summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorDongHun Kwak <dh0128.kwak@samsung.com>2020-12-31 09:36:48 +0900
committerDongHun Kwak <dh0128.kwak@samsung.com>2020-12-31 09:36:48 +0900
commitd5925ce9bd335463f9561bdd10271fee77d2b9af (patch)
treeb1b0394bffd94238cd604828122f224a9c91d94b
parent511f2125c7ab4423984a9c9e2e00ae0d83b4672e (diff)
downloadpython-numpy-upstream/1.16.6.tar.gz
python-numpy-upstream/1.16.6.tar.bz2
python-numpy-upstream/1.16.6.zip
Imported Upstream version 1.16.6upstream/1.16.6
-rw-r--r--doc/changelog/1.16.6-changelog.rst36
-rw-r--r--doc/release/1.15.6-notes.rst52
-rw-r--r--doc/release/1.16.6-notes.rst85
-rw-r--r--doc/source/release.rst1
-rw-r--r--numpy/core/_internal.py57
-rw-r--r--numpy/core/arrayprint.py2
-rw-r--r--numpy/core/code_generators/generate_umath.py1
-rw-r--r--numpy/core/include/numpy/ndarrayobject.h2
-rw-r--r--numpy/core/records.py18
-rw-r--r--numpy/core/setup_common.py3
-rw-r--r--numpy/core/src/multiarray/descriptor.c43
-rw-r--r--numpy/core/src/multiarray/einsum.c.src190
-rw-r--r--numpy/core/src/umath/matmul.c.src127
-rw-r--r--numpy/core/src/umath/matmul.h.src2
-rw-r--r--numpy/core/tests/test_einsum.py15
-rw-r--r--numpy/core/tests/test_multiarray.py146
-rw-r--r--numpy/core/tests/test_records.py47
-rw-r--r--numpy/core/tests/test_regression.py32
-rw-r--r--numpy/ctypeslib.py19
-rw-r--r--numpy/lib/_iotools.py13
-rw-r--r--numpy/lib/arraypad.py62
-rw-r--r--numpy/lib/histograms.py20
-rw-r--r--numpy/lib/npyio.py4
-rw-r--r--numpy/lib/recfunctions.py22
-rw-r--r--numpy/lib/tests/test_arraypad.py24
-rw-r--r--numpy/lib/tests/test_histograms.py11
-rw-r--r--numpy/lib/tests/test_io.py7
-rw-r--r--numpy/lib/tests/test_recfunctions.py21
-rw-r--r--numpy/ma/mrecords.py2
-rw-r--r--numpy/testing/_private/utils.py119
-rw-r--r--numpy/testing/tests/test_utils.py70
-rw-r--r--pavement.py2
-rwxr-xr-xsetup.py2
-rw-r--r--shippable.yml1
34 files changed, 960 insertions, 298 deletions
diff --git a/doc/changelog/1.16.6-changelog.rst b/doc/changelog/1.16.6-changelog.rst
new file mode 100644
index 000000000..62ff46c34
--- /dev/null
+++ b/doc/changelog/1.16.6-changelog.rst
@@ -0,0 +1,36 @@
+
+Contributors
+============
+
+A total of 10 people contributed to this release.
+
+* CakeWithSteak
+* Charles Harris
+* Chris Burr
+* Eric Wieser
+* Fernando Saravia
+* Lars Grueter
+* Matti Picus
+* Maxwell Aladago
+* Qiming Sun
+* Warren Weckesser
+
+Pull requests merged
+====================
+
+A total of 14 pull requests were merged for this release.
+
+* `#14211 <https://github.com/numpy/numpy/pull/14211>`__: BUG: Fix uint-overflow if padding with linear_ramp and negative...
+* `#14275 <https://github.com/numpy/numpy/pull/14275>`__: BUG: fixing to allow unpickling of PY3 pickles from PY2
+* `#14340 <https://github.com/numpy/numpy/pull/14340>`__: BUG: Fix misuse of .names and .fields in various places (backport...
+* `#14423 <https://github.com/numpy/numpy/pull/14423>`__: BUG: test, fix regression in converting to ctypes.
+* `#14434 <https://github.com/numpy/numpy/pull/14434>`__: BUG: Fixed maximum relative error reporting in assert_allclose
+* `#14509 <https://github.com/numpy/numpy/pull/14509>`__: BUG: Fix regression in boolean matmul.
+* `#14686 <https://github.com/numpy/numpy/pull/14686>`__: BUG: properly define PyArray_DescrCheck
+* `#14853 <https://github.com/numpy/numpy/pull/14853>`__: BLD: add 'apt update' to shippable
+* `#14854 <https://github.com/numpy/numpy/pull/14854>`__: BUG: Fix _ctypes class circular reference. (#13808)
+* `#14856 <https://github.com/numpy/numpy/pull/14856>`__: BUG: Fix `np.einsum` errors on Power9 Linux and z/Linux
+* `#14863 <https://github.com/numpy/numpy/pull/14863>`__: BLD: Prevent -flto from optimising long double representation...
+* `#14864 <https://github.com/numpy/numpy/pull/14864>`__: BUG: lib: Fix histogram problem with signed integer arrays.
+* `#15172 <https://github.com/numpy/numpy/pull/15172>`__: ENH: Backport improvements to testing functions.
+* `#15191 <https://github.com/numpy/numpy/pull/15191>`__: REL: Prepare for 1.16.6 release.
diff --git a/doc/release/1.15.6-notes.rst b/doc/release/1.15.6-notes.rst
new file mode 100644
index 000000000..863f4b495
--- /dev/null
+++ b/doc/release/1.15.6-notes.rst
@@ -0,0 +1,52 @@
+==========================
+NumPy 1.16.6 Release Notes
+==========================
+
+The NumPy 1.16.6 release fixes bugs reported against the 1.16.5 release, and
+also backports several enhancements from master that seem appropriate for a
+release series that is the last to support Python 2.7. The wheels on PyPI are
+linked with OpenBLAS v0.3.7-dev, which should fix errors on Skylake series
+cpus.
+
+Downstream developers building this release should use Cython >= 0.29.2 and,
+if using OpenBLAS, OpenBLAS >= v0.3.7. The supported Python versions are 2.7
+and 3.5-3.7.
+
+Highlights
+==========
+
+
+New functions
+=============
+
+
+New deprecations
+================
+
+
+Expired deprecations
+====================
+
+
+Future changes
+==============
+
+
+Compatibility notes
+===================
+
+
+C API changes
+=============
+
+
+New Features
+============
+
+
+Improvements
+============
+
+
+Changes
+=======
diff --git a/doc/release/1.16.6-notes.rst b/doc/release/1.16.6-notes.rst
new file mode 100644
index 000000000..cda34497c
--- /dev/null
+++ b/doc/release/1.16.6-notes.rst
@@ -0,0 +1,85 @@
+==========================
+NumPy 1.16.6 Release Notes
+==========================
+
+The NumPy 1.16.6 release fixes bugs reported against the 1.16.5 release, and
+also backports several enhancements from master that seem appropriate for a
+release series that is the last to support Python 2.7. The wheels on PyPI are
+linked with OpenBLAS v0.3.7, which should fix errors on Skylake series
+cpus.
+
+Downstream developers building this release should use Cython >= 0.29.2 and, if
+using OpenBLAS, OpenBLAS >= v0.3.7. The supported Python versions are 2.7 and
+3.5-3.7.
+
+Highlights
+==========
+
+- The ``np.testing.utils`` functions have been updated from 1.19.0-dev0.
+ This improves the function documentation and error messages as well
+ extending the ``assert_array_compare`` function to additional types.
+
+
+New functions
+=============
+
+Allow matmul (`@` operator) to work with object arrays.
+-------------------------------------------------------
+This is an enhancement that was added in NumPy 1.17 and seems reasonable to
+include in the LTS 1.16 release series.
+
+
+Compatibility notes
+===================
+
+Fix regression in matmul (`@` operator) for boolean types
+---------------------------------------------------------
+Booleans were being treated as integers rather than booleans,
+which was a regression from previous behavior.
+
+
+Improvements
+============
+
+Array comparison assertions include maximum differences
+-------------------------------------------------------
+Error messages from array comparison tests such as ``testing.assert_allclose``
+now include "max absolute difference" and "max relative difference," in
+addition to the previous "mismatch" percentage. This information makes it
+easier to update absolute and relative error tolerances.
+
+Contributors
+============
+
+A total of 10 people contributed to this release.
+
+* CakeWithSteak
+* Charles Harris
+* Chris Burr
+* Eric Wieser
+* Fernando Saravia
+* Lars Grueter
+* Matti Picus
+* Maxwell Aladago
+* Qiming Sun
+* Warren Weckesser
+
+Pull requests merged
+====================
+
+A total of 14 pull requests were merged for this release.
+
+* `#14211 <https://github.com/numpy/numpy/pull/14211>`__: BUG: Fix uint-overflow if padding with linear_ramp and negative...
+* `#14275 <https://github.com/numpy/numpy/pull/14275>`__: BUG: fixing to allow unpickling of PY3 pickles from PY2
+* `#14340 <https://github.com/numpy/numpy/pull/14340>`__: BUG: Fix misuse of .names and .fields in various places (backport...
+* `#14423 <https://github.com/numpy/numpy/pull/14423>`__: BUG: test, fix regression in converting to ctypes.
+* `#14434 <https://github.com/numpy/numpy/pull/14434>`__: BUG: Fixed maximum relative error reporting in assert_allclose
+* `#14509 <https://github.com/numpy/numpy/pull/14509>`__: BUG: Fix regression in boolean matmul.
+* `#14686 <https://github.com/numpy/numpy/pull/14686>`__: BUG: properly define PyArray_DescrCheck
+* `#14853 <https://github.com/numpy/numpy/pull/14853>`__: BLD: add 'apt update' to shippable
+* `#14854 <https://github.com/numpy/numpy/pull/14854>`__: BUG: Fix _ctypes class circular reference. (#13808)
+* `#14856 <https://github.com/numpy/numpy/pull/14856>`__: BUG: Fix `np.einsum` errors on Power9 Linux and z/Linux
+* `#14863 <https://github.com/numpy/numpy/pull/14863>`__: BLD: Prevent -flto from optimising long double representation...
+* `#14864 <https://github.com/numpy/numpy/pull/14864>`__: BUG: lib: Fix histogram problem with signed integer arrays.
+* `#15172 <https://github.com/numpy/numpy/pull/15172>`__: ENH: Backport improvements to testing functions.
+* `#15191 <https://github.com/numpy/numpy/pull/15191>`__: REL: Prepare for 1.16.6 release.
diff --git a/doc/source/release.rst b/doc/source/release.rst
index e5b3d5d13..10a8caabd 100644
--- a/doc/source/release.rst
+++ b/doc/source/release.rst
@@ -2,6 +2,7 @@
Release Notes
*************
+.. include:: ../release/1.16.6-notes.rst
.. include:: ../release/1.16.5-notes.rst
.. include:: ../release/1.16.4-notes.rst
.. include:: ../release/1.16.3-notes.rst
diff --git a/numpy/core/_internal.py b/numpy/core/_internal.py
index c7c18fbfc..2a4906767 100644
--- a/numpy/core/_internal.py
+++ b/numpy/core/_internal.py
@@ -248,55 +248,13 @@ class _missing_ctypes(object):
self.value = ptr
-class _unsafe_first_element_pointer(object):
- """
- Helper to allow viewing an array as a ctypes pointer to the first element
-
- This avoids:
- * dealing with strides
- * `.view` rejecting object-containing arrays
- * `memoryview` not supporting overlapping fields
- """
- def __init__(self, arr):
- self.base = arr
-
- @property
- def __array_interface__(self):
- i = dict(
- shape=(),
- typestr='|V0',
- data=(self.base.__array_interface__['data'][0], False),
- strides=(),
- version=3,
- )
- return i
-
-
-def _get_void_ptr(arr):
- """
- Get a `ctypes.c_void_p` to arr.data, that keeps a reference to the array
- """
- import numpy as np
- # convert to a 0d array that has a data pointer referrign to the start
- # of arr. This holds a reference to arr.
- simple_arr = np.asarray(_unsafe_first_element_pointer(arr))
-
- # create a `char[0]` using the same memory.
- c_arr = (ctypes.c_char * 0).from_buffer(simple_arr)
-
- # finally cast to void*
- return ctypes.cast(ctypes.pointer(c_arr), ctypes.c_void_p)
-
-
class _ctypes(object):
def __init__(self, array, ptr=None):
self._arr = array
if ctypes:
self._ctypes = ctypes
- # get a void pointer to the buffer, which keeps the array alive
- self._data = _get_void_ptr(array)
- assert self._data.value == ptr
+ self._data = self._ctypes.c_void_p(ptr)
else:
# fake a pointer-like object that holds onto the reference
self._ctypes = _missing_ctypes()
@@ -318,7 +276,14 @@ class _ctypes(object):
The returned pointer will keep a reference to the array.
"""
- return self._ctypes.cast(self._data, obj)
+ # _ctypes.cast function causes a circular reference of self._data in
+ # self._data._objects. Attributes of self._data cannot be released
+ # until gc.collect is called. Make a copy of the pointer first then let
+ # it hold the array reference. This is a workaround to circumvent the
+ # CPython bug https://bugs.python.org/issue12836
+ ptr = self._ctypes.cast(self._data, obj)
+ ptr._arr = self._arr
+ return ptr
def shape_as(self, obj):
"""
@@ -386,7 +351,7 @@ class _ctypes(object):
Enables `c_func(some_array.ctypes)`
"""
- return self._data
+ return self.data_as(ctypes.c_void_p)
# kept for compatibility
get_data = data.fget
@@ -460,7 +425,7 @@ def _getfield_is_safe(oldtype, newtype, offset):
if newtype.hasobject or oldtype.hasobject:
if offset == 0 and newtype == oldtype:
return
- if oldtype.names:
+ if oldtype.names is not None:
for name in oldtype.names:
if (oldtype.fields[name][1] == offset and
oldtype.fields[name][0] == newtype):
diff --git a/numpy/core/arrayprint.py b/numpy/core/arrayprint.py
index 6a71de226..a305552ee 100644
--- a/numpy/core/arrayprint.py
+++ b/numpy/core/arrayprint.py
@@ -672,7 +672,7 @@ def array2string(a, max_line_width=None, precision=None,
if style is np._NoValue:
style = repr
- if a.shape == () and not a.dtype.names:
+ if a.shape == () and a.dtype.names is None:
return style(a.item())
elif style is not np._NoValue:
# Deprecation 11-9-2017 v1.14
diff --git a/numpy/core/code_generators/generate_umath.py b/numpy/core/code_generators/generate_umath.py
index 0fac9b05e..daf5949d0 100644
--- a/numpy/core/code_generators/generate_umath.py
+++ b/numpy/core/code_generators/generate_umath.py
@@ -911,6 +911,7 @@ defdict = {
docstrings.get('numpy.core.umath.matmul'),
"PyUFunc_SimpleBinaryOperationTypeResolver",
TD(notimes_or_obj),
+ TD(O),
signature='(n?,k),(k,m?)->(n?,m?)',
),
}
diff --git a/numpy/core/include/numpy/ndarrayobject.h b/numpy/core/include/numpy/ndarrayobject.h
index 2cc7ced35..95e9cb060 100644
--- a/numpy/core/include/numpy/ndarrayobject.h
+++ b/numpy/core/include/numpy/ndarrayobject.h
@@ -23,7 +23,7 @@ extern "C" {
/* C-API that requires previous API to be defined */
-#define PyArray_DescrCheck(op) (((PyObject*)(op))->ob_type==&PyArrayDescr_Type)
+#define PyArray_DescrCheck(op) PyObject_TypeCheck(op, &PyArrayDescr_Type)
#define PyArray_Check(op) PyObject_TypeCheck(op, &PyArray_Type)
#define PyArray_CheckExact(op) (((PyObject*)(op))->ob_type == &PyArray_Type)
diff --git a/numpy/core/records.py b/numpy/core/records.py
index 5898bb163..79b55fec1 100644
--- a/numpy/core/records.py
+++ b/numpy/core/records.py
@@ -254,8 +254,8 @@ class record(nt.void):
except AttributeError:
#happens if field is Object type
return obj
- if dt.fields:
- return obj.view((self.__class__, obj.dtype.fields))
+ if dt.names is not None:
+ return obj.view((self.__class__, obj.dtype))
return obj
else:
raise AttributeError("'record' object has no "
@@ -279,8 +279,8 @@ class record(nt.void):
obj = nt.void.__getitem__(self, indx)
# copy behavior of record.__getattribute__,
- if isinstance(obj, nt.void) and obj.dtype.fields:
- return obj.view((self.__class__, obj.dtype.fields))
+ if isinstance(obj, nt.void) and obj.dtype.names is not None:
+ return obj.view((self.__class__, obj.dtype))
else:
# return a single element
return obj
@@ -431,7 +431,7 @@ class recarray(ndarray):
return self
def __array_finalize__(self, obj):
- if self.dtype.type is not record and self.dtype.fields:
+ if self.dtype.type is not record and self.dtype.names is not None:
# if self.dtype is not np.record, invoke __setattr__ which will
# convert it to a record if it is a void dtype.
self.dtype = self.dtype
@@ -459,7 +459,7 @@ class recarray(ndarray):
# with void type convert it to the same dtype.type (eg to preserve
# numpy.record type if present), since nested structured fields do not
# inherit type. Don't do this for non-void structures though.
- if obj.dtype.fields:
+ if obj.dtype.names is not None:
if issubclass(obj.dtype.type, nt.void):
return obj.view(dtype=(self.dtype.type, obj.dtype))
return obj
@@ -474,7 +474,7 @@ class recarray(ndarray):
# Automatically convert (void) structured types to records
# (but not non-void structures, subarrays, or non-structured voids)
- if attr == 'dtype' and issubclass(val.type, nt.void) and val.fields:
+ if attr == 'dtype' and issubclass(val.type, nt.void) and val.names is not None:
val = sb.dtype((record, val))
newattr = attr not in self.__dict__
@@ -508,7 +508,7 @@ class recarray(ndarray):
# copy behavior of getattr, except that here
# we might also be returning a single element
if isinstance(obj, ndarray):
- if obj.dtype.fields:
+ if obj.dtype.names is not None:
obj = obj.view(type(self))
if issubclass(obj.dtype.type, nt.void):
return obj.view(dtype=(self.dtype.type, obj.dtype))
@@ -564,7 +564,7 @@ class recarray(ndarray):
if val is None:
obj = self.getfield(*res)
- if obj.dtype.fields:
+ if obj.dtype.names is not None:
return obj
return obj.view(ndarray)
else:
diff --git a/numpy/core/setup_common.py b/numpy/core/setup_common.py
index f837df112..85b863e50 100644
--- a/numpy/core/setup_common.py
+++ b/numpy/core/setup_common.py
@@ -243,8 +243,9 @@ def check_long_double_representation(cmd):
except ValueError:
# try linking to support CC="gcc -flto" or icc -ipo
# struct needs to be volatile so it isn't optimized away
+ # additionally "clang -flto" requires the foo struct to be used
body = body.replace('struct', 'volatile struct')
- body += "int main(void) { return 0; }\n"
+ body += "int main(void) { return foo.before[0]; }\n"
src, obj = cmd._compile(body, None, None, 'c')
cmd.temp_files.append("_configtest")
cmd.compiler.link_executable([obj], "_configtest")
diff --git a/numpy/core/src/multiarray/descriptor.c b/numpy/core/src/multiarray/descriptor.c
index e7a4b6c72..53d74512c 100644
--- a/numpy/core/src/multiarray/descriptor.c
+++ b/numpy/core/src/multiarray/descriptor.c
@@ -2751,11 +2751,11 @@ arraydescr_setstate(PyArray_Descr *self, PyObject *args)
}
}
else {
-#if defined(NPY_PY3K)
/*
- * To support pickle.load(f, encoding='bytes') for loading Py2
- * generated pickles on Py3, we need to be more lenient and convert
- * field names from byte strings to unicode.
+ * At least one of the names is not of the expected type.
+ * The difference might originate from pickles that were
+ * created on another Python version (PY2/PY3). Go through
+ * the names and convert if possible for compatibility
*/
PyObject *tmp, *new_name, *field;
@@ -2780,7 +2780,14 @@ arraydescr_setstate(PyArray_Descr *self, PyObject *args)
return NULL;
}
+#if defined(NPY_PY3K)
+ /*
+ * To support pickle.load(f, encoding='bytes') for loading Py2
+ * generated pickles on Py3, we need to be more lenient and convert
+ * field names from byte strings to unicode.
+ */
if (PyUnicode_Check(name)) {
+ // no transformation needed, keep it as is
new_name = name;
Py_INCREF(new_name);
}
@@ -2790,17 +2797,35 @@ arraydescr_setstate(PyArray_Descr *self, PyObject *args)
return NULL;
}
}
+#else
+ // PY2 should be able to read PY3 pickles. See gh-2407
+ if (PyString_Check(name)) {
+ // It is a PY2 string, no transformation is needed
+ new_name = name;
+ Py_INCREF(new_name);
+ }
+ else if (PyUnicode_Check(name)) {
+ // The field names of a structured dtype were pickled in PY3 as unicode strings
+ // so, to unpickle them in PY2, we need to convert them to PY2 strings
+ new_name = PyUnicode_AsEncodedString(name, "ASCII", "strict");
+ if (new_name == NULL) {
+ return NULL;
+ }
+ }
+ else {
+ // The field name is not a string or a unicode object, we cannot process it
+ PyErr_Format(PyExc_ValueError,
+ "non-string/non-unicode names in Numpy dtype unpickling");
+ return NULL;
+ }
+
+#endif
PyTuple_SET_ITEM(self->names, i, new_name);
if (PyDict_SetItem(self->fields, new_name, field) != 0) {
return NULL;
}
}
-#else
- PyErr_Format(PyExc_ValueError,
- "non-string names in Numpy dtype unpickling");
- return NULL;
-#endif
}
}
diff --git a/numpy/core/src/multiarray/einsum.c.src b/numpy/core/src/multiarray/einsum.c.src
index 1765982a0..58af44091 100644
--- a/numpy/core/src/multiarray/einsum.c.src
+++ b/numpy/core/src/multiarray/einsum.c.src
@@ -1876,7 +1876,7 @@ parse_operand_subscripts(char *subscripts, int length,
* later where it matters the char is cast to a signed char.
*/
for (idim = 0; idim < ndim - 1; ++idim) {
- int label = op_labels[idim];
+ int label = (signed char)op_labels[idim];
/* If it is a proper label, find any duplicates of it. */
if (label > 0) {
/* Search for the next matching label. */
@@ -1992,12 +1992,13 @@ parse_output_subscripts(char *subscripts, int length,
/*
- * When there's just one operand and no reduction, we
- * can return a view into op. This calculates the view
- * if possible.
+ * When there's just one operand and no reduction we can return a view
+ * into 'op'. This calculates the view and stores it in 'ret', if
+ * possible. Returns -1 on error, 0 otherwise. Note that a 0 return
+ * does not mean that a view was successfully created.
*/
static int
-get_single_op_view(PyArrayObject *op, int iop, char *labels,
+get_single_op_view(PyArrayObject *op, char *labels,
int ndim_output, char *output_labels,
PyArrayObject **ret)
{
@@ -2052,13 +2053,11 @@ get_single_op_view(PyArrayObject *op, int iop, char *labels,
}
/* Update the dimensions and strides of the output */
i = out_label - output_labels;
- if (new_dims[i] != 0 &&
- new_dims[i] != PyArray_DIM(op, idim)) {
+ if (new_dims[i] != 0 && new_dims[i] != PyArray_DIM(op, idim)) {
PyErr_Format(PyExc_ValueError,
- "dimensions in operand %d for collapsing "
+ "dimensions in single operand for collapsing "
"index '%c' don't match (%d != %d)",
- iop, label, (int)new_dims[i],
- (int)PyArray_DIM(op, idim));
+ label, (int)new_dims[i], (int)PyArray_DIM(op, idim));
return -1;
}
new_dims[i] = PyArray_DIM(op, idim);
@@ -2086,80 +2085,108 @@ get_single_op_view(PyArrayObject *op, int iop, char *labels,
return 0;
}
+
+/*
+ * The char type may be either signed or unsigned, we need it to be
+ * signed here.
+ */
+static int
+_any_labels_are_negative(signed char *labels, int ndim)
+{
+ int idim;
+
+ for (idim = 0; idim < ndim; ++idim) {
+ if (labels[idim] < 0) {
+ return 1;
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * Given the labels for an operand array, returns a view of the array
+ * with all repeated labels collapsed into a single dimension along
+ * the corresponding diagonal. The labels are also updated to match
+ * the dimensions of the new array. If no label is repeated, the
+ * original array is reference increased and returned unchanged.
+ */
static PyArrayObject *
get_combined_dims_view(PyArrayObject *op, int iop, char *labels)
{
npy_intp new_strides[NPY_MAXDIMS];
npy_intp new_dims[NPY_MAXDIMS];
- int idim, ndim, icombine, combineoffset;
+ int idim, icombine;
int icombinemap[NPY_MAXDIMS];
-
+ int ndim = PyArray_NDIM(op);
PyArrayObject *ret = NULL;
- ndim = PyArray_NDIM(op);
+ /* A fast path to avoid unnecessary calculations. */
+ if (!_any_labels_are_negative((signed char *)labels, ndim)) {
+ Py_INCREF(op);
- /* Initialize the dimensions and strides to zero */
- for (idim = 0; idim < ndim; ++idim) {
- new_dims[idim] = 0;
- new_strides[idim] = 0;
+ return op;
}
- /* Copy the dimensions and strides, except when collapsing */
+ /* Combine repeated labels. */
icombine = 0;
- for (idim = 0; idim < ndim; ++idim) {
+ for(idim = 0; idim < ndim; ++idim) {
/*
* The char type may be either signed or unsigned, we
* need it to be signed here.
*/
int label = (signed char)labels[idim];
- /* If this label says to merge axes, get the actual label */
- if (label < 0) {
- combineoffset = label;
- label = labels[idim+label];
- }
- else {
- combineoffset = 0;
- if (icombine != idim) {
- labels[icombine] = labels[idim];
- }
+ npy_intp dim = PyArray_DIM(op, idim);
+ npy_intp stride = PyArray_STRIDE(op, idim);
+
+ /* A label seen for the first time, add it to the op view. */
+ if (label >= 0) {
+ /*
+ * icombinemap maps dimensions in the original array to
+ * their position in the combined dimensions view.
+ */
icombinemap[idim] = icombine;
+ new_dims[icombine] = dim;
+ new_strides[icombine] = stride;
+ ++icombine;
}
- /* If the label is 0, it's an unlabeled broadcast dimension */
- if (label == 0) {
- new_dims[icombine] = PyArray_DIM(op, idim);
- new_strides[icombine] = PyArray_STRIDE(op, idim);
- }
+ /* A repeated label, find the original one and merge them. */
else {
- /* Update the combined axis dimensions and strides */
- int i = icombinemap[idim + combineoffset];
- if (combineoffset < 0 && new_dims[i] != 0 &&
- new_dims[i] != PyArray_DIM(op, idim)) {
+ int i = icombinemap[idim + label];
+
+ icombinemap[idim] = -1;
+ if (new_dims[i] != dim) {
+ char orig_label = labels[idim + label];
PyErr_Format(PyExc_ValueError,
- "dimensions in operand %d for collapsing "
- "index '%c' don't match (%d != %d)",
- iop, label, (int)new_dims[i],
- (int)PyArray_DIM(op, idim));
+ "dimensions in operand %d for collapsing "
+ "index '%c' don't match (%d != %d)",
+ iop, orig_label, (int)new_dims[i], (int)dim);
return NULL;
}
- new_dims[i] = PyArray_DIM(op, idim);
- new_strides[i] += PyArray_STRIDE(op, idim);
+ new_strides[i] += stride;
}
+ }
- /* If the label didn't say to combine axes, increment dest i */
- if (combineoffset == 0) {
- icombine++;
+ /* Overwrite labels to match the new operand view. */
+ for (idim = 0; idim < ndim; ++idim) {
+ int i = icombinemap[idim];
+
+ if (i >= 0) {
+ labels[i] = labels[idim];
}
}
- /* The compressed number of dimensions */
+ /* The number of dimensions of the combined view. */
ndim = icombine;
+ /* Create a view of the operand with the compressed dimensions. */
Py_INCREF(PyArray_DESCR(op));
ret = (PyArrayObject *)PyArray_NewFromDescrAndBase(
Py_TYPE(op), PyArray_DESCR(op),
ndim, new_dims, new_strides, PyArray_DATA(op),
PyArray_ISWRITEABLE(op) ? NPY_ARRAY_WRITEABLE : 0,
(PyObject *)op, (PyObject *)op);
+
return ret;
}
@@ -2620,6 +2647,24 @@ PyArray_EinsteinSum(char *subscripts, npy_intp nop,
return NULL;
}
+ /*
+ * If there's just one operand and no output parameter,
+ * first try remapping the axes to the output to return
+ * a view instead of a copy.
+ */
+ if (nop == 1 && out == NULL) {
+ ret = NULL;
+
+ if (get_single_op_view(op_in[0], op_labels[0], ndim_output,
+ output_labels, &ret) < 0) {
+ return NULL;
+ }
+
+ if (ret != NULL) {
+ return ret;
+ }
+ }
+
/* Set all the op references to NULL */
for (iop = 0; iop < nop; ++iop) {
op[iop] = NULL;
@@ -2631,53 +2676,10 @@ PyArray_EinsteinSum(char *subscripts, npy_intp nop,
*/
for (iop = 0; iop < nop; ++iop) {
char *labels = op_labels[iop];
- int combine, ndim;
-
- ndim = PyArray_NDIM(op_in[iop]);
- /*
- * If there's just one operand and no output parameter,
- * first try remapping the axes to the output to return
- * a view instead of a copy.
- */
- if (iop == 0 && nop == 1 && out == NULL) {
- ret = NULL;
-
- if (get_single_op_view(op_in[iop], iop, labels,
- ndim_output, output_labels,
- &ret) < 0) {
- return NULL;
- }
-
- if (ret != NULL) {
- return ret;
- }
- }
-
- /*
- * Check whether any dimensions need to be combined
- *
- * The char type may be either signed or unsigned, we
- * need it to be signed here.
- */
- combine = 0;
- for (idim = 0; idim < ndim; ++idim) {
- if ((signed char)labels[idim] < 0) {
- combine = 1;
- }
- }
-
- /* If any dimensions are combined, create a view which combines them */
- if (combine) {
- op[iop] = get_combined_dims_view(op_in[iop], iop, labels);
- if (op[iop] == NULL) {
- goto fail;
- }
- }
- /* No combining needed */
- else {
- Py_INCREF(op_in[iop]);
- op[iop] = op_in[iop];
+ op[iop] = get_combined_dims_view(op_in[iop], iop, labels);
+ if (op[iop] == NULL) {
+ goto fail;
}
}
diff --git a/numpy/core/src/umath/matmul.c.src b/numpy/core/src/umath/matmul.c.src
index 0cb3c82ad..bc00d3562 100644
--- a/numpy/core/src/umath/matmul.c.src
+++ b/numpy/core/src/umath/matmul.c.src
@@ -196,16 +196,14 @@ NPY_NO_EXPORT void
* FLOAT, DOUBLE, HALF,
* CFLOAT, CDOUBLE, CLONGDOUBLE,
* UBYTE, USHORT, UINT, ULONG, ULONGLONG,
- * BYTE, SHORT, INT, LONG, LONGLONG,
- * BOOL#
+ * BYTE, SHORT, INT, LONG, LONGLONG#
* #typ = npy_longdouble,
* npy_float,npy_double,npy_half,
* npy_cfloat, npy_cdouble, npy_clongdouble,
* npy_ubyte, npy_ushort, npy_uint, npy_ulong, npy_ulonglong,
- * npy_byte, npy_short, npy_int, npy_long, npy_longlong,
- * npy_bool#
- * #IS_COMPLEX = 0, 0, 0, 0, 1, 1, 1, 0*11#
- * #IS_HALF = 0, 0, 0, 1, 0*14#
+ * npy_byte, npy_short, npy_int, npy_long, npy_longlong#
+ * #IS_COMPLEX = 0, 0, 0, 0, 1, 1, 1, 0*10#
+ * #IS_HALF = 0, 0, 0, 1, 0*13#
*/
NPY_NO_EXPORT void
@@ -213,7 +211,6 @@ NPY_NO_EXPORT void
void *_ip2, npy_intp is2_n, npy_intp is2_p,
void *_op, npy_intp os_m, npy_intp os_p,
npy_intp dm, npy_intp dn, npy_intp dp)
-
{
npy_intp m, n, p;
npy_intp ib1_n, ib2_n, ib2_p, ob_p;
@@ -266,20 +263,126 @@ NPY_NO_EXPORT void
}
/**end repeat**/
+NPY_NO_EXPORT void
+BOOL_matmul_inner_noblas(void *_ip1, npy_intp is1_m, npy_intp is1_n,
+ void *_ip2, npy_intp is2_n, npy_intp is2_p,
+ void *_op, npy_intp os_m, npy_intp os_p,
+ npy_intp dm, npy_intp dn, npy_intp dp)
+{
+ npy_intp m, n, p;
+ npy_intp ib2_p, ob_p;
+ char *ip1 = (char *)_ip1, *ip2 = (char *)_ip2, *op = (char *)_op;
+
+ ib2_p = is2_p * dp;
+ ob_p = os_p * dp;
+
+ for (m = 0; m < dm; m++) {
+ for (p = 0; p < dp; p++) {
+ char *ip1tmp = ip1;
+ char *ip2tmp = ip2;
+ *(npy_bool *)op = NPY_FALSE;
+ for (n = 0; n < dn; n++) {
+ npy_bool val1 = (*(npy_bool *)ip1tmp);
+ npy_bool val2 = (*(npy_bool *)ip2tmp);
+ if (val1 != 0 && val2 != 0) {
+ *(npy_bool *)op = NPY_TRUE;
+ break;
+ }
+ ip2tmp += is2_n;
+ ip1tmp += is1_n;
+ }
+ op += os_p;
+ ip2 += is2_p;
+ }
+ op -= ob_p;
+ ip2 -= ib2_p;
+ ip1 += is1_m;
+ op += os_m;
+ }
+}
+
+NPY_NO_EXPORT void
+OBJECT_matmul_inner_noblas(void *_ip1, npy_intp is1_m, npy_intp is1_n,
+ void *_ip2, npy_intp is2_n, npy_intp is2_p,
+ void *_op, npy_intp os_m, npy_intp os_p,
+ npy_intp dm, npy_intp dn, npy_intp dp)
+{
+ char *ip1 = (char *)_ip1, *ip2 = (char *)_ip2, *op = (char *)_op;
+
+ npy_intp ib1_n = is1_n * dn;
+ npy_intp ib2_n = is2_n * dn;
+ npy_intp ib2_p = is2_p * dp;
+ npy_intp ob_p = os_p * dp;
+ npy_intp m, p, n;
+
+ PyObject *product, *sum_of_products = NULL;
+
+ for (m = 0; m < dm; m++) {
+ for (p = 0; p < dp; p++) {
+ if ( 0 == dn ) {
+ sum_of_products = PyLong_FromLong(0);
+ if (sum_of_products == NULL) {
+ return;
+ }
+ }
+
+ for (n = 0; n < dn; n++) {
+ PyObject *obj1 = *(PyObject**)ip1, *obj2 = *(PyObject**)ip2;
+ if (obj1 == NULL) {
+ obj1 = Py_None;
+ }
+ if (obj2 == NULL) {
+ obj2 = Py_None;
+ }
+
+ product = PyNumber_Multiply(obj1, obj2);
+ if (product == NULL) {
+ Py_XDECREF(sum_of_products);
+ return;
+ }
+
+ if (n == 0) {
+ sum_of_products = product;
+ }
+ else {
+ Py_SETREF(sum_of_products, PyNumber_Add(sum_of_products, product));
+ Py_DECREF(product);
+ if (sum_of_products == NULL) {
+ return;
+ }
+ }
+
+ ip2 += is2_n;
+ ip1 += is1_n;
+ }
+
+ *((PyObject **)op) = sum_of_products;
+ ip1 -= ib1_n;
+ ip2 -= ib2_n;
+ op += os_p;
+ ip2 += is2_p;
+ }
+ op -= ob_p;
+ ip2 -= ib2_p;
+ ip1 += is1_m;
+ op += os_m;
+ }
+}
+
/**begin repeat
* #TYPE = FLOAT, DOUBLE, LONGDOUBLE, HALF,
* CFLOAT, CDOUBLE, CLONGDOUBLE,
* UBYTE, USHORT, UINT, ULONG, ULONGLONG,
* BYTE, SHORT, INT, LONG, LONGLONG,
- * BOOL#
+ * BOOL, OBJECT#
* #typ = npy_float,npy_double,npy_longdouble, npy_half,
* npy_cfloat, npy_cdouble, npy_clongdouble,
* npy_ubyte, npy_ushort, npy_uint, npy_ulong, npy_ulonglong,
* npy_byte, npy_short, npy_int, npy_long, npy_longlong,
- * npy_bool#
- * #IS_COMPLEX = 0, 0, 0, 0, 1, 1, 1, 0*11#
- * #USEBLAS = 1, 1, 0, 0, 1, 1, 0*12#
+ * npy_bool,npy_object#
+ * #IS_COMPLEX = 0, 0, 0, 0, 1, 1, 1, 0*12#
+ * #USEBLAS = 1, 1, 0, 0, 1, 1, 0*13#
*/
@@ -398,5 +501,3 @@ NPY_NO_EXPORT void
}
/**end repeat**/
-
-
diff --git a/numpy/core/src/umath/matmul.h.src b/numpy/core/src/umath/matmul.h.src
index 16be7675b..a664b1b4e 100644
--- a/numpy/core/src/umath/matmul.h.src
+++ b/numpy/core/src/umath/matmul.h.src
@@ -3,7 +3,7 @@
* CFLOAT, CDOUBLE, CLONGDOUBLE,
* UBYTE, USHORT, UINT, ULONG, ULONGLONG,
* BYTE, SHORT, INT, LONG, LONGLONG,
- * BOOL#
+ * BOOL, OBJECT#
**/
NPY_NO_EXPORT void
@TYPE@_matmul(char **args, npy_intp *dimensions, npy_intp *steps, void *NPY_UNUSED(func));
diff --git a/numpy/core/tests/test_einsum.py b/numpy/core/tests/test_einsum.py
index 3be4a8a26..1b5b4cb26 100644
--- a/numpy/core/tests/test_einsum.py
+++ b/numpy/core/tests/test_einsum.py
@@ -5,7 +5,7 @@ import itertools
import numpy as np
from numpy.testing import (
assert_, assert_equal, assert_array_equal, assert_almost_equal,
- assert_raises, suppress_warnings
+ assert_raises, suppress_warnings, assert_raises_regex, assert_allclose
)
# Setup for optimize einsum
@@ -90,6 +90,11 @@ class TestEinsum(object):
optimize=do_opt)
assert_raises(ValueError, np.einsum, "i->i", [[0, 1], [0, 1]],
out=np.arange(4).reshape(2, 2), optimize=do_opt)
+ with assert_raises_regex(ValueError, "'b'"):
+ # gh-11221 - 'c' erroneously appeared in the error message
+ a = np.ones((3, 3, 4, 5, 6))
+ b = np.ones((3, 4, 5))
+ np.einsum('aabcb,abc', a, b)
def test_einsum_views(self):
# pass-through
@@ -695,6 +700,14 @@ class TestEinsum(object):
y2 = x[idx[:, None], idx[:, None], idx, idx]
assert_equal(y1, y2)
+ def test_einsum_failed_on_p9_and_s390x(self):
+ # Issues gh-14692 and gh-12689
+ # Bug with signed vs unsigned char errored on power9 and s390x Linux
+ tensor = np.random.random_sample((10, 10, 10, 10))
+ x = np.einsum('ijij->', tensor)
+ y = tensor.trace(axis1=0, axis2=2).trace()
+ assert_allclose(x, y)
+
def test_einsum_all_contig_non_contig_output(self):
# Issue gh-5907, tests that the all contiguous special case
# actually checks the contiguity of the output
diff --git a/numpy/core/tests/test_multiarray.py b/numpy/core/tests/test_multiarray.py
index 873aa9312..c55556535 100644
--- a/numpy/core/tests/test_multiarray.py
+++ b/numpy/core/tests/test_multiarray.py
@@ -3884,6 +3884,64 @@ class TestPickling(object):
assert_equal(original.dtype, new.dtype)
+ def test_py2_can_load_py3_pickle_with_dtype_field_names(self):
+ # gh-2407 and PR #14275
+ # Py2 should be able to load a pickle that was created in PY3
+ # when the pickle contains a structured dtype with field names
+ import numpy as np
+
+ expected_dtype = np.dtype([('SPOT', np.float64)])
+ expected_data = np.array([(6.0)], dtype=expected_dtype)
+ # Pickled under Python 3.6.5 with protocol=2 by the code below:
+ # pickle.dumps(expected_data, protocol=2)
+ saved_pickle_from_py3 = b'''\
+\x80\x02cnumpy.core.multiarray\n_reconstruct\nq\x00cnumpy\nndarray\n\
+q\x01K\x00\x85q\x02c_codecs\nencode\nq\x03X\x01\x00\x00\x00bq\x04X\
+\x06\x00\x00\x00latin1q\x05\x86q\x06Rq\x07\x87q\x08Rq\t(K\x01K\x01\
+\x85q\ncnumpy\ndtype\nq\x0bX\x02\x00\x00\x00V8q\x0cK\x00K\x01\x87q\
+\rRq\x0e(K\x03X\x01\x00\x00\x00|q\x0fNX\x04\x00\x00\x00SPOTq\x10\
+\x85q\x11}q\x12h\x10h\x0bX\x02\x00\x00\x00f8q\x13K\x00K\x01\x87\
+q\x14Rq\x15(K\x03X\x01\x00\x00\x00<q\x16NNNJ\xff\xff\xff\xffJ\xff\
+\xff\xff\xffK\x00tq\x17bK\x00\x86q\x18sK\x08K\x01K\x10tq\x19b\x89h\
+\x03X\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18@q\x1ah\x05\x86q\
+\x1bRq\x1ctq\x1db.\
+'''
+
+ if sys.version_info[0] < 3: # PY2
+ assert pickle.loads(saved_pickle_from_py3) == expected_data
+ else:
+ # check that the string above is what we claim on PY3
+ py3_pickle_dump = pickle.dumps(expected_data, protocol=2)
+ assert py3_pickle_dump == saved_pickle_from_py3
+
+ def test_py3_can_load_py2_pickle_with_dtype_field_names(self):
+ # gh-2407 and PR #14275
+ # Roundtrip: Py3 should load a pickle that was created in PY2
+ # after loading the saved_pickle (from PY3) in the test named
+ # 'test_py2_can_load_py3_pickle_with_dtype_field_names'
+ import numpy as np
+
+ expected_dtype = np.dtype([('SPOT', np.float64)])
+ expected = np.array([(6.0)], dtype=expected_dtype)
+ # Pickled under Python 2.7.16 with protocol=2 after it was loaded
+ # by test 'test_py2_can_load_py3_pickle_with_dtype_field_names'
+ pickle_from_py2 = b'''\
+\x80\x02cnumpy.core.multiarray\n_reconstruct\nq\x01cnumpy\nndarray\n\
+q\x02K\x00\x85U\x01b\x87Rq\x03(K\x01K\x01\x85cnumpy\ndtype\nq\x04U\x02\
+V8K\x00K\x01\x87Rq\x05(K\x03U\x01|NU\x04SPOTq\x06\x85q\x07}q\x08h\x06h\
+\x04U\x02f8K\x00K\x01\x87Rq\t(K\x03U\x01<NNNJ\xff\xff\xff\xffJ\xff\xff\
+\xff\xffK\x00tbK\x00\x86sK\x08K\x01K\x10tb\x89U\x08\x00\x00\x00\x00\x00\
+\x00\x18@tb.\
+'''
+
+ if sys.version_info[0] >= 3: # PY3
+ assert pickle.loads(pickle_from_py2) == expected
+ else:
+ # check that the string above is what we claim on PY2
+ if sys.platform.startswith('linux') and not IS_PYPY:
+ assert pickle.dumps(expected, protocol=2) == pickle_from_py2
+
+
class TestFancyIndexing(object):
def test_list(self):
@@ -6067,7 +6125,69 @@ class TestMatmul(MatmulCommon):
r3 = np.matmul(args[0].copy(), args[1].copy())
assert_equal(r1, r3)
-
+
+ def test_matmul_object(self):
+ import fractions
+
+ f = np.vectorize(fractions.Fraction)
+ def random_ints():
+ return np.random.randint(1, 1000, size=(10, 3, 3))
+ M1 = f(random_ints(), random_ints())
+ M2 = f(random_ints(), random_ints())
+
+ M3 = self.matmul(M1, M2)
+
+ [N1, N2, N3] = [a.astype(float) for a in [M1, M2, M3]]
+
+ assert_allclose(N3, self.matmul(N1, N2))
+
+ def test_matmul_object_type_scalar(self):
+ from fractions import Fraction as F
+ v = np.array([F(2,3), F(5,7)])
+ res = self.matmul(v, v)
+ assert_(type(res) is F)
+
+ def test_matmul_empty(self):
+ a = np.empty((3, 0), dtype=object)
+ b = np.empty((0, 3), dtype=object)
+ c = np.zeros((3, 3))
+ assert_array_equal(np.matmul(a, b), c)
+
+ def test_matmul_exception_multiply(self):
+ # test that matmul fails if `__mul__` is missing
+ class add_not_multiply():
+ def __add__(self, other):
+ return self
+ a = np.full((3,3), add_not_multiply())
+ with assert_raises(TypeError):
+ b = np.matmul(a, a)
+
+ def test_matmul_exception_add(self):
+ # test that matmul fails if `__add__` is missing
+ class multiply_not_add():
+ def __mul__(self, other):
+ return self
+ a = np.full((3,3), multiply_not_add())
+ with assert_raises(TypeError):
+ b = np.matmul(a, a)
+
+ def test_matmul_bool(self):
+ # gh-14439
+ a = np.array([[1, 0],[1, 1]], dtype=bool)
+ assert np.max(a.view(np.uint8)) == 1
+ b = np.matmul(a, a)
+ # matmul with boolean output should always be 0, 1
+ assert np.max(b.view(np.uint8)) == 1
+
+ np.random.seed(42)
+ d = np.random.randint(2, size=4*5, dtype=np.int8)
+ d = d.reshape(4, 5) > 0
+ out1 = np.matmul(d, d.reshape(5, 4))
+ out2 = np.dot(d, d.reshape(5, 4))
+ assert_equal(out1, out2)
+
+ c = np.matmul(np.zeros((2, 0), dtype=bool), np.zeros(0, dtype=bool))
+ assert not np.any(c)
if sys.version_info[:2] >= (3, 5):
@@ -7725,6 +7845,8 @@ class TestFormat(object):
dst = object.__format__(a, '30')
assert_equal(res, dst)
+from numpy.testing import IS_PYPY
+
class TestCTypes(object):
def test_ctypes_is_available(self):
@@ -7791,7 +7913,29 @@ class TestCTypes(object):
# but when the `ctypes_ptr` object dies, so should `arr`
del ctypes_ptr
+ if IS_PYPY:
+ # Pypy does not recycle arr objects immediately. Trigger gc to
+ # release arr. Cpython uses refcounts. An explicit call to gc
+ # should not be needed here.
+ break_cycles()
+ assert_(arr_ref() is None, "unknowable whether ctypes pointer holds a reference")
+
+ def test_ctypes_as_parameter_holds_reference(self):
+ arr = np.array([None]).copy()
+
+ arr_ref = weakref.ref(arr)
+
+ ctypes_ptr = arr.ctypes._as_parameter_
+
+ # `ctypes_ptr` should hold onto `arr`
+ del arr
break_cycles()
+ assert_(arr_ref() is not None, "ctypes pointer did not hold onto a reference")
+
+ # but when the `ctypes_ptr` object dies, so should `arr`
+ del ctypes_ptr
+ if IS_PYPY:
+ break_cycles()
assert_(arr_ref() is None, "unknowable whether ctypes pointer holds a reference")
diff --git a/numpy/core/tests/test_records.py b/numpy/core/tests/test_records.py
index c059ef510..95ed1fa5b 100644
--- a/numpy/core/tests/test_records.py
+++ b/numpy/core/tests/test_records.py
@@ -437,6 +437,53 @@ class TestRecord(object):
arr = np.zeros((3,), dtype=[('x', int), ('y', int)])
assert_raises(ValueError, lambda: arr[['nofield']])
+ @pytest.mark.parametrize('nfields', [0, 1, 2])
+ def test_assign_dtype_attribute(self, nfields):
+ dt = np.dtype([('a', np.uint8), ('b', np.uint8), ('c', np.uint8)][:nfields])
+ data = np.zeros(3, dt).view(np.recarray)
+
+ # the original and resulting dtypes differ on whether they are records
+ assert data.dtype.type == np.record
+ assert dt.type != np.record
+
+ # ensure that the dtype remains a record even when assigned
+ data.dtype = dt
+ assert data.dtype.type == np.record
+
+ @pytest.mark.parametrize('nfields', [0, 1, 2])
+ def test_nested_fields_are_records(self, nfields):
+ """ Test that nested structured types are treated as records too """
+ dt = np.dtype([('a', np.uint8), ('b', np.uint8), ('c', np.uint8)][:nfields])
+ dt_outer = np.dtype([('inner', dt)])
+
+ data = np.zeros(3, dt_outer).view(np.recarray)
+ assert isinstance(data, np.recarray)
+ assert isinstance(data['inner'], np.recarray)
+
+ data0 = data[0]
+ assert isinstance(data0, np.record)
+ assert isinstance(data0['inner'], np.record)
+
+ def test_nested_dtype_padding(self):
+ """ test that trailing padding is preserved """
+ # construct a dtype with padding at the end
+ dt = np.dtype([('a', np.uint8), ('b', np.uint8), ('c', np.uint8)])
+ dt_padded_end = np.dtype(dict(
+ names=['a', 'b'],
+ formats=[np.uint8, np.uint8],
+ offsets=[0, 1],
+ itemsize=3
+ )) # dt[['a', 'b']], but that's not supported in 1.16
+ assert dt_padded_end.itemsize == dt.itemsize
+
+ dt_outer = np.dtype([('inner', dt_padded_end)])
+
+ data = np.zeros(3, dt_outer).view(np.recarray)
+ assert_equal(data['inner'].dtype, dt_padded_end)
+
+ data0 = data[0]
+ assert_equal(data0['inner'].dtype, dt_padded_end)
+
def test_find_duplicate():
l1 = [1, 2, 3, 4, 5, 6]
diff --git a/numpy/core/tests/test_regression.py b/numpy/core/tests/test_regression.py
index 3b9ca7246..8d84b2c12 100644
--- a/numpy/core/tests/test_regression.py
+++ b/numpy/core/tests/test_regression.py
@@ -469,7 +469,7 @@ class TestRegression(object):
result = pickle.loads(data, encoding='bytes')
assert_equal(result, original)
- if isinstance(result, np.ndarray) and result.dtype.names:
+ if isinstance(result, np.ndarray) and result.dtype.names is not None:
for name in result.dtype.names:
assert_(isinstance(name, str))
@@ -2455,3 +2455,33 @@ class TestRegression(object):
__array_interface__ = {}
np.array([T()])
+
+ def test_2d__array__shape(self):
+ class T(object):
+ def __array__(self):
+ return np.ndarray(shape=(0,0))
+
+ # Make sure __array__ is used instead of Sequence methods.
+ def __iter__(self):
+ return iter([])
+
+ def __getitem__(self, idx):
+ raise AssertionError("__getitem__ was called")
+
+ def __len__(self):
+ return 0
+
+
+ t = T()
+ #gh-13659, would raise in broadcasting [x=t for x in result]
+ np.array([t])
+
+ @pytest.mark.skipif(sys.maxsize < 2 ** 31 + 1, reason='overflows 32-bit python')
+ @pytest.mark.skipif(sys.platform == 'win32' and sys.version_info[:2] < (3, 8),
+ reason='overflows on windows, fixed in bpo-16865')
+ def test_to_ctypes(self):
+ #gh-14214
+ arr = np.zeros((2 ** 31 + 1,), 'b')
+ assert arr.size * arr.itemsize > 2 ** 31
+ c_arr = np.ctypeslib.as_ctypes(arr)
+ assert_equal(c_arr._length_, arr.size)
diff --git a/numpy/ctypeslib.py b/numpy/ctypeslib.py
index 535ea768b..8f4715ffd 100644
--- a/numpy/ctypeslib.py
+++ b/numpy/ctypeslib.py
@@ -92,11 +92,11 @@ else:
# Adapted from Albert Strasheim
def load_library(libname, loader_path):
"""
- It is possible to load a library using
- >>> lib = ctypes.cdll[<full_path_name>]
+ It is possible to load a library using
+ >>> lib = ctypes.cdll[<full_path_name>] # doctest: +SKIP
But there are cross-platform considerations, such as library file extensions,
- plus the fact Windows will just load the first library it finds with that name.
+ plus the fact Windows will just load the first library it finds with that name.
NumPy supplies the load_library function as a convenience.
Parameters
@@ -110,12 +110,12 @@ else:
Returns
-------
ctypes.cdll[libpath] : library object
- A ctypes library object
+ A ctypes library object
Raises
------
OSError
- If there is no library with the expected extension, or the
+ If there is no library with the expected extension, or the
library is defective and cannot be loaded.
"""
if ctypes.__version__ < '1.0.1':
@@ -321,7 +321,7 @@ def ndpointer(dtype=None, ndim=None, shape=None, flags=None):
# produce a name for the new type
if dtype is None:
name = 'any'
- elif dtype.names:
+ elif dtype.names is not None:
name = str(id(dtype))
else:
name = dtype.str
@@ -535,7 +535,10 @@ if ctypes is not None:
if readonly:
raise TypeError("readonly arrays unsupported")
- dtype = _dtype((ai["typestr"], ai["shape"]))
- result = as_ctypes_type(dtype).from_address(addr)
+ # can't use `_dtype((ai["typestr"], ai["shape"]))` here, as it overflows
+ # dtype.itemsize (gh-14214)
+ ctype_scalar = as_ctypes_type(ai["typestr"])
+ result_type = _ctype_ndarray(ctype_scalar, ai["shape"])
+ result = result_type.from_address(addr)
result.__keep = obj
return result
diff --git a/numpy/lib/_iotools.py b/numpy/lib/_iotools.py
index 8a042f190..9713ff8b1 100644
--- a/numpy/lib/_iotools.py
+++ b/numpy/lib/_iotools.py
@@ -121,7 +121,7 @@ def has_nested_fields(ndtype):
"""
for name in ndtype.names or ():
- if ndtype[name].names:
+ if ndtype[name].names is not None:
return True
return False
@@ -925,28 +925,27 @@ def easy_dtype(ndtype, names=None, defaultfmt="f%i", **validationargs):
names = validate(names, nbfields=nbfields, defaultfmt=defaultfmt)
ndtype = np.dtype(dict(formats=ndtype, names=names))
else:
- nbtypes = len(ndtype)
# Explicit names
if names is not None:
validate = NameValidator(**validationargs)
if isinstance(names, basestring):
names = names.split(",")
# Simple dtype: repeat to match the nb of names
- if nbtypes == 0:
+ if ndtype.names is None:
formats = tuple([ndtype.type] * len(names))
names = validate(names, defaultfmt=defaultfmt)
ndtype = np.dtype(list(zip(names, formats)))
# Structured dtype: just validate the names as needed
else:
- ndtype.names = validate(names, nbfields=nbtypes,
+ ndtype.names = validate(names, nbfields=len(ndtype.names),
defaultfmt=defaultfmt)
# No implicit names
- elif (nbtypes > 0):
+ elif ndtype.names is not None:
validate = NameValidator(**validationargs)
# Default initial names : should we change the format ?
- if ((ndtype.names == tuple("f%i" % i for i in range(nbtypes))) and
+ if ((ndtype.names == tuple("f%i" % i for i in range(len(ndtype.names)))) and
(defaultfmt != "f%i")):
- ndtype.names = validate([''] * nbtypes, defaultfmt=defaultfmt)
+ ndtype.names = validate([''] * len(ndtype.names), defaultfmt=defaultfmt)
# Explicit initial names : just validate
else:
ndtype.names = validate(ndtype.names, defaultfmt=defaultfmt)
diff --git a/numpy/lib/arraypad.py b/numpy/lib/arraypad.py
index 4f6371058..8650685a7 100644
--- a/numpy/lib/arraypad.py
+++ b/numpy/lib/arraypad.py
@@ -244,27 +244,19 @@ def _prepend_ramp(arr, pad_amt, end, axis=-1):
if pad_amt == 0:
return arr
- # Generate shape for final concatenated array
- padshape = tuple(x if i != axis else pad_amt
- for (i, x) in enumerate(arr.shape))
-
- # Generate an n-dimensional array incrementing along `axis`
- ramp_arr = _arange_ndarray(arr, padshape, axis,
- reverse=True).astype(np.float64)
-
- # Appropriate slicing to extract n-dimensional edge along `axis`
+ # Slice a chunk from the edge to calculate stats on and extract edge
edge_slice = _slice_first(arr.shape, 1, axis=axis)
+ edge = arr[edge_slice]
- # Extract edge, and extend along `axis`
- edge_pad = arr[edge_slice].repeat(pad_amt, axis)
-
- # Linear ramp
- slope = (end - edge_pad) / float(pad_amt)
- ramp_arr = ramp_arr * slope
- ramp_arr += edge_pad
- _round_ifneeded(ramp_arr, arr.dtype)
+ ramp_arr = np.linspace(
+ start=end,
+ stop=edge.squeeze(axis),
+ num=pad_amt,
+ endpoint=False,
+ dtype=arr.dtype,
+ axis=axis
+ )
- # Ramp values will most likely be float, cast them to the same type as arr
return _do_prepend(arr, ramp_arr, axis)
@@ -294,27 +286,23 @@ def _append_ramp(arr, pad_amt, end, axis=-1):
if pad_amt == 0:
return arr
- # Generate shape for final concatenated array
- padshape = tuple(x if i != axis else pad_amt
- for (i, x) in enumerate(arr.shape))
-
- # Generate an n-dimensional array incrementing along `axis`
- ramp_arr = _arange_ndarray(arr, padshape, axis,
- reverse=False).astype(np.float64)
-
- # Slice a chunk from the edge to calculate stats on
+ # Slice a chunk from the edge to calculate stats on and extract edge
edge_slice = _slice_last(arr.shape, 1, axis=axis)
+ edge = arr[edge_slice]
+
+ ramp_arr = np.linspace(
+ start=end,
+ stop=edge.squeeze(axis),
+ num=pad_amt,
+ endpoint=False,
+ dtype=arr.dtype,
+ axis=axis
+ )
+ # Reverse linear space in appropriate dimension
+ ramp_arr = ramp_arr[
+ _slice_at_axis(ramp_arr.shape, slice(None, None, -1), axis)
+ ]
- # Extract edge, and extend along `axis`
- edge_pad = arr[edge_slice].repeat(pad_amt, axis)
-
- # Linear ramp
- slope = (end - edge_pad) / float(pad_amt)
- ramp_arr = ramp_arr * slope
- ramp_arr += edge_pad
- _round_ifneeded(ramp_arr, arr.dtype)
-
- # Ramp values will most likely be float, cast them to the same type as arr
return _do_append(arr, ramp_arr, axis)
diff --git a/numpy/lib/histograms.py b/numpy/lib/histograms.py
index d69e04e80..bed1f46b0 100644
--- a/numpy/lib/histograms.py
+++ b/numpy/lib/histograms.py
@@ -21,6 +21,16 @@ array_function_dispatch = functools.partial(
_range = range
+def _ptp(x):
+ """Peak-to-peak value of x.
+
+ This implementation avoids the problem of signed integer arrays having a
+ peak-to-peak value that cannot be represented with the array's data type.
+ This function returns an unsigned value for signed integer arrays.
+ """
+ return _unsigned_subtract(x.max(), x.min())
+
+
def _hist_bin_sqrt(x, range):
"""
Square root histogram bin estimator.
@@ -39,7 +49,7 @@ def _hist_bin_sqrt(x, range):
h : An estimate of the optimal bin width for the given data.
"""
del range # unused
- return x.ptp() / np.sqrt(x.size)
+ return _ptp(x) / np.sqrt(x.size)
def _hist_bin_sturges(x, range):
@@ -62,7 +72,7 @@ def _hist_bin_sturges(x, range):
h : An estimate of the optimal bin width for the given data.
"""
del range # unused
- return x.ptp() / (np.log2(x.size) + 1.0)
+ return _ptp(x) / (np.log2(x.size) + 1.0)
def _hist_bin_rice(x, range):
@@ -86,7 +96,7 @@ def _hist_bin_rice(x, range):
h : An estimate of the optimal bin width for the given data.
"""
del range # unused
- return x.ptp() / (2.0 * x.size ** (1.0 / 3))
+ return _ptp(x) / (2.0 * x.size ** (1.0 / 3))
def _hist_bin_scott(x, range):
@@ -136,7 +146,7 @@ def _hist_bin_stone(x, range):
"""
n = x.size
- ptp_x = np.ptp(x)
+ ptp_x = _ptp(x)
if n <= 1 or ptp_x == 0:
return 0
@@ -182,7 +192,7 @@ def _hist_bin_doane(x, range):
np.true_divide(temp, sigma, temp)
np.power(temp, 3, temp)
g1 = np.mean(temp)
- return x.ptp() / (1.0 + np.log2(x.size) +
+ return _ptp(x) / (1.0 + np.log2(x.size) +
np.log2(1.0 + np.absolute(g1) / sg1))
return 0.0
diff --git a/numpy/lib/npyio.py b/numpy/lib/npyio.py
index 038d6a496..fe1e65d5b 100644
--- a/numpy/lib/npyio.py
+++ b/numpy/lib/npyio.py
@@ -2154,7 +2154,7 @@ def genfromtxt(fname, dtype=float, comments='#', delimiter=None,
outputmask = np.array(masks, dtype=mdtype)
else:
# Overwrite the initial dtype names if needed
- if names and dtype.names:
+ if names and dtype.names is not None:
dtype.names = names
# Case 1. We have a structured type
if len(dtype_flat) > 1:
@@ -2204,7 +2204,7 @@ def genfromtxt(fname, dtype=float, comments='#', delimiter=None,
#
output = np.array(data, dtype)
if usemask:
- if dtype.names:
+ if dtype.names is not None:
mdtype = [(_, bool) for _ in dtype.names]
else:
mdtype = bool
diff --git a/numpy/lib/recfunctions.py b/numpy/lib/recfunctions.py
index c17c39c8a..40060b41a 100644
--- a/numpy/lib/recfunctions.py
+++ b/numpy/lib/recfunctions.py
@@ -72,7 +72,7 @@ def recursive_fill_fields(input, output):
current = input[field]
except ValueError:
continue
- if current.dtype.names:
+ if current.dtype.names is not None:
recursive_fill_fields(current, output[field])
else:
output[field][:len(current)] = current
@@ -139,11 +139,11 @@ def get_names(adtype):
names = adtype.names
for name in names:
current = adtype[name]
- if current.names:
+ if current.names is not None:
listnames.append((name, tuple(get_names(current))))
else:
listnames.append(name)
- return tuple(listnames) or None
+ return tuple(listnames)
def get_names_flat(adtype):
@@ -176,9 +176,9 @@ def get_names_flat(adtype):
for name in names:
listnames.append(name)
current = adtype[name]
- if current.names:
+ if current.names is not None:
listnames.extend(get_names_flat(current))
- return tuple(listnames) or None
+ return tuple(listnames)
def flatten_descr(ndtype):
@@ -215,8 +215,8 @@ def _zip_dtype(seqarrays, flatten=False):
else:
for a in seqarrays:
current = a.dtype
- if current.names and len(current.names) <= 1:
- # special case - dtypes of 0 or 1 field are flattened
+ if current.names is not None and len(current.names) == 1:
+ # special case - dtypes of 1 field are flattened
newdtype.extend(_get_fieldspec(current))
else:
newdtype.append(('', current))
@@ -268,7 +268,7 @@ def get_fieldstructure(adtype, lastname=None, parents=None,):
names = adtype.names
for name in names:
current = adtype[name]
- if current.names:
+ if current.names is not None:
if lastname:
parents[name] = [lastname, ]
else:
@@ -281,7 +281,7 @@ def get_fieldstructure(adtype, lastname=None, parents=None,):
elif lastname:
lastparent = [lastname, ]
parents[name] = lastparent or []
- return parents or None
+ return parents
def _izip_fields_flat(iterable):
@@ -435,7 +435,7 @@ def merge_arrays(seqarrays, fill_value=-1, flatten=False,
if isinstance(seqarrays, (ndarray, np.void)):
seqdtype = seqarrays.dtype
# Make sure we have named fields
- if not seqdtype.names:
+ if seqdtype.names is None:
seqdtype = np.dtype([('', seqdtype)])
if not flatten or _zip_dtype((seqarrays,), flatten=True) == seqdtype:
# Minimal processing needed: just make sure everythng's a-ok
@@ -653,7 +653,7 @@ def rename_fields(base, namemapper):
for name in ndtype.names:
newname = namemapper.get(name, name)
current = ndtype[name]
- if current.names:
+ if current.names is not None:
newdtype.append(
(newname, _recursive_rename_fields(current, namemapper))
)
diff --git a/numpy/lib/tests/test_arraypad.py b/numpy/lib/tests/test_arraypad.py
index 20f6e4a1b..6620db8df 100644
--- a/numpy/lib/tests/test_arraypad.py
+++ b/numpy/lib/tests/test_arraypad.py
@@ -679,6 +679,30 @@ class TestLinearRamp(object):
])
assert_equal(actual, expected)
+ @pytest.mark.parametrize("dtype", (
+ np.sctypes["uint"]
+ + np.sctypes["int"]
+ + np.sctypes["float"]
+ + np.sctypes["complex"]
+ ))
+ def test_negative_difference(self, dtype):
+ """
+ Check correct behavior of unsigned dtypes if there is a negative
+ difference between the edge to pad and `end_values`. Check both cases
+ to be independent of implementation. Test behavior for all other dtypes
+ in case dtype casting interferes with complex dtypes. See gh-14191.
+ """
+ x = np.array([3], dtype=dtype)
+ result = np.pad(x, 3, mode="linear_ramp", end_values=0)
+ expected = np.array([0, 1, 2, 3, 2, 1, 0], dtype=dtype)
+ assert_equal(result, expected)
+
+ x = np.array([0], dtype=dtype)
+ result = np.pad(x, 3, mode="linear_ramp", end_values=3)
+ expected = np.array([3, 2, 1, 0, 1, 2, 3], dtype=dtype)
+ assert_equal(result, expected)
+
+
class TestReflect(object):
def test_check_simple(self):
diff --git a/numpy/lib/tests/test_histograms.py b/numpy/lib/tests/test_histograms.py
index c96b01d42..594c8e782 100644
--- a/numpy/lib/tests/test_histograms.py
+++ b/numpy/lib/tests/test_histograms.py
@@ -8,6 +8,7 @@ from numpy.testing import (
assert_array_almost_equal, assert_raises, assert_allclose,
assert_array_max_ulp, assert_raises_regex, suppress_warnings,
)
+import pytest
class TestHistogram(object):
@@ -595,6 +596,16 @@ class TestHistogramOptimBinNums(object):
msg += " with datasize of {0}".format(testlen)
assert_equal(len(a), numbins, err_msg=msg)
+ @pytest.mark.parametrize("bins", ['auto', 'fd', 'doane', 'scott',
+ 'stone', 'rice', 'sturges'])
+ def test_signed_integer_data(self, bins):
+ # Regression test for gh-14379.
+ a = np.array([-2, 0, 127], dtype=np.int8)
+ hist, edges = np.histogram(a, bins=bins)
+ hist32, edges32 = np.histogram(a.astype(np.int32), bins=bins)
+ assert_array_equal(hist, hist32)
+ assert_array_equal(edges, edges32)
+
def test_simple_weighted(self):
"""
Check that weighted data raises a TypeError
diff --git a/numpy/lib/tests/test_io.py b/numpy/lib/tests/test_io.py
index b8b786816..899e49031 100644
--- a/numpy/lib/tests/test_io.py
+++ b/numpy/lib/tests/test_io.py
@@ -1527,6 +1527,13 @@ M 33 21.99
test = np.genfromtxt(TextIO(data), delimiter=";",
dtype=ndtype, converters=converters)
+ # nested but empty fields also aren't supported
+ ndtype = [('idx', int), ('code', object), ('nest', [])]
+ with assert_raises_regex(NotImplementedError,
+ 'Nested fields.* not supported.*'):
+ test = np.genfromtxt(TextIO(data), delimiter=";",
+ dtype=ndtype, converters=converters)
+
def test_userconverters_with_explicit_dtype(self):
# Test user_converters w/ explicit (standard) dtype
data = TextIO('skip,skip,2001-01-01,1.0,skip')
diff --git a/numpy/lib/tests/test_recfunctions.py b/numpy/lib/tests/test_recfunctions.py
index dc4afe077..0c839d486 100644
--- a/numpy/lib/tests/test_recfunctions.py
+++ b/numpy/lib/tests/test_recfunctions.py
@@ -115,6 +115,14 @@ class TestRecFunctions(object):
test = get_names(ndtype)
assert_equal(test, ('a', ('b', ('ba', 'bb'))))
+ ndtype = np.dtype([('a', int), ('b', [])])
+ test = get_names(ndtype)
+ assert_equal(test, ('a', ('b', ())))
+
+ ndtype = np.dtype([])
+ test = get_names(ndtype)
+ assert_equal(test, ())
+
def test_get_names_flat(self):
# Test get_names_flat
ndtype = np.dtype([('A', '|S3'), ('B', float)])
@@ -125,6 +133,14 @@ class TestRecFunctions(object):
test = get_names_flat(ndtype)
assert_equal(test, ('a', 'b', 'ba', 'bb'))
+ ndtype = np.dtype([('a', int), ('b', [])])
+ test = get_names_flat(ndtype)
+ assert_equal(test, ('a', 'b'))
+
+ ndtype = np.dtype([])
+ test = get_names_flat(ndtype)
+ assert_equal(test, ())
+
def test_get_fieldstructure(self):
# Test get_fieldstructure
@@ -147,6 +163,11 @@ class TestRecFunctions(object):
'BBA': ['B', 'BB'], 'BBB': ['B', 'BB']}
assert_equal(test, control)
+ # 0 fields
+ ndtype = np.dtype([])
+ test = get_fieldstructure(ndtype)
+ assert_equal(test, {})
+
def test_find_duplicates(self):
# Test find_duplicates
a = ma.array([(2, (2., 'B')), (1, (2., 'B')), (2, (2., 'B')),
diff --git a/numpy/ma/mrecords.py b/numpy/ma/mrecords.py
index daf2f8770..b16e1670a 100644
--- a/numpy/ma/mrecords.py
+++ b/numpy/ma/mrecords.py
@@ -211,7 +211,7 @@ class MaskedRecords(MaskedArray, object):
_localdict = ndarray.__getattribute__(self, '__dict__')
_data = ndarray.view(self, _localdict['_baseclass'])
obj = _data.getfield(*res)
- if obj.dtype.fields:
+ if obj.dtype.names is not None:
raise NotImplementedError("MaskedRecords is currently limited to"
"simple records.")
# Get some special attributes
diff --git a/numpy/testing/_private/utils.py b/numpy/testing/_private/utils.py
index 5eec368fd..c098e9181 100644
--- a/numpy/testing/_private/utils.py
+++ b/numpy/testing/_private/utils.py
@@ -20,7 +20,7 @@ from warnings import WarningMessage
import pprint
from numpy.core import(
- float32, empty, arange, array_repr, ndarray, isnat, array)
+ intp, float32, empty, arange, array_repr, ndarray, isnat, array)
from numpy.lib.utils import deprecate
if sys.version_info[0] >= 3:
@@ -301,6 +301,15 @@ def assert_equal(actual, desired, err_msg='', verbose=True):
check that all elements of these objects are equal. An exception is raised
at the first conflicting values.
+ When one of `actual` and `desired` is a scalar and the other is array_like,
+ the function checks that each element of the array_like object is equal to
+ the scalar.
+
+ This function handles NaN comparisons as if NaN was a "normal" number.
+ That is, no assertion is raised if both objects have NaNs in the same
+ positions. This is in contrast to the IEEE standard on NaNs, which says
+ that NaN compared to anything must return False.
+
Parameters
----------
actual : array_like
@@ -328,6 +337,11 @@ def assert_equal(actual, desired, err_msg='', verbose=True):
ACTUAL: 5
DESIRED: 6
+ The following comparison does not raise an exception. There are NaNs
+ in the inputs, but they are in the same positions.
+
+ >>> np.testing.assert_equal(np.array([1.0, 2.0, np.nan]), [1, 2, np.nan])
+
"""
__tracebackhide__ = True # Hide traceback for py.test
if isinstance(desired, dict):
@@ -381,21 +395,6 @@ def assert_equal(actual, desired, err_msg='', verbose=True):
if isscalar(desired) != isscalar(actual):
raise AssertionError(msg)
- # Inf/nan/negative zero handling
- try:
- isdesnan = gisnan(desired)
- isactnan = gisnan(actual)
- if isdesnan and isactnan:
- return # both nan, so equal
-
- # handle signed zero specially for floats
- if desired == 0 and actual == 0:
- if not signbit(desired) == signbit(actual):
- raise AssertionError(msg)
-
- except (TypeError, ValueError, NotImplementedError):
- pass
-
try:
isdesnat = isnat(desired)
isactnat = isnat(actual)
@@ -411,6 +410,33 @@ def assert_equal(actual, desired, err_msg='', verbose=True):
except (TypeError, ValueError, NotImplementedError):
pass
+ # Inf/nan/negative zero handling
+ try:
+ isdesnan = gisnan(desired)
+ isactnan = gisnan(actual)
+ if isdesnan and isactnan:
+ return # both nan, so equal
+
+ # handle signed zero specially for floats
+ array_actual = array(actual)
+ array_desired = array(desired)
+ if (array_actual.dtype.char in 'Mm' or
+ array_desired.dtype.char in 'Mm'):
+ # version 1.18
+ # until this version, gisnan failed for datetime64 and timedelta64.
+ # Now it succeeds but comparison to scalar with a different type
+ # emits a DeprecationWarning.
+ # Avoid that by skipping the next check
+ raise NotImplementedError('cannot compare to a scalar '
+ 'with a different type')
+
+ if desired == 0 and actual == 0:
+ if not signbit(desired) == signbit(actual):
+ raise AssertionError(msg)
+
+ except (TypeError, ValueError, NotImplementedError):
+ pass
+
try:
# Explicitly use __eq__ for comparison, gh-2552
if not (desired == actual):
@@ -693,12 +719,12 @@ def assert_array_compare(comparison, x, y, err_msg='', verbose=True,
header='', precision=6, equal_nan=True,
equal_inf=True):
__tracebackhide__ = True # Hide traceback for py.test
- from numpy.core import array, array2string, isnan, inf, bool_, errstate
+ from numpy.core import array, array2string, isnan, inf, bool_, errstate, all, max, object_
x = array(x, copy=False, subok=True)
y = array(y, copy=False, subok=True)
- # original array for output formating
+ # original array for output formatting
ox, oy = x, y
def isnumber(x):
@@ -723,7 +749,7 @@ def assert_array_compare(comparison, x, y, err_msg='', verbose=True,
# (2) __eq__ on some ndarray subclasses returns Python booleans
# instead of element-wise comparisons, so we cast to bool_() and
# use isinstance(..., bool) checks
- # (3) subclasses with bare-bones __array_function__ implemenations may
+ # (3) subclasses with bare-bones __array_function__ implementations may
# not implement np.all(), so favor using the .all() method
# We are not committed to supporting such subclasses, but it's nice to
# support them if possible.
@@ -784,26 +810,29 @@ def assert_array_compare(comparison, x, y, err_msg='', verbose=True,
if isinstance(val, bool):
cond = val
- reduced = [0]
+ reduced = array([val])
else:
reduced = val.ravel()
cond = reduced.all()
- reduced = reduced.tolist()
# The below comparison is a hack to ensure that fully masked
# results, for which val.ravel().all() returns np.ma.masked,
# do not trigger a failure (np.ma.masked != True evaluates as
# np.ma.masked, which is falsy).
if cond != True:
- mismatch = 100.0 * reduced.count(0) / ox.size
- remarks = ['Mismatch: {:.3g}%'.format(mismatch)]
+ n_mismatch = reduced.size - reduced.sum(dtype=intp)
+ n_elements = flagged.size if flagged.ndim != 0 else reduced.size
+ percent_mismatch = 100 * n_mismatch / n_elements
+ remarks = [
+ 'Mismatched elements: {} / {} ({:.3g}%)'.format(
+ n_mismatch, n_elements, percent_mismatch)]
with errstate(invalid='ignore', divide='ignore'):
# ignore errors for non-numeric types
try:
error = abs(x - y)
- max_abs_error = error.max()
- if error.dtype == 'object':
+ max_abs_error = max(error)
+ if getattr(error, 'dtype', object_) == object_:
remarks.append('Max absolute difference: '
+ str(max_abs_error))
else:
@@ -812,8 +841,13 @@ def assert_array_compare(comparison, x, y, err_msg='', verbose=True,
# note: this definition of relative error matches that one
# used by assert_allclose (found in np.isclose)
- max_rel_error = (error / abs(y)).max()
- if error.dtype == 'object':
+ # Filter values where the divisor would be zero
+ nonzero = bool_(y != 0)
+ if all(~nonzero):
+ max_rel_error = array(inf)
+ else:
+ max_rel_error = max(error[nonzero] / abs(y[nonzero]))
+ if getattr(error, 'dtype', object_) == object_:
remarks.append('Max relative difference: '
+ str(max_rel_error))
else:
@@ -842,10 +876,11 @@ def assert_array_equal(x, y, err_msg='', verbose=True):
Raises an AssertionError if two array_like objects are not equal.
Given two array_like objects, check that the shape is equal and all
- elements of these objects are equal. An exception is raised at
- shape mismatch or conflicting values. In contrast to the standard usage
- in numpy, NaNs are compared like numbers, no assertion is raised if
- both objects have NaNs in the same positions.
+ elements of these objects are equal (but see the Notes for the special
+ handling of a scalar). An exception is raised at shape mismatch or
+ conflicting values. In contrast to the standard usage in numpy, NaNs
+ are compared like numbers, no assertion is raised if both objects have
+ NaNs in the same positions.
The usual caution for verifying equality with floating point numbers is
advised.
@@ -872,6 +907,12 @@ def assert_array_equal(x, y, err_msg='', verbose=True):
relative and/or absolute precision.
assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal
+ Notes
+ -----
+ When one of `x` and `y` is a scalar and the other is array_like, the
+ function checks that each element of the array_like object is equal to
+ the scalar.
+
Examples
--------
The first assert does not raise an exception:
@@ -879,7 +920,7 @@ def assert_array_equal(x, y, err_msg='', verbose=True):
>>> np.testing.assert_array_equal([1.0,2.33333,np.nan],
... [np.exp(0),2.33333, np.nan])
- Assert fails with numerical inprecision with floats:
+ Assert fails with numerical imprecision with floats:
>>> np.testing.assert_array_equal([1.0,np.pi,np.nan],
... [1, np.sqrt(np.pi)**2, np.nan])
@@ -900,6 +941,12 @@ def assert_array_equal(x, y, err_msg='', verbose=True):
... [1, np.sqrt(np.pi)**2, np.nan],
... rtol=1e-10, atol=0)
+ As mentioned in the Notes section, `assert_array_equal` has special
+ handling for scalars. Here the test checks that each value in `x` is 3:
+
+ >>> x = np.full((2, 5), fill_value=3)
+ >>> np.testing.assert_array_equal(x, 3)
+
"""
__tracebackhide__ = True # Hide traceback for py.test
assert_array_compare(operator.__eq__, x, y, err_msg=err_msg,
@@ -1138,7 +1185,7 @@ def assert_string_equal(actual, desired):
if desired == actual:
return
- diff = list(difflib.Differ().compare(actual.splitlines(1), desired.splitlines(1)))
+ diff = list(difflib.Differ().compare(actual.splitlines(True), desired.splitlines(True)))
diff_list = []
while diff:
d1 = diff.pop(0)
@@ -1451,9 +1498,9 @@ def assert_allclose(actual, desired, rtol=1e-7, atol=0, equal_nan=True,
Raises an AssertionError if two objects are not equal up to desired
tolerance.
- The test is equivalent to ``allclose(actual, desired, rtol, atol)``.
- It compares the difference between `actual` and `desired` to
- ``atol + rtol * abs(desired)``.
+ The test is equivalent to ``allclose(actual, desired, rtol, atol)`` (note
+ that ``allclose`` has different default values). It compares the difference
+ between `actual` and `desired` to ``atol + rtol * abs(desired)``.
.. versionadded:: 1.5.0
diff --git a/numpy/testing/tests/test_utils.py b/numpy/testing/tests/test_utils.py
index 503853001..7f6cbb8fe 100644
--- a/numpy/testing/tests/test_utils.py
+++ b/numpy/testing/tests/test_utils.py
@@ -17,6 +17,7 @@ from numpy.testing import (
clear_and_catch_warnings, suppress_warnings, assert_string_equal, assert_,
tempdir, temppath, assert_no_gc_cycles, HAS_REFCOUNT
)
+from numpy.core.overrides import ENABLE_ARRAY_FUNCTION
class _GenericTest(object):
@@ -89,6 +90,21 @@ class TestArrayEqual(_GenericTest):
for t in ['S1', 'U1']:
foo(t)
+ def test_0_ndim_array(self):
+ x = np.array(473963742225900817127911193656584771)
+ y = np.array(18535119325151578301457182298393896)
+ assert_raises(AssertionError, self._assert_func, x, y)
+
+ y = x
+ self._assert_func(x, y)
+
+ x = np.array(43)
+ y = np.array(10)
+ assert_raises(AssertionError, self._assert_func, x, y)
+
+ y = x
+ self._assert_func(x, y)
+
def test_generic_rank3(self):
"""Test rank 3 array for all dtypes."""
def foo(t):
@@ -179,6 +195,8 @@ class TestArrayEqual(_GenericTest):
self._test_not_equal(a, b)
self._test_not_equal(b, a)
+ @pytest.mark.skipif(
+ not ENABLE_ARRAY_FUNCTION, reason='requires __array_function__')
def test_subclass_that_does_not_implement_npall(self):
class MyArray(np.ndarray):
def __array_function__(self, *args, **kwargs):
@@ -186,9 +204,8 @@ class TestArrayEqual(_GenericTest):
a = np.array([1., 2.]).view(MyArray)
b = np.array([2., 3.]).view(MyArray)
- if np.core.overrides.ENABLE_ARRAY_FUNCTION:
- with assert_raises(TypeError):
- np.all(a)
+ with assert_raises(TypeError):
+ np.all(a)
self._test_equal(a, a)
self._test_not_equal(a, b)
self._test_not_equal(b, a)
@@ -518,7 +535,7 @@ class TestAlmostEqual(_GenericTest):
with pytest.raises(AssertionError) as exc_info:
self._assert_func(x, y, decimal=12)
msgs = str(exc_info.value).split('\n')
- assert_equal(msgs[3], 'Mismatch: 100%')
+ assert_equal(msgs[3], 'Mismatched elements: 3 / 3 (100%)')
assert_equal(msgs[4], 'Max absolute difference: 1.e-05')
assert_equal(msgs[5], 'Max relative difference: 3.33328889e-06')
assert_equal(
@@ -534,7 +551,7 @@ class TestAlmostEqual(_GenericTest):
with pytest.raises(AssertionError) as exc_info:
self._assert_func(x, y)
msgs = str(exc_info.value).split('\n')
- assert_equal(msgs[3], 'Mismatch: 33.3%')
+ assert_equal(msgs[3], 'Mismatched elements: 1 / 3 (33.3%)')
assert_equal(msgs[4], 'Max absolute difference: 1.e-05')
assert_equal(msgs[5], 'Max relative difference: 3.33328889e-06')
assert_equal(msgs[6], ' x: array([1. , 2. , 3.00003])')
@@ -546,7 +563,7 @@ class TestAlmostEqual(_GenericTest):
with pytest.raises(AssertionError) as exc_info:
self._assert_func(x, y)
msgs = str(exc_info.value).split('\n')
- assert_equal(msgs[3], 'Mismatch: 50%')
+ assert_equal(msgs[3], 'Mismatched elements: 1 / 2 (50%)')
assert_equal(msgs[4], 'Max absolute difference: 1.')
assert_equal(msgs[5], 'Max relative difference: 1.')
assert_equal(msgs[6], ' x: array([inf, 0.])')
@@ -558,10 +575,30 @@ class TestAlmostEqual(_GenericTest):
with pytest.raises(AssertionError) as exc_info:
self._assert_func(x, y)
msgs = str(exc_info.value).split('\n')
- assert_equal(msgs[3], 'Mismatch: 100%')
+ assert_equal(msgs[3], 'Mismatched elements: 2 / 2 (100%)')
assert_equal(msgs[4], 'Max absolute difference: 2')
assert_equal(msgs[5], 'Max relative difference: inf')
+ def test_error_message_2(self):
+ """Check the message is formatted correctly when either x or y is a scalar."""
+ x = 2
+ y = np.ones(20)
+ with pytest.raises(AssertionError) as exc_info:
+ self._assert_func(x, y)
+ msgs = str(exc_info.value).split('\n')
+ assert_equal(msgs[3], 'Mismatched elements: 20 / 20 (100%)')
+ assert_equal(msgs[4], 'Max absolute difference: 1.')
+ assert_equal(msgs[5], 'Max relative difference: 1.')
+
+ y = 2
+ x = np.ones(20)
+ with pytest.raises(AssertionError) as exc_info:
+ self._assert_func(x, y)
+ msgs = str(exc_info.value).split('\n')
+ assert_equal(msgs[3], 'Mismatched elements: 20 / 20 (100%)')
+ assert_equal(msgs[4], 'Max absolute difference: 1.')
+ assert_equal(msgs[5], 'Max relative difference: 0.5')
+
def test_subclass_that_cannot_be_bool(self):
# While we cannot guarantee testing functions will always work for
# subclasses, the tests should ideally rely only on subclasses having
@@ -586,9 +623,9 @@ class TestApproxEqual(object):
def setup(self):
self._assert_func = assert_approx_equal
- def test_simple_arrays(self):
- x = np.array([1234.22])
- y = np.array([1234.23])
+ def test_simple_0d_arrays(self):
+ x = np.array(1234.22)
+ y = np.array(1234.23)
self._assert_func(x, y, significant=5)
self._assert_func(x, y, significant=6)
@@ -853,7 +890,8 @@ class TestAssertAllclose(object):
with pytest.raises(AssertionError) as exc_info:
assert_allclose(a, b)
msg = str(exc_info.value)
- assert_('Mismatch: 25%\nMax absolute difference: 1\n'
+ assert_('Mismatched elements: 1 / 4 (25%)\n'
+ 'Max absolute difference: 1\n'
'Max relative difference: 0.5' in msg)
def test_equal_nan(self):
@@ -878,6 +916,15 @@ class TestAssertAllclose(object):
assert_array_less(a, b)
assert_allclose(a, b)
+ def test_report_max_relative_error(self):
+ a = np.array([0, 1])
+ b = np.array([0, 2])
+
+ with pytest.raises(AssertionError) as exc_info:
+ assert_allclose(a, b)
+ msg = str(exc_info.value)
+ assert_('Max relative difference: 0.5' in msg)
+
class TestArrayAlmostEqualNulp(object):
@@ -1506,6 +1553,7 @@ class TestAssertNoGcCycles(object):
with assert_raises(AssertionError):
assert_no_gc_cycles(make_cycle)
+ @pytest.mark.slow
def test_fails(self):
"""
Test that in cases where the garbage cannot be collected, we raise an
diff --git a/pavement.py b/pavement.py
index 33a3fc751..853878607 100644
--- a/pavement.py
+++ b/pavement.py
@@ -42,7 +42,7 @@ from paver.easy import Bunch, options, task, sh
#-----------------------------------
# Path to the release notes
-RELEASE_NOTES = 'doc/release/1.16.5-notes.rst'
+RELEASE_NOTES = 'doc/release/1.16.6-notes.rst'
#-------------------------------------------------------
diff --git a/setup.py b/setup.py
index 61c5e6e7d..954668236 100755
--- a/setup.py
+++ b/setup.py
@@ -61,7 +61,7 @@ Operating System :: MacOS
MAJOR = 1
MINOR = 16
-MICRO = 5
+MICRO = 6
ISRELEASED = True
VERSION = '%d.%d.%d' % (MAJOR, MINOR, MICRO)
diff --git a/shippable.yml b/shippable.yml
index 49cd91e1e..98d9a74d1 100644
--- a/shippable.yml
+++ b/shippable.yml
@@ -23,6 +23,7 @@ runtime:
build:
ci:
# install dependencies
+ - sudo apt-get update
- sudo apt-get install gcc gfortran libblas-dev liblapack-dev
# add pathlib for Python 2, otherwise many tests are skipped
- pip install --upgrade pip