1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
|
/* Declarations of some math utility functions.
Copyright (C) 2001-2010 Roberto Bagnara <bagnara@cs.unipr.it>
Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com)
This file is part of the Parma Polyhedra Library (PPL).
The PPL is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The PPL is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA.
For the most up-to-date information see the Parma Polyhedra Library
site: http://www.cs.unipr.it/ppl/ . */
#ifndef PPL_math_utilities_defs_hh
#define PPL_math_utilities_defs_hh 1
#include "Coefficient.types.hh"
#include "Checked_Number.defs.hh"
#include <gmpxx.h>
namespace Parma_Polyhedra_Library {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Extract the numerator and denominator components of \p from.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
typename Enable_If<Is_Native_Or_Checked<T>::value, void>::type
numer_denom(const T& from,
Coefficient& num, Coefficient& den);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Divides \p x by \p y into \p to, rounding the result towards plus infinity.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
typename Enable_If<Is_Native_Or_Checked<T>::value, void>::type
div_round_up(T& to,
Coefficient_traits::const_reference x,
Coefficient_traits::const_reference y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Assigns to \p x the minimum between \p x and \p y.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename N>
void
min_assign(N& x, const N& y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Assigns to \p x the maximum between \p x and \p y.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename N>
void
max_assign(N& x, const N& y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Returns <CODE>true</CODE> if and only if \p x is an even number.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
typename Enable_If<Is_Native_Or_Checked<T>::value, bool>::type
is_even(const T& x);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Returns <CODE>true</CODE> if and only if \f$x = -y\f$.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
template <typename T>
typename Enable_If<Is_Native_Or_Checked<T>::value, bool>::type
is_additive_inverse(const T& x, const T& y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
If \f$g\f$ is the GCD of \p x and \p y, the values of \p x and \p y
divided by \f$g\f$ are assigned to \p nx and \p ny, respectively.
\note
\p x and \p nx may be the same object and likewise for
\p y and \p ny. Any other aliasing results in undefined behavior.
*/
#endif
void
normalize2(Coefficient_traits::const_reference x,
Coefficient_traits::const_reference y,
Coefficient& nx, Coefficient& ny);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Returns <CODE>true</CODE> if and only if \p x is in canonical form.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
bool
is_canonical(const mpq_class& x);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Returns a mask for the lowest \p n bits,
#endif
template <typename T>
T
low_bits_mask(unsigned n);
} // namespace Parma_Polyhedra_Library
#include "math_utilities.inlines.hh"
#endif // !defined(PPL_math_utilities_defs_hh)
|