeros mode */
    if (trim_mode != TrimMode_DptZeros && numFractionDigits == 0 &&
            pos < maxPrintLen) {
        buffer[pos++] = '.';
    }

    desiredFractionalDigits = precision;
    if (cutoff_mode == CutoffMode_TotalLength && precision >= 0) {
        desiredFractionalDigits = precision - numWholeDigits;
    }

    if (trim_mode == TrimMode_LeaveOneZero) {
        /* if we didn't print any fractional digits, add a trailing 0 */
        if (numFractionDigits == 0 && pos < maxPrintLen) {
            buffer[pos++] = '0';
            numFractionDigits++;
        }
    }
    else if (trim_mode == TrimMode_None &&
             digit_mode != DigitMode_Unique &&
             desiredFractionalDigits > numFractionDigits &&
             pos < maxPrintLen) {
        /* add trailing zeros up to precision length */
        /* compute the number of trailing zeros needed */
        npy_int32 count = desiredFractionalDigits - numFractionDigits;
        if (pos + count > maxPrintLen) {
            count = maxPrintLen - pos;
        }
        numFractionDigits += count;

        for ( ; count > 0; count--) {
            buffer[pos++] = '0';
        }
    }
    /* else, for trim_mode Zeros or DptZeros, there is nothing more to add */

    /*
     * when rounding, we may still end up with trailing zeros. Remove them
     * depending on trim settings.
     */
    if (precision >= 0 && trim_mode != TrimMode_None && numFractionDigits > 0) {
        while (buffer[pos-1] == '0') {
            pos--;
            numFractionDigits--;
        }
        if (trim_mode == TrimMode_LeaveOneZero && buffer[pos-1] == '.') {
            buffer[pos++] = '0';
            numFractionDigits++;
        }
    }

    /* add any whitespace padding to right side */
    if (digits_right >= numFractionDigits) {
        npy_int32 count = digits_right - numFractionDigits;

        /* in trim_mode DptZeros, if right padding, add a space for the . */
        if (trim_mode == TrimMode_DptZeros && numFractionDigits == 0
                && pos < maxPrintLen) {
            buffer[pos++] = ' ';
        }

        if (pos + count > maxPrintLen) {
            count = maxPrintLen - pos;
        }

        for ( ; count > 0; count--) {
            buffer[pos++] = ' ';
        }
    }
    /* add any whitespace padding to left side */
    if (digits_left > numWholeDigits + has_sign) {
        npy_int32 shift = digits_left - (numWholeDigits + has_sign);
        npy_int32 count = pos;

        if (count + shift > maxPrintLen) {
            count = maxPrintLen - shift;
        }

        if (count > 0) {
            memmove(buffer + shift, buffer, count);
        }
        pos = shift + count;
        for ( ; shift > 0; shift--) {
            buffer[shift - 1] = ' ';
        }
    }

    /* terminate the buffer */
    DEBUG_ASSERT(pos <= maxPrintLen);
    buffer[pos] = '\0';

    return pos;
}

/*
 * Outputs the positive number with scientific notation: d.dddde[sign]ddd
 * The output is always NUL terminated and the output length (not including the
 * NUL) is returned.
 *
 * Arguments:
 *    buffer - buffer to output into
 *    bufferSize - maximum characters that can be printed to buffer
 *    mantissa - value significand
 *    exponent - value exponent in base 2
 *    signbit - value of the sign position. Should be '+', '-' or ''
 *    mantissaBit - index of the highest set mantissa bit
 *    hasUnequalMargins - is the high margin twice as large as the low margin
 *
 * See Dragon4_Options for description of remaining arguments.
 */
static npy_uint32
FormatScientific (char *buffer, npy_uint32 bufferSize, BigInt *mantissa,
                  npy_int32 exponent, char signbit, npy_uint32 mantissaBit,
                  npy_bool hasUnequalMargins, DigitMode digit_mode,
                  npy_int32 precision, TrimMode trim_mode,
                  npy_int32 digits_left, npy_int32 exp_digits)
{
    npy_int32 printExponent;
    npy_int32 numDigits;
    char *pCurOut;
    npy_int32 numFractionDigits;
    npy_int32 leftchars;

    if (digit_mode != DigitMode_Unique) {
        DEBUG_ASSERT(precision >= 0);
    }


    DEBUG_ASSERT(bufferSize > 0);

    pCurOut = buffer;

    /* add any whitespace padding to left side */
    leftchars = 1 + (signbit == '-' || signbit == '+');
    if (digits_left > leftchars) {
        int i;
        for (i = 0; i < digits_left - leftchars && bufferSize > 1; i++) {
            *pCurOut = ' ';
            pCurOut++;
            --bufferSize;
        }
    }

    if (signbit == '+' && bufferSize > 1) {
        *pCurOut = '+';
        pCurOut++;
        --bufferSize;
    }
    else if (signbit == '-'  && bufferSize > 1) {
        *pCurOut = '-';
        pCurOut++;
        --bufferSize;
    }

    numDigits = Dragon4(mantissa, exponent, mantissaBit, hasUnequalMargins,
                        digit_mode, CutoffMode_TotalLength, precision + 1,
                        pCurOut, bufferSize, &printExponent);

    DEBUG_ASSERT(numDigits > 0);
    DEBUG_ASSERT(numDigits <= bufferSize);

    /* keep the whole number as the first digit */
    if (bufferSize > 1) {
        pCurOut += 1;
        bufferSize -= 1;
    }

    /* insert the decimal point prior to the fractional number */
    numFractionDigits = numDigits-1;
    if (numFractionDigits > 0 && bufferSize > 1) {
        npy_int32 maxFractionDigits = (npy_int32)bufferSize - 2;

        if (numFractionDigits > maxFractionDigits) {
            numFractionDigits =  maxFractionDigits;
        }

        memmove(pCurOut + 1, pCurOut, numFractionDigits);
        pCurOut[0] = '.';
        pCurOut += (1 + numFractionDigits);
        bufferSize -= (1 + numFractionDigits);
    }

    /* always add decimal point, except for DprZeros mode */
    if (trim_mode != TrimMode_DptZeros && numFractionDigits == 0 &&
            bufferSize > 1) {
        *pCurOut = '.';
        ++pCurOut;
        --bufferSize;
    }

    if (trim_mode == TrimMode_LeaveOneZero) {
        /* if we didn't print any fractional digits, add the 0 */
        if (numFractionDigits == 0 && bufferSize > 1) {
            *pCurOut = '0';
            ++pCurOut;
            --bufferSize;
            ++numFractionDigits;
        }
    }
    else if (trim_mode == TrimMode_None &&
            digit_mode != DigitMode_Unique) {
        /* add trailing zeros up to precision length */
        if (precision > (npy_int32)numFractionDigits) {
            char *pEnd;
            /* compute the number of trailing zeros needed */
            npy_int32 numZeros = (precision - numFractionDigits);

            if (numZeros > (npy_int32)bufferSize - 1) {
                numZeros = (npy_int32)bufferSize - 1;
            }

            for (pEnd = pCurOut + numZeros; pCurOut < pEnd; ++pCurOut) {
                *pCurOut = '0';
                ++numFractionDigits;
            }
        }
    }
    /* else, for trim_mode Zeros or DptZeros, there is nothing more to add */

    /*
     * when rounding, we may still end up with trailing zeros. Remove them
     * depending on trim settings.
     */
    if (precision >= 0 && trim_mode != TrimMode_None && numFractionDigits > 0) {
        --pCurOut;
        while (*pCurOut == '0') {
            --pCurOut;
            ++bufferSize;
            --numFractionDigits;
        }
        if (trim_mode == TrimMode_LeaveOneZero && *pCurOut == '.') {
            ++pCurOut;
            *pCurOut = '0';
            --bufferSize;
            ++numFractionDigits;
        }
        ++pCurOut;
    }

    /* print the exponent into a local buffer and copy into output buffer */
    if (bufferSize > 1) {
        char exponentBuffer[7];
        npy_int32 digits[5];
        npy_int32 i, exp_size, count;

        if (exp_digits > 5) {
            exp_digits = 5;
        }
        if (exp_digits < 0) {
            exp_digits = 2;
        }

        exponentBuffer[0] = 'e';
        if (printExponent >= 0) {
            exponentBuffer[1] = '+';
        }
        else {
            exponentBuffer[1] = '-';
            printExponent = -printExponent;
        }

        DEBUG_ASSERT(printExponent < 100000);

        /* get exp digits */
        for (i = 0; i < 5; i++) {
            digits[i] = printExponent % 10;
            printExponent /= 10;
        }
        /* count back over leading zeros */
        for (i = 5; i > exp_digits && digits[i-1] == 0; i--) {
        }
        exp_size = i;
        /* write remaining digits to tmp buf */
        for (i = exp_size; i > 0; i--) {
            exponentBuffer[2 + (exp_size-i)] = (char)('0' + digits[i-1]);
        }

        /* copy the exponent buffer into the output */
        count = exp_size + 2;
        if (count > (npy_int32)bufferSize - 1) {
            count = (npy_int32)bufferSize - 1;
        }
        memcpy(pCurOut, exponentBuffer, count);
        pCurOut += count;
        bufferSize -= count;
    }


    DEBUG_ASSERT(bufferSize > 0);
    pCurOut[0] = '\0';

    return pCurOut - buffer;
}

/*
 * Print a hexadecimal value with a given width.
 * The output string is always NUL terminated and the string length (not
 * including the NUL) is returned.
 */
/*  Unused for now
static npy_uint32
PrintHex(char * buffer, npy_uint32 bufferSize, npy_uint64 value,
         npy_uint32 width)
{
    const char digits[] = "0123456789abcdef";
    char *pCurOut;

    DEBUG_ASSERT(bufferSize > 0);

    npy_uint32 maxPrintLen = bufferSize-1;
    if (width > maxPrintLen) {
        width = maxPrintLen;
    }

    pCurOut = buffer;
    while (width > 0) {
        --width;

        npy_uint8 digit = (npy_uint8)((value >> 4ull*(npy_uint64)width) & 0xF);
        *pCurOut = digits[digit];

        ++pCurOut;
    }

    *pCurOut = '\0';
    return pCurOut - buffer;
}
*/

/*
 * Print special case values for infinities and NaNs.
 * The output string is always NUL terminated and the string length (not
 * including the NUL) is returned.
 */
static npy_uint32
PrintInfNan(char *buffer, npy_uint32 bufferSize, npy_uint64 mantissa,
            npy_uint32 mantissaHexWidth, char signbit)
{
    npy_uint32 maxPrintLen = bufferSize-1;
    npy_uint32 pos = 0;

    DEBUG_ASSERT(bufferSize > 0);

    /* Check for infinity */
    if (mantissa == 0) {
        npy_uint32 printLen;

        /* only print sign for inf values (though nan can have a sign set) */
        if (signbit == '+') {
            if (pos < maxPrintLen-1) {
                buffer[pos++] = '+';
            }
        }
        else if (signbit == '-') {
            if (pos < maxPrintLen-1) {
                buffer[pos++] = '-';
            }
        }

        /* copy and make sure the buffer is terminated */
        printLen = (3 < maxPrintLen - pos) ? 3 : maxPrintLen - pos;
        memcpy(buffer + pos, "inf", printLen);
        buffer[pos + printLen] = '\0';
        return pos + printLen;
    }
    else {
        /* copy and make sure the buffer is terminated */
        npy_uint32 printLen = (3 < maxPrintLen - pos) ? 3 : maxPrintLen - pos;
        memcpy(buffer + pos, "nan", printLen);
        buffer[pos + printLen] = '\0';

        /*
         *  For numpy we ignore unusual mantissa values for nan, but keep this
         *  code in case we change our mind later.
         *
         * // append HEX value
         * if (maxPrintLen > 3) {
         *     printLen += PrintHex(buffer+3, bufferSize-3, mantissa,
         *                          mantissaHexWidth);
         * }
         */

        return pos + printLen;
    }
}

/*
 * The functions below format a floating-point numbers stored in particular
 * formats,  as a decimal string.  The output string is always NUL terminated
 * and the string length (not including the NUL) is returned.
 *
 * For 16, 32 and 64 bit floats we assume they are the IEEE 754 type.
 * For 128 bit floats we account for different definitions.
 *
 * Arguments are:
 *   buffer - buffer to output into
 *   bufferSize - maximum characters that can be printed to buffer
 *   value - value to print
 *   opt - Dragon4 options, see above
 */

/*
 * Helper function that takes Dragon4 parameters and options and
 * calls Dragon4.
 */
static npy_uint32
Format_floatbits(char *buffer, npy_uint32 bufferSize, BigInt *mantissa,
                 npy_int32 exponent, char signbit, npy_uint32 mantissaBit,
                 npy_bool hasUnequalMargins, Dragon4_Options *opt)
{
    /* format the value */
    if (opt->scientific) {
        return FormatScientific(buffer, bufferSize, mantissa, exponent,
                                signbit, mantissaBit, hasUnequalMargins,
                                opt->digit_mode, opt->precision,
                                opt->trim_mode, opt->digits_left,
                                opt->exp_digits);
    }
    else {
        return FormatPositional(buffer, bufferSize, mantissa, exponent,
                                signbit, mantissaBit, hasUnequalMargins,
                                opt->digit_mode, opt->cutoff_mode,
                                opt->precision, opt->trim_mode,
                                opt->digits_left, opt->digits_right);
    }
}

/*
 * IEEE binary16 floating-point format
 *
 * sign:      1 bit
 * exponent:  5 bits
 * mantissa: 10 bits
 */
static npy_uint32
Dragon4_PrintFloat_IEEE_binary16(
        Dragon4_Scratch *scratch, npy_half *value, Dragon4_Options *opt)
{
    char *buffer = scratch->repr;
    npy_uint32 bufferSize = sizeof(scratch->repr);
    BigInt *bigints = scratch->bigints;

    npy_uint16 val = *value;
    npy_uint32 floatExponent, floatMantissa, floatSign;

    npy_uint32 mantissa;
    npy_int32 exponent;
    npy_uint32 mantissaBit;
    npy_bool hasUnequalMargins;
    char signbit = '\0';

    if (bufferSize == 0) {
        return 0;
    }

    if (bufferSize == 1) {
        buffer[0] = '\0';
        return 0;
    }

    /* deconstruct the floating point value */
    floatMantissa = val & bitmask_u32(10);
    floatExponent = (val >> 10) & bitmask_u32(5);
    floatSign = val >> 15;

    /* output the sign */
    if (floatSign != 0) {
        signbit = '-';
    }
    else if (opt->sign) {
        signbit = '+';
    }

    /* if this is a special value */
    if (floatExponent == bitmask_u32(5)) {
        return PrintInfNan(buffer, bufferSize, floatMantissa, 3, signbit);
    }
    /* else this is a number */

    /* factor the value into its parts */
    if (floatExponent != 0) {
        /*
         * normalized
         * The floating point equation is:
         *  value = (1 + mantissa/2^10) * 2 ^ (exponent-15)
         * We convert the integer equation by factoring a 2^10 out of the
         * exponent
         *  value = (1 + mantissa/2^10) * 2^10 * 2 ^ (exponent-15-10)
         *  value = (2^10 + mantissa) * 2 ^ (exponent-15-10)
         * Because of the implied 1 in front of the mantissa we have 10 bits of
         * precision.
         *   m = (2^10 + mantissa)
         *   e = (exponent-15-10)
         */
        mantissa            = (1UL << 10) | floatMantissa;
        exponent            = floatExponent - 15 - 10;
        mantissaBit         = 10;
        hasUnequalMargins   = (floatExponent != 1) && (floatMantissa == 0);
    }
    else {
        /*
         * denormalized
         * The floating point equation is:
         *  value = (mantissa/2^10) * 2 ^ (1-15)
         * We convert the integer equation by factoring a 2^23 out of the
         * exponent
         *  value = (mantissa/2^10) * 2^10 * 2 ^ (1-15-10)
         *  value = mantissa * 2 ^ (1-15-10)
         * We have up to 10 bits of precision.
         *   m = (mantissa)
         *   e = (1-15-10)
         */
        mantissa           = floatMantissa;
        exponent           = 1 - 15 - 10;
        mantissaBit        = LogBase2_32(mantissa);
        hasUnequalMargins  = NPY_FALSE;
    }

    BigInt_Set_uint32(&bigints[0], mantissa);
    return Format_floatbits(buffer, bufferSize, bigints, exponent,
                            signbit, mantissaBit, hasUnequalMargins, opt);
}

/*
 * IEEE binary32 floating-point format
 *
 * sign:      1 bit
 * exponent:  8 bits
 * mantissa: 23 bits
 */
static npy_uint32
Dragon4_PrintFloat_IEEE_binary32(
        Dragon4_Scratch *scratch, npy_float32 *value,
        Dragon4_Options *opt)
{
    char *buffer = scratch->repr;
    npy_uint32 bufferSize = sizeof(scratch->repr);
    BigInt *bigints = scratch->bigints;

    union
    {
        npy_float32 floatingPoint;
        npy_uint32 integer;
    } floatUnion;
    npy_uint32 floatExponent, floatMantissa, floatSign;

    npy_uint32 mantissa;
    npy_int32 exponent;
    npy_uint32 mantissaBit;
    npy_bool hasUnequalMargins;
    char signbit = '\0';

    if (bufferSize == 0) {
        return 0;
    }

    if (bufferSize == 1) {
        buffer[0] = '\0';
        return 0;
    }

    /* deconstruct the floating point value */
    floatUnion.floatingPoint = *value;
    floatMantissa = floatUnion.integer & bitmask_u32(23);
    floatExponent = (floatUnion.integer >> 23) & bitmask_u32(8);
    floatSign = floatUnion.integer >> 31;

    /* output the sign */
    if (floatSign != 0) {
        signbit = '-';
    }
    else if (opt->sign) {
        signbit = '+';
    }

    /* if this is a special value */
    if (floatExponent == bitmask_u32(8)) {
        return PrintInfNan(buffer, bufferSize, floatMantissa, 6, signbit);
    }
    /* else this is a number */

    /* factor the value into its parts */
    if (floatExponent != 0) {
        /*
         * normalized
         * The floating point equation is:
         *  value = (1 + mantissa/2^23) * 2 ^ (exponent-127)
         * We convert the integer equation by factoring a 2^23 out of the
         * exponent
         *  value = (1 + mantissa/2^23) * 2^23 * 2 ^ (exponent-127-23)
         *  value = (2^23 + mantissa) * 2 ^ (exponent-127-23)
         * Because of the implied 1 in front of the mantissa we have 24 bits of
         * precision.
         *   m = (2^23 + mantissa)
         *   e = (exponent-127-23)
         */
        mantissa            = (1UL << 23) | floatMantissa;
        exponent            = floatExponent - 127 - 23;
        mantissaBit         = 23;
        hasUnequalMargins   = (floatExponent != 1) && (floatMantissa == 0);
    }
    else {
        /*
         * denormalized
         * The floating point equation is:
         *  value = (mantissa/2^23) * 2 ^ (1-127)
         * We convert the integer equation by factoring a 2^23 out of the
         * exponent
         *  value = (mantissa/2^23) * 2^23 * 2 ^ (1-127-23)
         *  value = mantissa * 2 ^ (1-127-23)
         * We have up to 23 bits of precision.
         *   m = (mantissa)
         *   e = (1-127-23)
         */
        mantissa           = floatMantissa;
        exponent           = 1 - 127 - 23;
        mantissaBit        = LogBase2_32(mantissa);
        hasUnequalMargins  = NPY_FALSE;
    }

    BigInt_Set_uint32(&bigints[0], mantissa);
    return Format_floatbits(buffer, bufferSize, bigints, exponent,
                           signbit, mantissaBit, hasUnequalMargins, opt);
}

/*
 * IEEE binary64 floating-point format
 *
 * sign:      1 bit
 * exponent: 11 bits
 * mantissa: 52 bits
 */
static npy_uint32
Dragon4_PrintFloat_IEEE_binary64(
        Dragon4_Scratch *scratch, npy_float64 *value, Dragon4_Options *opt)
{
    char *buffer = scratch->repr;
    npy_uint32 bufferSize = sizeof(scratch->repr);
    BigInt *bigints = scratch->bigints;

    union
    {
        npy_float64 floatingPoint;
        npy_uint64 integer;
    } floatUnion;
    npy_uint32 floatExponent, floatSign;
    npy_uint64 floatMantissa;

    npy_uint64 mantissa;
    npy_int32 exponent;
    npy_uint32 mantissaBit;
    npy_bool hasUnequalMargins;
    char signbit = '\0';

    if (bufferSize == 0) {
        return 0;
    }

    if (bufferSize == 1) {
        buffer[0] = '\0';
        return 0;
    }

    /* deconstruct the floating point value */
    floatUnion.floatingPoint = *value;
    floatMantissa = floatUnion.integer & bitmask_u64(52);
    floatExponent = (floatUnion.integer >> 52) & bitmask_u32(11);
    floatSign = floatUnion.integer >> 63;

    /* output the sign */
    if (floatSign != 0) {
        signbit = '-';
    }
    else if (opt->sign) {
        signbit = '+';
    }

    /* if this is a special value */
    if (floatExponent == bitmask_u32(11)) {
        return PrintInfNan(buffer, bufferSize, floatMantissa, 13, signbit);
    }
    /* else this is a number */

    /* factor the value into its parts */
    if (floatExponent != 0) {
        /*
         * normal
         * The floating point equation is:
         *  value = (1 + mantissa/2^52) * 2 ^ (exponent-1023)
         * We convert the integer equation by factoring a 2^52 out of the
         * exponent
         *  value = (1 + mantissa/2^52) * 2^52 * 2 ^ (exponent-1023-52)
         *  value = (2^52 + mantissa) * 2 ^ (exponent-1023-52)
         * Because of the implied 1 in front of the mantissa we have 53 bits of
         * precision.
         *   m = (2^52 + mantissa)
         *   e = (exponent-1023+1-53)
         */
        mantissa            = (1ull << 52) | floatMantissa;
        exponent            = floatExponent - 1023 - 52;
        mantissaBit         = 52;
        hasUnequalMargins   = (floatExponent != 1) && (floatMantissa == 0);
    }
    else {
        /*
         * subnormal
         * The floating point equation is:
         *  value = (mantissa/2^52) * 2 ^ (1-1023)
         * We convert the integer equation by factoring a 2^52 out of the
         * exponent
         *  value = (mantissa/2^52) * 2^52 * 2 ^ (1-1023-52)
         *  value = mantissa * 2 ^ (1-1023-52)
         * We have up to 52 bits of precision.
         *   m = (mantissa)
         *   e = (1-1023-52)
         */
        mantissa            = floatMantissa;
        exponent            = 1 - 1023 - 52;
        mantissaBit         = LogBase2_64(mantissa);
        hasUnequalMargins   = NPY_FALSE;
    }

    BigInt_Set_uint64(&bigints[0], mantissa);
    return Format_floatbits(buffer, bufferSize, bigints, exponent,
                            signbit, mantissaBit, hasUnequalMargins, opt);
}


/*
 * Since systems have different types of long doubles, and may not necessarily
 * have a 128-byte format we can use to pass values around, here we create
 * our own 128-bit storage type for convenience.
 */
typedef struct FloatVal128 {
    npy_uint64 hi, lo;
} FloatVal128;

#if defined(HAVE_LDOUBLE_INTEL_EXTENDED_10_BYTES_LE) || \
    defined(HAVE_LDOUBLE_INTEL_EXTENDED_12_BYTES_LE) || \
    defined(HAVE_LDOUBLE_INTEL_EXTENDED_16_BYTES_LE) || \
    defined(HAVE_LDOUBLE_MOTOROLA_EXTENDED_12_BYTES_BE)
/*
 * Intel's 80-bit IEEE extended precision floating-point format
 *
 * "long doubles" with this format are stored as 96 or 128 bits, but
 * are equivalent to the 80 bit type with some zero padding on the high bits.
 * This method expects the user to pass in the value using a 128-bit
 * FloatVal128, so can support 80, 96, or 128 bit storage formats,
 * and is endian-independent.
 *
 * sign:      1 bit,  second u64
 * exponent: 15 bits, second u64
 * intbit     1 bit,  first u64
 * mantissa: 63 bits, first u64
 */
static npy_uint32
Dragon4_PrintFloat_Intel_extended(
    Dragon4_Scratch *scratch, FloatVal128 value, Dragon4_Options *opt)
{
    char *buffer = scratch->repr;
    npy_uint32 bufferSize = sizeof(scratch->repr);
    BigInt *bigints = scratch->bigints;

    npy_uint32 floatExponent, floatSign;
    npy_uint64 floatMantissa;

    npy_uint64 mantissa;
    npy_int32 exponent;
    npy_uint32 mantissaBit;
    npy_bool hasUnequalMargins;
    char signbit = '\0';

    if (bufferSize == 0) {
        return 0;
    }

    if (bufferSize == 1) {
        buffer[0] = '\0';
        return 0;
    }

    /* deconstruct the floating point value (we ignore the intbit) */
    floatMantissa = value.lo & bitmask_u64(63);
    floatExponent = value.hi & bitmask_u32(15);
    floatSign = (value.hi >> 15) & 0x1;

    /* output the sign */
    if (floatSign != 0) {
        signbit = '-';
    }
    else if (opt->sign) {
        signbit = '+';
    }

    /* if this is a special value */
    if (floatExponent == bitmask_u32(15)) {
        /*
         * Note: Technically there are other special extended values defined if
         * the intbit is 0, like Pseudo-Infinity, Pseudo-Nan, Quiet-NaN. We
         * ignore all of these since they are not generated on modern
         * processors. We treat Quiet-Nan as simply Nan.
         */
        return PrintInfNan(buffer, bufferSize, floatMantissa, 16, signbit);
    }
    /* else this is a number */

    /* factor the value into its parts */
    if (floatExponent != 0) {
        /*
         * normal
         * The floating point equation is:
         *  value = (1 + mantissa/2^63) * 2 ^ (exponent-16383)
         * We convert the integer equation by factoring a 2^63 out of the
         * exponent
         *  value = (1 + mantissa/2^63) * 2^63 * 2 ^ (exponent-16383-63)
         *  value = (2^63 + mantissa) * 2 ^ (exponent-16383-63)
         * Because of the implied 1 in front of the mantissa we have 64 bits of
         * precision.
         *   m = (2^63 + mantissa)
         *   e = (exponent-16383+1-64)
         */
        mantissa            = (1ull << 63) | floatMantissa;
        exponent            = floatExponent - 16383 - 63;
        mantissaBit         = 63;
        hasUnequalMargins   = (floatExponent != 1) && (floatMantissa == 0);
    }
    else {
        /*
         * subnormal
         * The floating point equation is:
         *  value = (mantissa/2^63) * 2 ^ (1-16383)
         * We convert the integer equation by factoring a 2^52 out of the
         * exponent
         *  value = (mantissa/2^63) * 2^52 * 2 ^ (1-16383-63)
         *  value = mantissa * 2 ^ (1-16383-63)
         * We have up to 63 bits of precision.
         *   m = (mantissa)
         *   e = (1-16383-63)
         */
        mantissa            = floatMantissa;
        exponent            = 1 - 16383 - 63;
        mantissaBit         = LogBase2_64(mantissa);
        hasUnequalMargins   = NPY_FALSE;
    }

    BigInt_Set_uint64(&bigints[0], mantissa);
    return Format_floatbits(buffer, bufferSize, bigints, exponent,
                            signbit, mantissaBit, hasUnequalMargins, opt);

}

#endif /* INTEL_EXTENDED group */


#ifdef HAVE_LDOUBLE_INTEL_EXTENDED_10_BYTES_LE
/*
 * Intel's 80-bit IEEE extended precision format, 80-bit storage
 *
 * Note: It is not clear if a long double with 10-byte storage exists on any
 * system. But numpy defines NPY_FLOAT80, so if we come across it, assume it is
 * an Intel extended format.
 */
static npy_uint32
Dragon4_PrintFloat_Intel_extended80(
    Dragon4_Scratch *scratch, npy_float80 *value, Dragon4_Options *opt)
{
    FloatVal128 val128;
    union {
        npy_float80 floatingPoint;
        struct {
            npy_uint64 a;
            npy_uint16 b;
        } integer;
    } buf80;

    buf80.floatingPoint = *value;
    /* Intel is little-endian */
    val128.lo = buf80.integer.a;
    val128.hi = buf80.integer.b;

    return Dragon4_PrintFloat_Intel_extended(scratch, val128, opt);
}
#endif /* HAVE_LDOUBLE_INTEL_EXTENDED_10_BYTES_LE */

#ifdef HAVE_LDOUBLE_INTEL_EXTENDED_12_BYTES_LE
/* Intel's 80-bit IEEE extended precision format, 96-bit storage */
static npy_uint32
Dragon4_PrintFloat_Intel_extended96(
    Dragon4_Scratch *scratch, npy_float96 *value, Dragon4_Options *opt)
{
    FloatVal128 val128;
    union {
        npy_float96 floatingPoint;
        struct {
            npy_uint64 a;
            npy_uint32 b;
        } integer;
    } buf96;

    buf96.floatingPoint = *value;
    /* Intel is little-endian */
    val128.lo = buf96.integer.a;
    val128.hi = buf96.integer.b;

    return Dragon4_PrintFloat_Intel_extended(scratch, val128, opt);
}
#endif /* HAVE_LDOUBLE_INTEL_EXTENDED_12_BYTES_LE */

#ifdef HAVE_LDOUBLE_MOTOROLA_EXTENDED_12_BYTES_BE
/* Motorola Big-endian equivalent of the Intel-extended 96 fp format */
static npy_uint32
Dragon4_PrintFloat_Motorola_extended96(
    Dragon4_Scratch *scratch, npy_float96 *value, Dragon4_Options *opt)
{
    FloatVal128 val128;
    union {
        npy_float96 floatingPoint;
        struct {
            npy_uint64 a;
            npy_uint32 b;
        } integer;
    } buf96;

    buf96.floatingPoint = *value;
    /* Motorola is big-endian */
    val128.lo = buf96.integer.b;
    val128.hi = buf96.integer.a >> 16;
    /* once again we assume the int has same endianness as the float */

    return Dragon4_PrintFloat_Intel_extended(scratch, val128, opt);
}
#endif /* HAVE_LDOUBLE_MOTOROLA_EXTENDED_12_BYTES_BE */


#ifdef NPY_FLOAT128

typedef union FloatUnion128
{
    npy_float128 floatingPoint;
    struct {
        npy_uint64 a;
        npy_uint64 b;
    } integer;
} FloatUnion128;

#ifdef HAVE_LDOUBLE_INTEL_EXTENDED_16_BYTES_LE
/* Intel's 80-bit IEEE extended precision format, 128-bit storage */
static npy_uint32
Dragon4_PrintFloat_Intel_extended128(
    Dragon4_Scratch *scratch, npy_float128 *value, Dragon4_Options *opt)
{
    FloatVal128 val128;
    FloatUnion128 buf128;

    buf128.floatingPoint = *value;
    /* Intel is little-endian */
    val128.lo = buf128.integer.a;
    val128.hi = buf128.integer.b;

    return Dragon4_PrintFloat_Intel_extended(scratch, val128, opt);
}
#endif /* HAVE_LDOUBLE_INTEL_EXTENDED_16_BYTES_LE */

#if defined(HAVE_LDOUBLE_IEEE_QUAD_LE) || defined(HAVE_LDOUBLE_IEEE_QUAD_BE)
/*
 * IEEE binary128 floating-point format
 *
 * sign:       1 bit
 * exponent:  15 bits
 * mantissa: 112 bits
 *
 * Currently binary128 format exists on only a few CPUs, such as on the POWER9
 * arch or aarch64. Because of this, this code has not been extensively tested.
 * I am not sure if the arch also supports uint128, and C does not seem to
 * support int128 literals. So we use uint64 to do manipulation.
 */
static npy_uint32
Dragon4_PrintFloat_IEEE_binary128(
    Dragon4_Scratch *scratch, FloatVal128 val128, Dragon4_Options *opt)
{
    char *buffer = scratch->repr;
    npy_uint32 bufferSize = sizeof(scratch->repr);
    BigInt *bigints = scratch->bigints;

    npy_uint32 floatExponent, floatSign;

    npy_uint64 mantissa_hi, mantissa_lo;
    npy_int32 exponent;
    npy_uint32 mantissaBit;
    npy_bool hasUnequalMargins;
    char signbit = '\0';

    if (bufferSize == 0) {
        return 0;
    }

    if (bufferSize == 1) {
        buffer[0] = '\0';
        return 0;
    }

    mantissa_hi = val128.hi & bitmask_u64(48);
    mantissa_lo = val128.lo;
    floatExponent = (val128.hi >> 48) & bitmask_u32(15);
    floatSign = val128.hi >> 63;

    /* output the sign */
    if (floatSign != 0) {
        signbit = '-';
    }
    else if (opt->sign) {
        signbit = '+';
    }

    /* if this is a special value */
    if (floatExponent == bitmask_u32(15)) {
        npy_uint64 mantissa_zero = mantissa_hi == 0 && mantissa_lo == 0;
        return PrintInfNan(buffer, bufferSize, !mantissa_zero, 16, signbit);
    }
    /* else this is a number */

    /* factor the value into its parts */
    if (floatExponent != 0) {
        /*
         * normal
         * The floating point equation is:
         *  value = (1 + mantissa/2^112) * 2 ^ (exponent-16383)
         * We convert the integer equation by factoring a 2^112 out of the
         * exponent
         *  value = (1 + mantissa/2^112) * 2^112 * 2 ^ (exponent-16383-112)
         *  value = (2^112 + mantissa) * 2 ^ (exponent-16383-112)
         * Because of the implied 1 in front of the mantissa we have 112 bits of
         * precision.
         *   m = (2^112 + mantissa)
         *   e = (exponent-16383+1-112)
         *
         *   Adding 2^112 to the mantissa is the same as adding 2^48 to the hi
         *   64 bit part.
         */
        mantissa_hi         = (1ull << 48) | mantissa_hi;
        /* mantissa_lo is unchanged */
        exponent            = floatExponent - 16383 - 112;
        mantissaBit         = 112;
        hasUnequalMargins   = (floatExponent != 1) && (mantissa_hi == 0 &&
                                                       mantissa_lo == 0);
    }
    else {
        /*
         * subnormal
         * The floating point equation is:
         *  value = (mantissa/2^112) * 2 ^ (1-16383)
         * We convert the integer equation by factoring a 2^112 out of the
         * exponent
         *  value = (mantissa/2^112) * 2^112 * 2 ^ (1-16383-112)
         *  value = mantissa * 2 ^ (1-16383-112)
         * We have up to 112 bits of precision.
         *   m = (mantissa)
         *   e = (1-16383-112)
         */
        exponent            = 1 - 16383 - 112;
        mantissaBit         = LogBase2_128(mantissa_hi, mantissa_lo);
        hasUnequalMargins   = NPY_FALSE;
    }

    BigInt_Set_2x_uint64(&bigints[0], mantissa_hi, mantissa_lo);
    return Format_floatbits(buffer, bufferSize, bigints, exponent,
                            signbit, mantissaBit, hasUnequalMargins, opt);
}

#if defined(HAVE_LDOUBLE_IEEE_QUAD_LE)
static npy_uint32
Dragon4_PrintFloat_IEEE_binary128_le(
    Dragon4_Scratch *scratch, npy_float128 *value, Dragon4_Options *opt)
{
    FloatVal128 val128;
    FloatUnion128 buf128;

    buf128.floatingPoint = *value;
    val128.lo = buf128.integer.a;
    val128.hi = buf128.integer.b;

    return Dragon4_PrintFloat_IEEE_binary128(scratch, val128, opt);
}
#endif /* HAVE_LDOUBLE_IEEE_QUAD_LE */

#if defined(HAVE_LDOUBLE_IEEE_QUAD_BE)
/*
 * This function is untested, very few, if any, architectures implement
 * big endian IEEE binary128 floating point.
 */
static npy_uint32
Dragon4_PrintFloat_IEEE_binary128_be(
    Dragon4_Scratch *scratch, npy_float128 *value, Dragon4_Options *opt)
{
    FloatVal128 val128;
    FloatUnion128 buf128;

    buf128.floatingPoint = *value;
    val128.lo = buf128.integer.b;
    val128.hi = buf128.integer.a;

    return Dragon4_PrintFloat_IEEE_binary128(scratch, val128, opt);
}
#endif /* HAVE_LDOUBLE_IEEE_QUAD_BE */

#endif /* HAVE_LDOUBLE_IEEE_QUAD_LE | HAVE_LDOUBLE_IEEE_BE*/

#if (defined(HAVE_LDOUBLE_IBM_DOUBLE_DOUBLE_LE) || \
     defined(HAVE_LDOUBLE_IBM_DOUBLE_DOUBLE_BE))
/*
 * IBM extended precision 128-bit floating-point format, aka IBM double-double
 *
 * IBM's double-double type is a pair of IEEE binary64 values, which you add
 * together to get a total value. The exponents are arranged so that the lower
 * double is about 2^52 times smaller than the high one, and the nearest
 * float64 value is simply the upper double, in which case the pair is
 * considered "normalized" (not to confuse with "normal" and "subnormal"
 * binary64 values). We assume normalized values. You can see the glibc's
 * printf on ppc does so too by constructing un-normalized values to get
 * strange behavior from the OS printf:
 *
 *     >>> from numpy.core._multiarray_tests import format_float_OSprintf_g
 *     >>> x = np.array([0.3,0.3], dtype='f8').view('f16')[0]
 *     >>> format_float_OSprintf_g(x, 2)
 *     0.30
 *     >>> format_float_OSprintf_g(2*x, 2)
 *     1.20
 *
 * If we don't assume normalization, x should really print as 0.6.
 *
 * For normalized values gcc assumes that the total mantissa is no
 * more than 106 bits (53+53), so we can drop bits from the second double which
 * would be pushed past 106 when left-shifting by its exponent, as happens
 * sometimes. (There has been debate about this, see
 * https://gcc.gnu.org/bugzilla/show_bug.cgi?format=multiple&id=70117,
 * https://sourceware.org/bugzilla/show_bug.cgi?id=22752 )
 *
 * Note: This function is for the IBM-double-double which is a pair of IEEE
 * binary64 floats, like on ppc64 systems. This is *not* the hexadecimal
 * IBM-double-double type, which is a pair of IBM hexadecimal64 floats.
 *
 * See also:
 * https://gcc.gnu.org/wiki/Ieee128PowerPCA
 * https://www.ibm.com/support/knowledgecenter/en/ssw_aix_71/com.ibm.aix.genprogc/128bit_long_double_floating-point_datatype.htm
 */
static npy_uint32
Dragon4_PrintFloat_IBM_double_double(
    Dragon4_Scratch *scratch, npy_float128 *value, Dragon4_Options *opt)
{
    char *buffer = scratch->repr;
    npy_uint32 bufferSize = sizeof(scratch->repr);
    BigInt *bigints = scratch->bigints;

    FloatVal128 val128;
    FloatUnion128 buf128;

    npy_uint32 floatExponent1, floatExponent2;
    npy_uint64 floatMantissa1, floatMantissa2;
    npy_uint32 floatSign1, floatSign2;

    npy_uint64 mantissa1, mantissa2;
    npy_int32 exponent1, exponent2;
    int shift;
    npy_uint32 mantissaBit;
    npy_bool hasUnequalMargins;
    char signbit = '\0';

    if (bufferSize == 0) {
        return 0;
    }

    if (bufferSize == 1) {
        buffer[0] = '\0';
        return 0;
    }

    /* The high part always comes before the low part, regardless of the
     * endianness of the system. */
    buf128.floatingPoint = *value;
    val128.hi = buf128.integer.a;
    val128.lo = buf128.integer.b;

    /* deconstruct the floating point values */
    floatMantissa1 = val128.hi & bitmask_u64(52);
    floatExponent1 = (val128.hi >> 52) & bitmask_u32(11);
    floatSign1 = (val128.hi >> 63) != 0;

    floatMantissa2 = val128.lo & bitmask_u64(52);
    floatExponent2 = (val128.lo >> 52) & bitmask_u32(11);
    floatSign2 = (val128.lo >> 63) != 0;

    /* output the sign using 1st float's sign */
    if (floatSign1) {
        signbit = '-';
    }
    else if (opt->sign) {
        signbit = '+';
    }

    /* we only need to look at the first float for inf/nan */
    if (floatExponent1 == bitmask_u32(11)) {
        return PrintInfNan(buffer, bufferSize, floatMantissa1, 13, signbit);
    }

    /* else this is a number */

    /* Factor the 1st value into its parts, see binary64 for comments. */
    if (floatExponent1 == 0) {
        /*
         * If the first number is a subnormal value, the 2nd has to be 0 for
         * the float128 to be normalized, so we can ignore it. In this case
         * the float128 only has the precision of a single binary64 value.
         */
        mantissa1            = floatMantissa1;
        exponent1            = 1 - 1023 - 52;
        mantissaBit          = LogBase2_64(mantissa1);
        hasUnequalMargins    = NPY_FALSE;

        BigInt_Set_uint64(&bigints[0], mantissa1);
    }
    else {
        mantissa1            = (1ull << 52) | floatMantissa1;
        exponent1            = floatExponent1 - 1023 - 52;
        mantissaBit          = 52 + 53;

        /*
         * Computing hasUnequalMargins and mantissaBit:
         * This is a little trickier than for IEEE formats.
         *
         * When both doubles are "normal" it is clearer since we can think of
         * it as an IEEE type with a 106 bit mantissa. This value can never
         * have "unequal" margins because of the implied 1 bit in the 2nd
         * value.  (unequal margins only happen when the mantissa has a value
         * like "10000000000...", all zeros except the implied bit at the
         * start, since the next lowest number has a different exponent).
         * mantissaBits will always be 52+53 in this case.
         *
         * If the 1st number is a very small normal, and the 2nd is subnormal
         * and not 2^52 times smaller, the number behaves like a subnormal
         * overall, where the upper number just adds some bits on the left.
         * Like usual subnormals, it has "equal" margins. The slightly tricky
         * thing is that the number of mantissaBits varies. It will be 52
         * (from lower double) plus a variable number depending on the upper
         * number's exponent. We recompute the number of bits in the shift
         * calculation below, because the shift will be equal to the number of
         * lost bits.
         *
         * We can get unequal margins only if the first value has all-0
         * mantissa (except implied bit), and the second value is exactly 0. As
         * a special exception the smallest normal value (smallest exponent, 0
         * mantissa) should have equal margins, since it is "next to" a
         * subnormal value.
         */

        /* factor the 2nd value into its parts */
        if (floatExponent2 != 0) {
            mantissa2            = (1ull << 52) | floatMantissa2;
            exponent2            = floatExponent2 - 1023 - 52;
            hasUnequalMargins    = NPY_FALSE;
        }
        else {
            /* shift exp by one so that leading mantissa bit is still bit 53 */
            mantissa2            = floatMantissa2 << 1;
            exponent2            = - 1023 - 52;
            hasUnequalMargins  = (floatExponent1 != 1) && (floatMantissa1 == 0)
                                                       && (floatMantissa2 == 0);
        }

        /*
         * The 2nd val's exponent might not be exactly 52 smaller than the 1st,
         * it can vary a little bit. So do some shifting of the low mantissa,
         * so that the total mantissa is equivalent to bits 53 to 0 of the
         * first double immediately followed by bits 53 to 0 of the second.
         */
        shift = exponent1 - exponent2 - 53;
        if (shift > 0) {
            /* shift more than 64 is undefined behavior */
            mantissa2 = shift < 64 ? mantissa2 >> shift : 0;
        }
        else if (shift < 0) {
            /*
             * This only happens if the 2nd value is subnormal.
             * We expect that shift > -64, but check it anyway
             */
            mantissa2 = -shift < 64 ? mantissa2 << -shift : 0;
        }

        /*
         * If the low double is a different sign from the high double,
         * rearrange so that the total mantissa is the sum of the two
         * mantissas, instead of a subtraction.
         * hi - lo  ->  (hi-1) + (1-lo),   where lo < 1
         */
        if (floatSign1 != floatSign2 && mantissa2 != 0) {
            mantissa1--;
            mantissa2 = (1ull << 53) - mantissa2;
        }

        /*
         * Compute the number of bits if we are in the subnormal range.
         * The value "shift" happens to be exactly the number of lost bits.
         * Also, shift the bits so that the least significant bit is at
         * bit position 0, like a typical subnormal. After this exponent1
         * should always be 2^-1022
         */
        if (shift < 0) {
            mantissa2 = (mantissa2 >> -shift) | (mantissa1 << (53 + shift));
            mantissa1 = mantissa1 >> -shift;
            mantissaBit = mantissaBit -(-shift);
            exponent1 -= shift;
            DEBUG_ASSERT(exponent1 == -1022);
        }

        /*
         * set up the BigInt mantissa, by shifting the parts as needed
         * We can use | instead of + since the mantissas should not overlap
         */
        BigInt_Set_2x_uint64(&bigints[0], mantissa1 >> 11,
                                         (mantissa1 << 53) | (mantissa2));
        exponent1 = exponent1 - 53;
    }

    return Format_floatbits(buffer, bufferSize, bigints, exponent1,
                            signbit, mantissaBit, hasUnequalMargins, opt);
}

#endif /* HAVE_LDOUBLE_IBM_DOUBLE_DOUBLE_LE | HAVE_LDOUBLE_IBM_DOUBLE_DOUBLE_BE */

#endif /* NPY_FLOAT128 */


/*
 * Here we define two Dragon4 entry functions for each type. One of them
 * accepts the args in a Dragon4_Options struct for convenience, the
 * other enumerates only the necessary parameters.
 *
 * Use a very large string buffer in case anyone tries to output a large number.
 * 16384 should be enough to exactly print the integer part of any float128,
 * which goes up to about 10^4932. The Dragon4_scratch struct provides a string
 * buffer of this size.
 */
#define make_dragon4_typefuncs_inner(Type, npy_type, format) \
\
PyObject *\
Dragon4_Positional_##Type##_opt(npy_type *val, Dragon4_Options *opt)\
{\
    PyObject *ret;\
    Dragon4_Scratch *scratch = get_dragon4_bigint_scratch();\
    if (scratch == NULL) {\
        return NULL;\
    }\
    if (Dragon4_PrintFloat_##format(scratch, val, opt) < 0) {\
        free_dragon4_bigint_scratch(scratch);\
        return NULL;\
    }\
    ret = PyUString_FromString(scratch->repr);\
    free_dragon4_bigint_scratch(scratch);\
    return ret;\
}\
\
PyObject *\
Dragon4_Positional_##Type(npy_type *val, DigitMode digit_mode,\
                   CutoffMode cutoff_mode, int precision,\
                   int sign, TrimMode trim, int pad_left, int pad_right)\
{\
    Dragon4_Options opt;\
    \
    opt.scientific = 0;\
    opt.digit_mode = digit_mode;\
    opt.cutoff_mode = cutoff_mode;\
    opt.precision = precision;\
    opt.sign = sign;\
    opt.trim_mode = trim;\
    opt.digits_left = pad_left;\
    opt.digits_right = pad_right;\
    opt.exp_digits = -1;\
\
    return Dragon4_Positional_##Type##_opt(val, &opt);\
}\
\
PyObject *\
Dragon4_Scientific_##Type##_opt(npy_type *val, Dragon4_Options *opt)\
{\
    PyObject *ret;\
    Dragon4_Scratch *scratch = get_dragon4_bigint_scratch();\
    if (scratch == NULL) {\
        return NULL;\
    }\
    if (Dragon4_PrintFloat_##format(scratch, val, opt) < 0) {\
        free_dragon4_bigint_scratch(scratch);\
        return NULL;\
    }\
    ret = PyUString_FromString(scratch->repr);\
    free_dragon4_bigint_scratch(scratch);\
    return ret;\
}\
PyObject *\
Dragon4_Scientific_##Type(npy_type *val, DigitMode digit_mode, int precision,\
                   int sign, TrimMode trim, int pad_left, int exp_digits)\
{\
    Dragon4_Options opt;\
\
    opt.scientific = 1;\
    opt.digit_mode = digit_mode;\
    opt.cutoff_mode = CutoffMode_TotalLength;\
    opt.precision = precision;\
    opt.sign = sign;\
    opt.trim_mode = trim;\
    opt.digits_left = pad_left;\
    opt.digits_right = -1;\
    opt.exp_digits = exp_digits;\
\
    return Dragon4_Scientific_##Type##_opt(val, &opt);\
}

#define make_dragon4_typefuncs(Type, npy_type, format) \
        make_dragon4_typefuncs_inner(Type, npy_type, format)

make_dragon4_typefuncs(Half, npy_half, NPY_HALF_BINFMT_NAME)
make_dragon4_typefuncs(Float, npy_float, NPY_FLOAT_BINFMT_NAME)
make_dragon4_typefuncs(Double, npy_double, NPY_DOUBLE_BINFMT_NAME)
make_dragon4_typefuncs(LongDouble, npy_longdouble, NPY_LONGDOUBLE_BINFMT_NAME)

#undef make_dragon4_typefuncs
#undef make_dragon4_typefuncs_inner

PyObject *
Dragon4_Positional(PyObject *obj, DigitMode digit_mode, CutoffMode cutoff_mode,
                   int precision, int sign, TrimMode trim, int pad_left,
                   int pad_right)
{
    npy_double val;
    Dragon4_Options opt;

    opt.scientific = 0;
    opt.digit_mode = digit_mode;
    opt.cutoff_mode = cutoff_mode;
    opt.precision = precision;
    opt.sign = sign;
    opt.trim_mode = trim;
    opt.digits_left = pad_left;
    opt.digits_right = pad_right;
    opt.exp_digits = -1;

    if (PyArray_IsScalar(obj, Half)) {
        npy_half x = ((PyHalfScalarObject *)obj)->obval;
        return Dragon4_Positional_Half_opt(&x, &opt);
    }
    else if (PyArray_IsScalar(obj, Float)) {
        npy_float x = ((PyFloatScalarObject *)obj)->obval;
        return Dragon4_Positional_Float_opt(&x, &opt);
    }
    else if (PyArray_IsScalar(obj, Double)) {
        npy_double x = ((PyDoubleScalarObject *)obj)->obval;
        return Dragon4_Positional_Double_opt(&x, &opt);
    }
    else if (PyArray_IsScalar(obj, LongDouble)) {
        npy_longdouble x = ((PyLongDoubleScalarObject *)obj)->obval;
        return Dragon4_Positional_LongDouble_opt(&x, &opt);
    }

    val = PyFloat_AsDouble(obj);
    if (PyErr_Occurred()) {
        return NULL;
    }
    return Dragon4_Positional_Double_opt(&val, &opt);
}

PyObject *
Dragon4_Scientific(PyObject *obj, DigitMode digit_mode, int precision,
                   int sign, TrimMode trim, int pad_left, int exp_digits)
{
    npy_double val;
    Dragon4_Options opt;

    opt.scientific = 1;
    opt.digit_mode = digit_mode;
    opt.cutoff_mode = CutoffMode_TotalLength;
    opt.precision = precision;
    opt.sign = sign;
    opt.trim_mode = trim;
    opt.digits_left = pad_left;
    opt.digits_right = -1;
    opt.exp_digits = exp_digits;

    if (PyArray_IsScalar(obj, Half)) {
        npy_half x = ((PyHalfScalarObject *)obj)->obval;
        return Dragon4_Scientific_Half_opt(&x, &opt);
    }
    else if (PyArray_IsScalar(obj, Float)) {
        npy_float x = ((PyFloatScalarObject *)obj)->obval;
        return Dragon4_Scientific_Float_opt(&x, &opt);
    }
    else if (PyArray_IsScalar(obj, Double)) {
        npy_double x = ((PyDoubleScalarObject *)obj)->obval;
        return Dragon4_Scientific_Double_opt(&x, &opt);
    }
    else if (PyArray_IsScalar(obj, LongDouble)) {
        npy_longdouble x = ((PyLongDoubleScalarObject *)obj)->obval;
        return Dragon4_Scientific_LongDouble_opt(&x, &opt);
    }

    val = PyFloat_AsDouble(obj);
    if (PyErr_Occurred()) {
        return NULL;
    }
    return Dragon4_Scientific_Double_opt(&val, &opt);
}

#undef DEBUG_ASSERT