summaryrefslogtreecommitdiff
path: root/src/termination.templates.hh
blob: 1a47e3fb18526369c2f6dfd2f3276f56d7297024 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
/* Utilities for termination analysis: template functions.
   Copyright (C) 2001-2010 Roberto Bagnara <bagnara@cs.unipr.it>
   Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com)

This file is part of the Parma Polyhedra Library (PPL).

The PPL is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

The PPL is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA.

For the most up-to-date information see the Parma Polyhedra Library
site: http://www.cs.unipr.it/ppl/ . */

#ifndef PPL_termination_templates_hh
#define PPL_termination_templates_hh 1

#include "globals.defs.hh"
#include "Variable.defs.hh"
#include "Generator.defs.hh"
#include "Constraint_System.defs.hh"
#include "C_Polyhedron.defs.hh"
#include "NNC_Polyhedron.defs.hh"

#include <stdexcept>

#define PRINT_DEBUG_INFO 0

#if PRINT_DEBUG_INFO
#include <iostream>
#endif

namespace Parma_Polyhedra_Library {

namespace Implementation {

namespace Termination {

#if PRINT_DEBUG_INFO
static dimension_type output_function_MS_n;
static dimension_type output_function_MS_m;

/* Encodes which object are we printing:

   0 means input constraint system;
   1 means first output constraint system;
   2 means second output constraint system;
   3 means only output constraint system
     (i.e., when first and second are the same);
   4 means mu space.
*/
static int output_function_MS_which = -1;

/*
  Debuggin output function.  See the documentation of
  fill_constraint_systems_MS() for the allocation of variable indices.
*/
inline void
output_function_MS(std::ostream& s, const Variable& v) {
  dimension_type id = v.id();
  switch (output_function_MS_which) {
  case 0:
    if (id < output_function_MS_n)
      s << "x'" << id + 1;
    else if (id < 2*output_function_MS_n)
      s << "x" << id - output_function_MS_n + 1;
    else
      s << "WHAT?";
    break;
  case 1:
    if (id < output_function_MS_n)
      s << "mu" << id + 1;
    else if (id == output_function_MS_n)
      s << "WHAT?";
    else if (id <= output_function_MS_n + output_function_MS_m)
      s << "y" << id - output_function_MS_n;
    else
      s << "WHAT?";
    break;
  case 2:
  case 4:
    if (id < output_function_MS_n)
      s << "mu" << id + 1;
    else if (id == output_function_MS_n)
      s << "mu0";
    else if (output_function_MS_which == 2
	     && id <= output_function_MS_n + output_function_MS_m + 2)
      s << "z" << id - output_function_MS_n;
    else
      s << "WHAT?";
    break;
  case 3:
    if (id < output_function_MS_n)
      s << "mu" << id + 1;
    else if (id == output_function_MS_n)
      s << "mu0";
    else if (id <= output_function_MS_n + output_function_MS_m)
      s << "y" << id - output_function_MS_n;
    else if (id <= output_function_MS_n + 2*output_function_MS_m + 2)
      s << "z" << id - (output_function_MS_n + output_function_MS_m);
    else
      s << "WHAT?";
    break;
  default:
    abort();
    break;
  }
}

static dimension_type output_function_PR_s;
static dimension_type output_function_PR_r;

/*
  Debuggin output function.  See the documentation of
  fill_constraint_system_PR() for the allocation of variable indices.
*/
inline void
output_function_PR(std::ostream& s, const Variable& v) {
  dimension_type id = v.id();
  if (id < output_function_PR_s)
    s << "u3_" << id + 1;
  else if (id < output_function_PR_s + output_function_PR_r)
    s << "u2_" << id - output_function_PR_s + 1;
  else if (id < output_function_PR_s + 2*output_function_PR_r)
    s << "u1_" << id - (output_function_PR_s + output_function_PR_r) + 1;
  else
    s << "WHAT?";
}
#endif

void
assign_all_inequalities_approximation(const Constraint_System& cs_in,
				      Constraint_System& cs_out);

template <typename PSET>
inline void
assign_all_inequalities_approximation(const PSET& pset,
				      Constraint_System& cs) {
  assign_all_inequalities_approximation(pset.minimized_constraints(), cs);
}

template <>
void
assign_all_inequalities_approximation(const C_Polyhedron& ph,
				      Constraint_System& cs);

void
shift_unprimed_variables(Constraint_System& cs);

template <typename PSET>
void
assign_all_inequalities_approximation(const PSET& pset_before,
				      const PSET& pset_after,
				      Constraint_System& cs) {
  assign_all_inequalities_approximation(pset_before, cs);
  shift_unprimed_variables(cs);
  Constraint_System cs_after;
  assign_all_inequalities_approximation(pset_after, cs_after);
  // FIXME: provide an "append" for constraint systems.
  for (Constraint_System::const_iterator i = cs_after.begin(),
	 cs_after_end = cs_after.end(); i != cs_after_end; ++i)
    cs.insert(*i);
}

bool
termination_test_MS(const Constraint_System& cs);

bool
one_affine_ranking_function_MS(const Constraint_System& cs,
			       Generator& mu);

void
all_affine_ranking_functions_MS(const Constraint_System& cs,
				C_Polyhedron& mu_space);

void
all_affine_quasi_ranking_functions_MS(const Constraint_System& cs,
                                      C_Polyhedron& decreasing_mu_space,
                                      C_Polyhedron& bounded_mu_space);

bool
termination_test_PR(const Constraint_System& cs_before,
		    const Constraint_System& cs_after);

bool
one_affine_ranking_function_PR(const Constraint_System& cs_before,
			       const Constraint_System& cs_after,
			       Generator& mu);

void
all_affine_ranking_functions_PR(const Constraint_System& cs_before,
				const Constraint_System& cs_after,
				NNC_Polyhedron& mu_space);

bool
termination_test_PR_original(const Constraint_System& cs);

bool
one_affine_ranking_function_PR_original(const Constraint_System& cs,
                                        Generator& mu);

void
all_affine_ranking_functions_PR_original(const Constraint_System& cs,
                                         NNC_Polyhedron& mu_space);

} // namespace Termination

} // namespace Implementation

template <typename PSET>
bool
termination_test_MS(const PSET& pset) {
  const dimension_type space_dim = pset.space_dimension();
  if (space_dim % 2 != 0) {
    std::ostringstream s;
    s << "PPL::termination_test_MS(pset):\n"
         "pset.space_dimension() == " << space_dim
      << " is odd.";
    throw std::invalid_argument(s.str());
  }

  using namespace Implementation::Termination;
  Constraint_System cs;
  assign_all_inequalities_approximation(pset, cs);
  return termination_test_MS(cs);
}

template <typename PSET>
bool
termination_test_MS_2(const PSET& pset_before, const PSET& pset_after) {
  const dimension_type before_space_dim = pset_before.space_dimension();
  const dimension_type after_space_dim = pset_after.space_dimension();
  if (after_space_dim != 2*before_space_dim) {
    std::ostringstream s;
    s << "PPL::termination_test_MS_2(pset_before, pset_after):\n"
         "pset_before.space_dimension() == " << before_space_dim
      << ", pset_after.space_dimension() == " << after_space_dim
      << ";\nthe latter should be twice the former.";
    throw std::invalid_argument(s.str());
  }

  using namespace Implementation::Termination;
  Constraint_System cs;
  assign_all_inequalities_approximation(pset_before, pset_after, cs);
  return termination_test_MS(cs);
}

template <typename PSET>
bool
one_affine_ranking_function_MS(const PSET& pset, Generator& mu) {
  const dimension_type space_dim = pset.space_dimension();
  if (space_dim % 2 != 0) {
    std::ostringstream s;
    s << "PPL::one_affine_ranking_function_MS(pset, mu):\n"
         "pset.space_dimension() == " << space_dim
      << " is odd.";
    throw std::invalid_argument(s.str());
  }

  using namespace Implementation::Termination;
  Constraint_System cs;
  assign_all_inequalities_approximation(pset, cs);
  return one_affine_ranking_function_MS(cs, mu);
}

template <typename PSET>
bool
one_affine_ranking_function_MS_2(const PSET& pset_before,
				 const PSET& pset_after,
				 Generator& mu) {
  const dimension_type before_space_dim = pset_before.space_dimension();
  const dimension_type after_space_dim = pset_after.space_dimension();
  if (after_space_dim != 2*before_space_dim) {
    std::ostringstream s;
    s << "PPL::one_affine_ranking_function_MS_2(pset_before, pset_after, mu):\n"
         "pset_before.space_dimension() == " << before_space_dim
      << ", pset_after.space_dimension() == " << after_space_dim
      << ";\nthe latter should be twice the former.";
    throw std::invalid_argument(s.str());
  }

  using namespace Implementation::Termination;
  Constraint_System cs;
  assign_all_inequalities_approximation(pset_before, pset_after, cs);
  return one_affine_ranking_function_MS(cs, mu);
}

template <typename PSET>
void
all_affine_ranking_functions_MS(const PSET& pset, C_Polyhedron& mu_space) {
  const dimension_type space_dim = pset.space_dimension();
  if (space_dim % 2 != 0) {
    std::ostringstream s;
    s << "PPL::all_affine_ranking_functions_MS(pset, mu_space):\n"
         "pset.space_dimension() == " << space_dim
      << " is odd.";
    throw std::invalid_argument(s.str());
  }

  if (pset.is_empty()) {
    mu_space = C_Polyhedron(1 + space_dim/2, UNIVERSE);
    return;
  }

  using namespace Implementation::Termination;
  Constraint_System cs;
  assign_all_inequalities_approximation(pset, cs);
  all_affine_ranking_functions_MS(cs, mu_space);
}

template <typename PSET>
void
all_affine_ranking_functions_MS_2(const PSET& pset_before,
				  const PSET& pset_after,
				  C_Polyhedron& mu_space) {
  const dimension_type before_space_dim = pset_before.space_dimension();
  const dimension_type after_space_dim = pset_after.space_dimension();
  if (after_space_dim != 2*before_space_dim) {
    std::ostringstream s;
    s << "PPL::all_affine_ranking_functions_MS_2"
      << "(pset_before, pset_after, mu_space):\n"
      << "pset_before.space_dimension() == " << before_space_dim
      << ", pset_after.space_dimension() == " << after_space_dim
      << ";\nthe latter should be twice the former.";
    throw std::invalid_argument(s.str());
  }

  if (pset_before.is_empty()) {
    mu_space = C_Polyhedron(1 + before_space_dim, UNIVERSE);
    return;
  }

  using namespace Implementation::Termination;
  Constraint_System cs;
  assign_all_inequalities_approximation(pset_before, pset_after, cs);
  all_affine_ranking_functions_MS(cs, mu_space);
}

template <typename PSET>
void
all_affine_quasi_ranking_functions_MS(const PSET& pset,
                                      C_Polyhedron& decreasing_mu_space,
                                      C_Polyhedron& bounded_mu_space) {
  const dimension_type space_dim = pset.space_dimension();
  if (space_dim % 2 != 0) {
    std::ostringstream s;
    s << "PPL::all_affine_quasi_ranking_functions_MS"
      << "(pset, decr_space, bounded_space):\n"
      << "pset.space_dimension() == " << space_dim
      << " is odd.";
    throw std::invalid_argument(s.str());
  }

  if (pset.is_empty()) {
    decreasing_mu_space = C_Polyhedron(1 + space_dim/2, UNIVERSE);
    bounded_mu_space = decreasing_mu_space;
    return;
  }

  using namespace Implementation::Termination;
  Constraint_System cs;
  assign_all_inequalities_approximation(pset, cs);
  all_affine_quasi_ranking_functions_MS(cs,
                                        decreasing_mu_space,
                                        bounded_mu_space);
}

template <typename PSET>
void
all_affine_quasi_ranking_functions_MS_2(const PSET& pset_before,
                                        const PSET& pset_after,
                                        C_Polyhedron& decreasing_mu_space,
                                        C_Polyhedron& bounded_mu_space) {
  const dimension_type before_space_dim = pset_before.space_dimension();
  const dimension_type after_space_dim = pset_after.space_dimension();
  if (after_space_dim != 2*before_space_dim) {
    std::ostringstream s;
    s << "PPL::all_affine_quasi_ranking_functions_MS_2"
      << "(pset_before, pset_after, decr_space, bounded_space):\n"
      << "pset_before.space_dimension() == " << before_space_dim
      << ", pset_after.space_dimension() == " << after_space_dim
      << ";\nthe latter should be twice the former.";
    throw std::invalid_argument(s.str());
  }

  if (pset_before.is_empty()) {
    decreasing_mu_space = C_Polyhedron(1 + before_space_dim, UNIVERSE);
    bounded_mu_space = decreasing_mu_space;
    return;
  }

  using namespace Implementation::Termination;
  Constraint_System cs;
  assign_all_inequalities_approximation(pset_before, pset_after, cs);
  all_affine_quasi_ranking_functions_MS(cs,
                                        decreasing_mu_space,
                                        bounded_mu_space);
}

template <typename PSET>
bool
termination_test_PR_2(const PSET& pset_before, const PSET& pset_after) {
  const dimension_type before_space_dim = pset_before.space_dimension();
  const dimension_type after_space_dim = pset_after.space_dimension();
  if (after_space_dim != 2*before_space_dim) {
    std::ostringstream s;
    s << "PPL::termination_test_PR_2(pset_before, pset_after):\n"
      << "pset_before.space_dimension() == " << before_space_dim
      << ", pset_after.space_dimension() == " << after_space_dim
      << ";\nthe latter should be twice the former.";
    throw std::invalid_argument(s.str());
  }

  using namespace Implementation::Termination;
  Constraint_System cs_before;
  Constraint_System cs_after;
  assign_all_inequalities_approximation(pset_before, cs_before);
  assign_all_inequalities_approximation(pset_after, cs_after);
  return termination_test_PR(cs_before, cs_after);
}

template <typename PSET>
bool
termination_test_PR(const PSET& pset_after) {
  const dimension_type space_dim = pset_after.space_dimension();
  if (space_dim % 2 != 0) {
    std::ostringstream s;
    s << "PPL::termination_test_PR(pset):\n"
      << "pset.space_dimension() == " << space_dim
      << " is odd.";
    throw std::invalid_argument(s.str());
  }

  using namespace Implementation::Termination;
  Constraint_System cs;
  assign_all_inequalities_approximation(pset_after, cs);
  return termination_test_PR_original(cs);
}

template <typename PSET>
bool
one_affine_ranking_function_PR_2(const PSET& pset_before,
				 const PSET& pset_after,
				 Generator& mu) {
  const dimension_type before_space_dim = pset_before.space_dimension();
  const dimension_type after_space_dim = pset_after.space_dimension();
  if (after_space_dim != 2*before_space_dim) {
    std::ostringstream s;
    s << "PPL::one_affine_ranking_function_PR_2"
      << "(pset_before, pset_after, mu):\n"
      << "pset_before.space_dimension() == " << before_space_dim
      << ", pset_after.space_dimension() == " << after_space_dim
      << ";\nthe latter should be twice the former.";
    throw std::invalid_argument(s.str());
  }

  using namespace Implementation::Termination;
  Constraint_System cs_before;
  Constraint_System cs_after;
  assign_all_inequalities_approximation(pset_before, cs_before);
  assign_all_inequalities_approximation(pset_after, cs_after);
  return one_affine_ranking_function_PR(cs_before, cs_after, mu);
}

template <typename PSET>
bool
one_affine_ranking_function_PR(const PSET& pset_after, Generator& mu) {
  const dimension_type space_dim = pset_after.space_dimension();
  if (space_dim % 2 != 0) {
    std::ostringstream s;
    s << "PPL::one_affine_ranking_function_PR(pset, mu):\n"
      << "pset.space_dimension() == " << space_dim
      << " is odd.";
    throw std::invalid_argument(s.str());
  }

  using namespace Implementation::Termination;
  Constraint_System cs;
  assign_all_inequalities_approximation(pset_after, cs);
  return one_affine_ranking_function_PR_original(cs, mu);
}

template <typename PSET>
void
all_affine_ranking_functions_PR_2(const PSET& pset_before,
				  const PSET& pset_after,
				  NNC_Polyhedron& mu_space) {
  const dimension_type before_space_dim = pset_before.space_dimension();
  const dimension_type after_space_dim = pset_after.space_dimension();
  if (after_space_dim != 2*before_space_dim) {
    std::ostringstream s;
    s << "PPL::all_affine_ranking_functions_MS_2"
      << "(pset_before, pset_after, mu_space):\n"
      << "pset_before.space_dimension() == " << before_space_dim
      << ", pset_after.space_dimension() == " << after_space_dim
      << ";\nthe latter should be twice the former.";
    throw std::invalid_argument(s.str());
  }

  if (pset_before.is_empty()) {
    mu_space = NNC_Polyhedron(1 + before_space_dim);
    return;
  }

  using namespace Implementation::Termination;
  Constraint_System cs_before;
  Constraint_System cs_after;
  assign_all_inequalities_approximation(pset_before, cs_before);
  assign_all_inequalities_approximation(pset_after, cs_after);
  all_affine_ranking_functions_PR(cs_before, cs_after, mu_space);
}

template <typename PSET>
void
all_affine_ranking_functions_PR(const PSET& pset_after,
				NNC_Polyhedron& mu_space) {
  const dimension_type space_dim = pset_after.space_dimension();
  if (space_dim % 2 != 0) {
    std::ostringstream s;
    s << "PPL::all_affine_ranking_functions_PR(pset, mu_space):\n"
      << "pset.space_dimension() == " << space_dim
      << " is odd.";
    throw std::invalid_argument(s.str());
  }

  if (pset_after.is_empty()) {
    mu_space = NNC_Polyhedron(1 + space_dim/2);
    return;
  }

  using namespace Implementation::Termination;
  Constraint_System cs;
  assign_all_inequalities_approximation(pset_after, cs);
  all_affine_ranking_functions_PR_original(cs, mu_space);
}

} // namespace Parma_Polyhedra_Library

#endif // !defined(PPL_termination_templates_hh)