1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
|
/* Powerset class declaration.
Copyright (C) 2001-2010 Roberto Bagnara <bagnara@cs.unipr.it>
Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com)
This file is part of the Parma Polyhedra Library (PPL).
The PPL is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The PPL is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA.
For the most up-to-date information see the Parma Polyhedra Library
site: http://www.cs.unipr.it/ppl/ . */
#ifndef PPL_Powerset_defs_hh
#define PPL_Powerset_defs_hh
#include "Powerset.types.hh"
#include "globals.types.hh"
#include "iterator_to_const.defs.hh"
#include <iosfwd>
#include <iterator>
#include <list>
namespace Parma_Polyhedra_Library {
//! Returns <CODE>true</CODE> if and only if \p x and \p y are equivalent.
/*! \relates Powerset */
template <typename D>
bool
operator==(const Powerset<D>& x, const Powerset<D>& y);
//! Returns <CODE>true</CODE> if and only if \p x and \p y are not equivalent.
/*! \relates Powerset */
template <typename D>
bool
operator!=(const Powerset<D>& x, const Powerset<D>& y);
namespace IO_Operators {
//! Output operator.
/*! \relates Parma_Polyhedra_Library::Powerset */
template <typename D>
std::ostream&
operator<<(std::ostream& s, const Powerset<D>& x);
} // namespace IO_Operators
} // namespace Parma_Polyhedra_Library
//! The powerset construction on a base-level domain.
/*! \ingroup PPL_CXX_interface
This class offers a generic implementation of a
<EM>powerset</EM> domain as defined in Section \ref powerset.
Besides invoking the available methods on the disjuncts of a Powerset,
this class also provides bidirectional iterators that allow for a
direct inspection of these disjuncts. For a consistent handling of
Omega-reduction, all the iterators are <EM>read-only</EM>, meaning
that the disjuncts cannot be overwritten. Rather, by using the class
<CODE>iterator</CODE>, it is possible to drop one or more disjuncts
(possibly so as to later add back modified versions). As an example
of iterator usage, the following template function drops from
powerset \p ps all the disjuncts that would have become redundant by
the addition of an external element \p d.
\code
template <typename D>
void
drop_subsumed(Powerset<D>& ps, const D& d) {
for (typename Powerset<D>::iterator i = ps.begin(),
ps_end = ps.end(), i != ps_end; )
if (i->definitely_entails(d))
i = ps.drop_disjunct(i);
else
++i;
}
\endcode
The template class D must provide the following methods.
\code
memory_size_type total_memory_in_bytes() const
\endcode
Returns a lower bound on the total size in bytes of the memory
occupied by the instance of D.
\code
bool is_top() const
\endcode
Returns <CODE>true</CODE> if and only if the instance of D is the top
element of the domain.
\code
bool is_bottom() const
\endcode
Returns <CODE>true</CODE> if and only if the instance of D is the
bottom element of the domain.
\code
bool definitely_entails(const D& y) const
\endcode
Returns <CODE>true</CODE> if the instance of D definitely entails
<CODE>y</CODE>. Returns <CODE>false</CODE> if the instance may not
entail <CODE>y</CODE> (i.e., if the instance does not entail
<CODE>y</CODE> or if entailment could not be decided).
\code
void upper_bound_assign(const D& y)
\endcode
Assigns to the instance of D an upper bound of the instance and
<CODE>y</CODE>.
\code
void meet_assign(const D& y)
\endcode
Assigns to the instance of D the meet of the instance and
<CODE>y</CODE>.
\code
bool OK() const
\endcode
Returns <CODE>true</CODE> if the instance of D is in a consistent
state, else returns <CODE>false</CODE>.
The following operators on the template class D must be defined.
\code
operator<<(std::ostream& s, const D& x)
\endcode
Writes a textual representation of the instance of D on
<CODE>s</CODE>.
\code
operator==(const D& x, const D& y)
\endcode
Returns <CODE>true</CODE> if and only if <CODE>x</CODE> and
<CODE>y</CODE> are equivalent D's.
\code
operator!=(const D& x, const D& y)
\endcode
Returns <CODE>true</CODE> if and only if <CODE>x</CODE> and
<CODE>y</CODE> are different D's.
*/
template <typename D>
class Parma_Polyhedra_Library::Powerset {
public:
//! \name Constructors and Destructor
//@{
/*! \brief
Default constructor: builds the bottom of the powerset constraint
system (i.e., the empty powerset).
*/
Powerset();
//! Copy constructor.
Powerset(const Powerset& y);
/*! \brief
If \p d is not bottom, builds a powerset containing only \p d.
Builds the empty powerset otherwise.
*/
explicit Powerset(const D& d);
//! Destructor.
~Powerset();
//@} // Constructors and Destructor
//! \name Member Functions that Do Not Modify the Powerset Object
//@{
/*! \brief
Returns <CODE>true</CODE> if \p *this definitely entails \p y.
Returns <CODE>false</CODE> if \p *this may not entail \p y
(i.e., if \p *this does not entail \p y or if entailment could
not be decided).
*/
bool definitely_entails(const Powerset& y) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is the top
element of the powerset constraint system (i.e., it represents
the universe).
*/
bool is_top() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is the bottom
element of the powerset constraint system (i.e., it represents
the empty set).
*/
bool is_bottom() const;
/*! \brief
Returns a lower bound to the total size in bytes of the memory
occupied by \p *this.
*/
memory_size_type total_memory_in_bytes() const;
/*! \brief
Returns a lower bound to the size in bytes of the memory
managed by \p *this.
*/
memory_size_type external_memory_in_bytes() const;
//! Checks if all the invariants are satisfied.
// FIXME: document and perhaps use an enum instead of a bool.
bool OK(bool disallow_bottom = false) const;
//@} // Member Functions that Do Not Modify the Powerset Object
protected:
//! A powerset is implemented as a sequence of elements.
/*!
The particular sequence employed must support efficient deletion
in any position and efficient back insertion.
*/
typedef std::list<D> Sequence;
//! Alias for the low-level iterator on the disjuncts.
typedef typename Sequence::iterator Sequence_iterator;
//! Alias for the low-level %const_iterator on the disjuncts.
typedef typename Sequence::const_iterator Sequence_const_iterator;
//! The sequence container holding powerset's elements.
Sequence sequence;
//! If <CODE>true</CODE>, \p *this is Omega-reduced.
mutable bool reduced;
public:
// Sequence manipulation types, accessors and modifiers
typedef typename Sequence::size_type size_type;
typedef typename Sequence::value_type value_type;
/*! \brief
Alias for a <EM>read-only</EM> bidirectional %iterator on the
disjuncts of a Powerset element.
By using this iterator type, the disjuncts cannot be overwritten,
but they can be removed using methods
<CODE>drop_disjunct(iterator position)</CODE> and
<CODE>drop_disjuncts(iterator first, iterator last)</CODE>,
while still ensuring a correct handling of Omega-reduction.
*/
typedef iterator_to_const<Sequence> iterator;
//! A bidirectional %const_iterator on the disjuncts of a Powerset element.
typedef const_iterator_to_const<Sequence> const_iterator;
//! The reverse iterator type built from Powerset::iterator.
typedef std::reverse_iterator<iterator> reverse_iterator;
//! The reverse iterator type built from Powerset::const_iterator.
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
//! \name Member Functions for the Direct Manipulation of Disjuncts
//@{
/*! \brief
Drops from the sequence of disjuncts in \p *this all the
non-maximal elements so that \p *this is non-redundant.
This method is declared <CODE>const</CODE> because, even though
Omega-reduction may change the syntactic representation of \p *this,
its semantics will be unchanged.
*/
void omega_reduce() const;
//! Returns the number of disjuncts.
size_type size() const;
/*! \brief
Returns <CODE>true</CODE> if and only if there are no disjuncts in
\p *this.
*/
bool empty() const;
/*! \brief
Returns an iterator pointing to the first disjunct, if \p *this
is not empty; otherwise, returns the past-the-end iterator.
*/
iterator begin();
//! Returns the past-the-end iterator.
iterator end();
/*! \brief
Returns a const_iterator pointing to the first disjunct, if \p *this
is not empty; otherwise, returns the past-the-end const_iterator.
*/
const_iterator begin() const;
//! Returns the past-the-end const_iterator.
const_iterator end() const;
/*! \brief
Returns a reverse_iterator pointing to the last disjunct, if \p *this
is not empty; otherwise, returns the before-the-start reverse_iterator.
*/
reverse_iterator rbegin();
//! Returns the before-the-start reverse_iterator.
reverse_iterator rend();
/*! \brief
Returns a const_reverse_iterator pointing to the last disjunct,
if \p *this is not empty; otherwise, returns the before-the-start
const_reverse_iterator.
*/
const_reverse_iterator rbegin() const;
//! Returns the before-the-start const_reverse_iterator.
const_reverse_iterator rend() const;
//! Adds to \p *this the disjunct \p d.
void add_disjunct(const D& d);
/*! \brief
Drops the disjunct in \p *this pointed to by \p position, returning
an iterator to the disjunct following \p position.
*/
iterator drop_disjunct(iterator position);
//! Drops all the disjuncts from \p first to \p last (excluded).
void drop_disjuncts(iterator first, iterator last);
//! Drops all the disjuncts, making \p *this an empty powerset.
void clear();
//@} // Member Functions for the Direct Manipulation of Disjuncts
//! \name Member Functions that May Modify the Powerset Object
//@{
//! The assignment operator.
Powerset& operator=(const Powerset& y);
//! Swaps \p *this with \p y.
void swap(Powerset& y);
//! Assigns to \p *this the least upper bound of \p *this and \p y.
void least_upper_bound_assign(const Powerset& y);
//! Assigns to \p *this an upper bound of \p *this and \p y.
/*!
The result will be the least upper bound of \p *this and \p y.
*/
void upper_bound_assign(const Powerset& y);
/*! \brief
Assigns to \p *this the least upper bound of \p *this and \p y
and returns \c true.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
bool upper_bound_assign_if_exact(const Powerset& y);
//! Assigns to \p *this the meet of \p *this and \p y.
void meet_assign(const Powerset& y);
/*! \brief
If \p *this is not empty (i.e., it is not the bottom element),
it is reduced to a singleton obtained by computing an upper-bound
of all the disjuncts.
*/
void collapse();
//@} // Member Functions that May Modify the Powerset element
protected:
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this does not contain
non-maximal elements.
*/
bool is_omega_reduced() const;
/*! \brief Upon return, \p *this will contain at most \p
max_disjuncts elements; the set of disjuncts in positions greater
than or equal to \p max_disjuncts, will be replaced at that
position by their upper-bound.
*/
void collapse(unsigned max_disjuncts);
/*! \brief
Adds to \p *this the disjunct \p d,
assuming \p d is not the bottom element and ensuring
partial Omega-reduction.
If \p d is not the bottom element and is not Omega-redundant with
respect to elements in positions between \p first and \p last, all
elements in these positions that would be made Omega-redundant by the
addition of \p d are dropped and \p d is added to the reduced
sequence.
If \p *this is reduced before an invocation of this method,
it will be reduced upon successful return from the method.
*/
iterator add_non_bottom_disjunct_preserve_reduction(const D& d,
iterator first,
iterator last);
/*! \brief
Adds to \p *this the disjunct \p d, assuming \p d is not the
bottom element and preserving Omega-reduction.
If \p *this is reduced before an invocation of this method,
it will be reduced upon successful return from the method.
*/
void add_non_bottom_disjunct_preserve_reduction(const D& d);
/*! \brief
Assigns to \p *this the result of applying \p op_assign pairwise
to the elements in \p *this and \p y.
The elements of the powerset result are obtained by applying
\p op_assign to each pair of elements whose components are drawn
from \p *this and \p y, respectively.
*/
template <typename Binary_Operator_Assign>
void pairwise_apply_assign(const Powerset& y,
Binary_Operator_Assign op_assign);
private:
/*! \brief
Does the hard work of checking whether \p *this contains non-maximal
elements and returns <CODE>true</CODE> if and only if it does not.
*/
bool check_omega_reduced() const;
/*! \brief
Replaces the disjunct \p *sink by an upper bound of itself and
all the disjuncts following it.
*/
void collapse(Sequence_iterator sink);
};
namespace std {
//! Specializes <CODE>std::swap</CODE>.
/*! \relates Parma_Polyhedra_Library::Powerset */
template <typename D>
void swap(Parma_Polyhedra_Library::Powerset<D>& x,
Parma_Polyhedra_Library::Powerset<D>& y);
} // namespace std
#include "Powerset.inlines.hh"
#include "Powerset.templates.hh"
#endif // !defined(PPL_Powerset_defs_hh)
|