1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
|
/* Test Pointset_Powerset<Grid>.
Copyright (C) 2001-2010 Roberto Bagnara <bagnara@cs.unipr.it>
Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com)
This file is part of the Parma Polyhedra Library (PPL).
The PPL is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The PPL is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA.
For the most up-to-date information see the Parma Polyhedra Library
site: http://www.cs.unipr.it/ppl/ . */
#include "ppl_test.hh"
#if PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Partitions the grid \p qq according to the congruence \p c.
/*! \relates Parma_Polyhedra_Library::Pointset_Powerset
On exit, the intersection of \p qq and congruence \p c is stored
in \p qq, whereas the intersection of \p qq with the negation of \p c
is added, as a set of new disjuncts, to the powerset \p r.
*/
#endif // PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
void
partition_aux(const Congruence& c,
Grid& qq,
Pointset_Powerset<Grid>& r) {
const Coefficient& c_modulus = c.modulus();
const Coefficient& c_inhomogeneous_term = c.inhomogeneous_term();
Linear_Expression le(c);
le -= c_inhomogeneous_term;
PPL_DIRTY_TEMP_COEFFICIENT(n);
rem_assign(n, c_inhomogeneous_term, c_modulus);
PPL_DIRTY_TEMP_COEFFICIENT(i);
for (i = c_modulus; i-- > 0; )
if (i != n) {
Grid qqq(qq);
qqq.add_congruence((le+i %= 0) / c_modulus);
if (qqq.is_empty())
r.add_disjunct(qqq);
}
qq.add_congruence(c);
}
/*! \relates Pointset_Powerset */
std::pair<Grid, Pointset_Powerset<Grid> >
partition(const Grid& p, const Grid& q) {
Pointset_Powerset<Grid> r(p.space_dimension(), EMPTY);
Grid qq = q;
const Congruence_System& pcs = p.congruences();
for (Congruence_System::const_iterator i = pcs.begin(),
pcs_end = pcs.end(); i != pcs_end; ++i)
partition_aux(*i, qq, r);
return std::pair<Grid, Pointset_Powerset<Grid> >(qq, r);
}
bool
test01() {
Variable x(0);
Variable y(1);
Grid p(2);
p.add_congruence(x %= 0);
using namespace IO_Operators;
nout << "p = " << p << endl;
Grid q(2);
q.add_congruence((x %= 4) / 9);
nout << "q = " << q << endl;
std::pair<Grid, Pointset_Powerset<Grid> >
result = partition(p, q);
nout << "*** q partition ***" << endl;
nout << " +++ p inters q +++" << endl << " " << result.first << endl;
nout << " +++ rest +++" << endl << " " << result.second << endl;
result = partition(q, p);
nout << "*** p partition ***" << endl;
nout << " +++ q inters p +++" << endl << " " << result.first << endl;
nout << " +++ rest +++" << endl << " " << result.second << endl;
return true;
}
BEGIN_MAIN
DO_TEST(test01);
END_MAIN
|