1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
|
/* Implementation of some math utility functions: inline functions.
Copyright (C) 2001-2010 Roberto Bagnara <bagnara@cs.unipr.it>
Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com)
This file is part of the Parma Polyhedra Library (PPL).
The PPL is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The PPL is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA.
For the most up-to-date information see the Parma Polyhedra Library
site: http://www.cs.unipr.it/ppl/ . */
#ifndef PPL_math_utilities_inlines_hh
#define PPL_math_utilities_inlines_hh 1
#include "Coefficient.defs.hh"
#include <limits>
#include "assert.hh"
namespace Parma_Polyhedra_Library {
inline void
normalize2(Coefficient_traits::const_reference x,
Coefficient_traits::const_reference y,
Coefficient& nx, Coefficient& ny) {
PPL_DIRTY_TEMP_COEFFICIENT(gcd);
gcd_assign(gcd, x, y);
exact_div_assign(nx, x, gcd);
exact_div_assign(ny, y, gcd);
}
template <typename T>
inline T
low_bits_mask(const unsigned n) {
PPL_ASSERT(n < unsigned(std::numeric_limits<T>::digits));
return n == 0 ? 0 : ~(~(T(0u)) << n);
}
template <typename T>
inline typename Enable_If<Is_Native_Or_Checked<T>::value, void>::type
numer_denom(const T& from,
Coefficient& num, Coefficient& den) {
PPL_ASSERT(!is_not_a_number(from)
&& !is_minus_infinity(from)
&& !is_plus_infinity(from));
PPL_DIRTY_TEMP0(mpq_class, q);
assign_r(q, from, ROUND_NOT_NEEDED);
num = q.get_num();
den = q.get_den();
}
template <typename T>
inline typename Enable_If<Is_Native_Or_Checked<T>::value, void>::type
div_round_up(T& to,
Coefficient_traits::const_reference x,
Coefficient_traits::const_reference y) {
PPL_DIRTY_TEMP0(mpq_class, qx);
PPL_DIRTY_TEMP0(mpq_class, qy);
// Note: this code assumes that a Coefficient is always convertible
// to an mpq_class without loss of precision.
assign_r(qx, x, ROUND_NOT_NEEDED);
assign_r(qy, y, ROUND_NOT_NEEDED);
div_assign_r(qx, qx, qy, ROUND_NOT_NEEDED);
assign_r(to, qx, ROUND_UP);
}
template <typename N>
inline void
min_assign(N& x, const N& y) {
if (x > y)
x = y;
}
template <typename N>
inline void
max_assign(N& x, const N& y) {
if (x < y)
x = y;
}
template <typename T>
inline typename Enable_If<Is_Native_Or_Checked<T>::value, bool>::type
is_even(const T& x) {
T mod;
return umod_2exp_assign_r(mod, x, 1, ROUND_DIRECT | ROUND_STRICT_RELATION) == V_EQ
&& mod == 0;
}
template <typename T>
inline typename Enable_If<Is_Native_Or_Checked<T>::value, bool>::type
is_additive_inverse(const T& x, const T& y) {
T negated_x;
return neg_assign_r(negated_x, x, ROUND_DIRECT | ROUND_STRICT_RELATION) == V_EQ
&& negated_x == y;
}
inline bool
is_canonical(const mpq_class& x) {
if (x.get_den() <= 0)
return false;
PPL_DIRTY_TEMP0(mpq_class, temp);
temp = x;
temp.canonicalize();
return temp.get_num() == x.get_num();
}
} // namespace Parma_Polyhedra_Library
#endif // !defined(PPL_math_utilities_inlines_hh)
|