summaryrefslogtreecommitdiff
path: root/tests/BD_Shape/frequency1.cc
blob: 3c61d6bd675528c440e9ddcb0d0df59c86184e2d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
/* Test BD_Shape::frequency().
   Copyright (C) 2001-2010 Roberto Bagnara <bagnara@cs.unipr.it>
   Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com)

This file is part of the Parma Polyhedra Library (PPL).

The PPL is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

The PPL is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA.

For the most up-to-date information see the Parma Polyhedra Library
site: http://www.cs.unipr.it/ppl/ . */

#include "ppl_test.hh"

using namespace Parma_Polyhedra_Library::IO_Operators;

namespace {

// Universe and empty bd shape.
bool
test01() {
  Variable A(0);

  TBD_Shape bds1(1);

  TBD_Shape bds2(1, EMPTY);

  Coefficient num1;
  Coefficient den1;
  Coefficient valn1;
  Coefficient vald1;
  Coefficient num2;
  Coefficient den2;
  Coefficient valn2;
  Coefficient vald2;
  bool ok = (!bds1.frequency(A, num1, den1, valn1, vald1)
             && !bds2.frequency(A, num2, den2, valn2, vald2));
  print_constraints(bds1, "*** bds1 ***");
  nout << "num1 " << num1 << ", den1 " << den1 << endl;
  nout << "valn1 " << valn1 << ", vald1 " << vald1 << endl;
  print_constraints(bds2, "*** bds2 ***");
  nout << "num2 " << num2 << ", den2 " << den2 << endl;
  nout << "valn2 " << valn2 << ", vald2 " << vald2 << endl;

  return ok;
}

// 0-dimension polyhedra.
bool
test02() {
  TBD_Shape bds1(0);

  TBD_Shape bds2(0, EMPTY);

  Coefficient num1;
  Coefficient den1;
  Coefficient valn1;
  Coefficient vald1;
  Coefficient num2;
  Coefficient den2;
  Coefficient valn2;
  Coefficient vald2;
  Linear_Expression three(3);
  bool ok = (bds1.frequency(three, num1, den1, valn1, vald1)
             && num1 == 0 && den1 == 1 && valn1 == 3 && vald1 == 1
             && !bds2.frequency(three, num2, den2, valn2, vald2));
  print_constraints(bds1, "*** bds1 ***");
  nout << "num1 " << num1 << ", den1 " << den1 << endl;
  nout << "valn1 " << valn1 << ", vald1 " << vald1 << endl;
  print_constraints(bds2, "*** bds2 ***");
  nout << "num2 " << num2 << ", den2 " << den2 << endl;
  nout << "valn2 " << valn2 << ", vald2 " << vald2 << endl;

  return ok;
}

// Non-relational test.
bool
test03() {
  Variable A(0);

  TBD_Shape bds(1);
  bds.add_constraint(A == 0);

  Coefficient num;
  Coefficient den;
  Coefficient valn;
  Coefficient vald;
  bool ok = (bds.frequency(Linear_Expression(A), num, den, valn, vald)
             && num == 0 && den == 1 && valn == 0 && vald == 1);
  print_constraints(bds, "*** bds ***");
  nout << "num " << num << ", den " << den << endl;
  nout << "valn " << valn << ", vald " << vald << endl;

  return ok;
}

bool
test04() {
  Variable A(0);
  Variable B(1);

  TBD_Shape bds(2);
  bds.add_constraint(A >= 0);

  Coefficient num;
  Coefficient den;
  Coefficient valn;
  Coefficient vald;
  bool ok = (!bds.frequency(Linear_Expression(A), num, den, valn, vald));
  print_constraints(bds, "*** bds ***");
  nout << "num " << num << ", den " << den << endl;
  nout << "valn " << valn << ", vald " << vald << endl;

  return ok;
}

bool
test05() {
  Variable A(0);
  Variable B(1);

  TBD_Shape bds(2);
  bds.add_constraint(A <= 0);
  bds.add_constraint(A - B >= 5);

  Coefficient num;
  Coefficient den;
  Coefficient valn;
  Coefficient vald;
  bool ok = (!bds.frequency(Linear_Expression(B), num, den, valn, vald));
  print_constraints(bds, "*** bds ***");
  nout << "num " << num << ", den " << den << endl;
  nout << "valn " << valn << ", vald " << vald << endl;

  return ok;
}

bool
test06() {
  Variable A(0);
  Variable B(1);

  TBD_Shape bds(2);
  bds.add_constraint(A == 1);
  bds.add_constraint(B == 2);

  Coefficient num;
  Coefficient den;
  Coefficient valn;
  Coefficient vald;
  bool ok = (bds.frequency(Linear_Expression(A + B - 3), num, den, valn, vald)
             && num == 0 && den == 1 && valn == 0 && vald == 1);
  print_constraints(bds, "*** bds ***");
  nout << "num " << num << ", den " << den << endl;
  nout << "valn " << valn << ", vald " << vald << endl;

  return ok;
}

bool
test07() {
  Variable A(0);
  Variable B(1);

  TBD_Shape bds(2);
  bds.add_constraint(A <= 1);
  bds.add_constraint(A >= 0);

  Coefficient num;
  Coefficient den;
  Coefficient valn;
  Coefficient vald;
  bool ok = (!bds.frequency(Linear_Expression(A - B), num, den, valn, vald));
  print_constraints(bds, "*** bds ***");
  nout << "num " << num << ", den " << den << endl;
  nout << "valn " << valn << ", vald " << vald << endl;

  return ok;
}

bool
test08() {
  Variable A(0);
  Variable B(1);
  Variable C(2);

  TBD_Shape bds(3);
  bds.add_constraint(2*A - 2*B == 2);
  bds.add_constraint(3*C == 3);
  bds.add_constraint(B <= 2);

  Coefficient num;
  Coefficient den;
  Coefficient valn;
  Coefficient vald;
  bool ok = (bds.frequency(Linear_Expression(A - B + C + 1),
                           num, den, valn, vald)
             && num == 0 && den == 1 && valn == 3 && vald == 1);
  print_constraints(bds, "*** bds ***");
  nout << "num " << num << ", den " << den << endl;
  nout << "valn " << valn << ", vald " << vald << endl;

  return ok;
}

bool
test09() {
  Variable A(0);
  Variable B(1);
  Variable C(2);

  TBD_Shape bds(3);
  bds.add_constraint(4*A - 4*B == 1);
  bds.add_constraint(3*C == 1);
  bds.add_constraint(B <= 2);

  Coefficient num;
  Coefficient den;
  Coefficient valn;
  Coefficient vald;
  bool discrete = bds.frequency(Linear_Expression(A - B),
                                num, den, valn, vald);
  // If the shape is based on an integral coefficient type, then
  // approximations will induce non discreteness of the linear expression.
  bool ok = std::numeric_limits<TBD_Shape::coefficient_type_base>::is_integer
    ? (!discrete && num == 0 && den == 0 && valn == 0 && vald == 0)
    : (discrete && num == 0 && den == 1 && valn == 1 && vald == 4);
  print_constraints(bds, "*** bds ***");
  nout << "num " << num << ", den " << den << endl;
  nout << "valn " << valn << ", vald " << vald << endl;

  return ok;
}

// Non-relational test of an empty bd_shape in 1-dimension.
bool
test10() {
  Variable A(0);

  TBD_Shape bds(1);
  bds.add_constraint(A <= 0);
  bds.add_constraint(A >= 1);

  Coefficient num;
  Coefficient den;
  Coefficient valn;
  Coefficient vald;
  bool ok = (!bds.frequency(Linear_Expression(A), num, den, valn, vald));
  print_constraints(bds, "*** bds ***");

  return ok;
}

} // namespace

BEGIN_MAIN
  DO_TEST(test01);
  DO_TEST(test02);
  DO_TEST(test03);
  DO_TEST(test04);
  DO_TEST(test05);
  DO_TEST(test06);
  DO_TEST(test07);
  DO_TEST(test08);
  DO_TEST(test09);
  DO_TEST(test10);
END_MAIN