1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
|
/* Polyhedron class implementation
(non-inline widening-related member functions).
Copyright (C) 2001-2010 Roberto Bagnara <bagnara@cs.unipr.it>
Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com)
This file is part of the Parma Polyhedra Library (PPL).
The PPL is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The PPL is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA.
For the most up-to-date information see the Parma Polyhedra Library
site: http://www.cs.unipr.it/ppl/ . */
#include <ppl-config.h>
#include "Polyhedron.defs.hh"
#include "BHRZ03_Certificate.defs.hh"
#include "Rational_Box.hh"
#include "Scalar_Products.defs.hh"
#include "assert.hh"
#include <iostream>
#include <stdexcept>
#include <deque>
namespace PPL = Parma_Polyhedra_Library;
void
PPL::Polyhedron
::select_CH78_constraints(const Polyhedron& y,
Constraint_System& cs_selection) const {
// Private method: the caller must ensure the following conditions.
PPL_ASSERT(topology() == y.topology()
&& topology() == cs_selection.topology()
&& space_dim == y.space_dim);
PPL_ASSERT(!marked_empty()
&& !has_pending_constraints()
&& generators_are_up_to_date());
PPL_ASSERT(!y.marked_empty()
&& !y.has_something_pending()
&& y.constraints_are_minimized());
// A constraint in `y.con_sys' is copied to `cs_selection'
// if it is satisfied by all the generators of `gen_sys'.
// Note: the loop index `i' goes upward to avoid reversing
// the ordering of the chosen constraints.
for (dimension_type i = 0, end = y.con_sys.num_rows(); i < end; ++i) {
const Constraint& c = y.con_sys[i];
if (gen_sys.satisfied_by_all_generators(c))
cs_selection.insert(c);
}
}
void
PPL::Polyhedron
::select_H79_constraints(const Polyhedron& y,
Constraint_System& cs_selected,
Constraint_System& cs_not_selected) const {
// Private method: the caller must ensure the following conditions
// (beside the inclusion `y <= x').
PPL_ASSERT(topology() == y.topology()
&& topology() == cs_selected.topology()
&& topology() == cs_not_selected.topology());
PPL_ASSERT(space_dim == y.space_dim);
PPL_ASSERT(!marked_empty()
&& !has_pending_generators()
&& constraints_are_up_to_date());
PPL_ASSERT(!y.marked_empty()
&& !y.has_something_pending()
&& y.constraints_are_minimized()
&& y.generators_are_up_to_date());
// FIXME: this is a workaround for NNC polyhedra.
if (!y.is_necessarily_closed()) {
// Force strong minimization of constraints.
y.strongly_minimize_constraints();
// Recompute generators (without compromising constraint minimization).
y.update_generators();
}
// Obtain a sorted copy of `y.sat_g'.
if (!y.sat_g_is_up_to_date())
y.update_sat_g();
Bit_Matrix tmp_sat_g = y.sat_g;
// Remove from `tmp_sat_g' the rows corresponding to tautologies
// (i.e., the positivity or epsilon-bounding constraints):
// this is needed in order to widen the polyhedron and not the
// corresponding homogenized polyhedral cone.
const Constraint_System& y_cs = y.con_sys;
dimension_type num_rows = y_cs.num_rows();
for (dimension_type i = 0; i < num_rows; ++i)
if (y_cs[i].is_tautological()) {
--num_rows;
std::swap(tmp_sat_g[i], tmp_sat_g[num_rows]);
}
tmp_sat_g.rows_erase_to_end(num_rows);
tmp_sat_g.sort_rows();
// A constraint in `con_sys' is copied to `cs_selected'
// if its behavior with respect to `y.gen_sys' is the same
// as that of another constraint in `y.con_sys'.
// otherwise it is copied to `cs_not_selected'.
// Namely, we check whether the saturation row `buffer'
// (built starting from the given constraint and `y.gen_sys')
// is a row of the saturation matrix `tmp_sat_g'.
// CHECKME: the following comment is only applicable when `y.gen_sys'
// is minimized. In that case, the comment suggests that it would be
// possible to use a fast (but incomplete) redundancy test based on
// the number of saturators in `buffer'.
// NOTE: If the considered constraint of `con_sys' does not
// satisfy the saturation rule (see Section \ref prelims), then
// it will not appear in the resulting constraint system,
// because `tmp_sat_g' is built starting from a minimized polyhedron.
// The size of `buffer' will reach sat.num_columns() bits.
Bit_Row buffer;
// Note: the loop index `i' goes upward to avoid reversing
// the ordering of the chosen constraints.
for (dimension_type i = 0, end = con_sys.num_rows(); i < end; ++i) {
const Constraint& ci = con_sys[i];
// The saturation row `buffer' is built considering
// the `i'-th constraint of the polyhedron `x' and
// all the generators of the polyhedron `y'.
buffer.clear();
for (dimension_type j = y.gen_sys.num_rows(); j-- > 0; ) {
const int sp_sgn = Scalar_Products::sign(ci, y.gen_sys[j]);
// We are assuming that `y <= x'.
PPL_ASSERT(sp_sgn >= 0
|| (!is_necessarily_closed()
&& ci.is_strict_inequality()
&& y.gen_sys[j].is_point()));
if (sp_sgn > 0)
buffer.set(j);
}
// We check whether `buffer' is a row of `tmp_sat_g',
// exploiting its sortedness in order to have faster comparisons.
if (tmp_sat_g.sorted_contains(buffer))
cs_selected.insert(ci);
else
cs_not_selected.insert(ci);
}
}
void
PPL::Polyhedron::H79_widening_assign(const Polyhedron& y, unsigned* tp) {
Polyhedron& x = *this;
// Topology compatibility check.
const Topology topol = x.topology();
if (topol != y.topology())
throw_topology_incompatible("H79_widening_assign(y)", "y", y);
// Dimension-compatibility check.
if (x.space_dim != y.space_dim)
throw_dimension_incompatible("H79_widening_assign(y)", "y", y);
#ifndef NDEBUG
{
// We assume that y is contained in or equal to x.
const Polyhedron x_copy = x;
const Polyhedron y_copy = y;
PPL_ASSERT_HEAVY(x_copy.contains(y_copy));
}
#endif
// If any argument is zero-dimensional or empty,
// the H79-widening behaves as the identity function.
if (x.space_dim == 0 || x.marked_empty() || y.marked_empty())
return;
// `y.gen_sys' should be in minimal form and
// `y.sat_g' should be up-to-date.
if (y.is_necessarily_closed()) {
if (!y.minimize())
// `y' is empty: the result is `x'.
return;
}
else {
// Dealing with a NNC polyhedron.
// To obtain a correct reasoning when comparing
// the constraints of `x' with the generators of `y',
// we enforce the inclusion relation holding between
// the two NNC polyhedra `x' and `y' (i.e., `y <= x')
// to also hold for the corresponding eps-representations:
// this is obtained by intersecting the two eps-representations.
Polyhedron& yy = const_cast<Polyhedron&>(y);
yy.intersection_assign(x);
if (yy.is_empty())
// The result is `x'.
return;
}
// If we only have the generators of `x' and the dimensions of
// the two polyhedra are the same, we can compute the standard
// widening by using the specification in [CousotH78], therefore
// avoiding converting from generators to constraints.
if (x.has_pending_generators() || !x.constraints_are_up_to_date()) {
Constraint_System CH78_cs(topol);
x.select_CH78_constraints(y, CH78_cs);
if (CH78_cs.num_rows() == y.con_sys.num_rows()) {
// Having selected all the constraints, the result is `y'.
x = y;
return;
}
// Otherwise, check if `x' and `y' have the same dimension.
// Note that `y.con_sys' is minimized and `CH78_cs' has no redundant
// constraints, since it is a subset of the former.
else if (CH78_cs.num_equalities() == y.con_sys.num_equalities()) {
// Let `x' be defined by the constraints in `CH78_cs'.
Polyhedron CH78(topol, x.space_dim, UNIVERSE);
CH78.add_recycled_constraints(CH78_cs);
// Check whether we are using the widening-with-tokens technique
// and there still are tokens available.
if (tp != 0 && *tp > 0) {
// There are tokens available. If `CH78' is not a subset of `x',
// then it is less precise and we use one of the available tokens.
if (!x.contains(CH78))
--(*tp);
}
else
// No tokens.
std::swap(x, CH78);
PPL_ASSERT_HEAVY(x.OK(true));
return;
}
}
// As the dimension of `x' is strictly greater than the dimension of `y',
// we have to compute the standard widening by selecting a subset of
// the constraints of `x'.
// `x.con_sys' is just required to be up-to-date, because:
// - if `x.con_sys' is unsatisfiable, then by assumption
// also `y' is empty, so that the resulting polyhedron is `x';
// - redundant constraints in `x.con_sys' do not affect the result
// of the widening, because if they are selected they will be
// redundant even in the result.
if (has_pending_generators())
process_pending_generators();
else if (!x.constraints_are_up_to_date())
x.update_constraints();
// Copy into `H79_cs' the constraints of `x' that are common to `y',
// according to the definition of the H79 widening.
Constraint_System H79_cs(topol);
Constraint_System x_minus_H79_cs(topol);
x.select_H79_constraints(y, H79_cs, x_minus_H79_cs);
if (x_minus_H79_cs.has_no_rows())
// We selected all of the constraints of `x',
// thus the result of the widening is `x'.
return;
else {
// We selected a strict subset of the constraints of `x'.
// NOTE: as `x.con_sys' was not necessarily in minimal form,
// this does not imply that the result strictly includes `x'.
// Let `H79' be defined by the constraints in `H79_cs'.
Polyhedron H79(topol, x.space_dim, UNIVERSE);
H79.add_recycled_constraints(H79_cs);
// Check whether we are using the widening-with-tokens technique
// and there still are tokens available.
if (tp != 0 && *tp > 0) {
// There are tokens available. If `H79' is not a subset of `x',
// then it is less precise and we use one of the available tokens.
if (!x.contains(H79))
--(*tp);
}
else
// No tokens.
std::swap(x, H79);
PPL_ASSERT_HEAVY(x.OK(true));
}
}
void
PPL::Polyhedron::limited_H79_extrapolation_assign(const Polyhedron& y,
const Constraint_System& cs,
unsigned* tp) {
Polyhedron& x = *this;
const dimension_type cs_num_rows = cs.num_rows();
// If `cs' is empty, we fall back to ordinary, non-limited widening.
if (cs_num_rows == 0) {
x.H79_widening_assign(y, tp);
return;
}
// Topology compatibility check.
if (x.is_necessarily_closed()) {
if (!y.is_necessarily_closed())
throw_topology_incompatible("limited_H79_extrapolation_assign(y, cs)",
"y", y);
if (cs.has_strict_inequalities())
throw_topology_incompatible("limited_H79_extrapolation_assign(y, cs)",
"cs", cs);
}
else if (y.is_necessarily_closed())
throw_topology_incompatible("limited_H79_extrapolation_assign(y, cs)",
"y", y);
// Dimension-compatibility check.
if (x.space_dim != y.space_dim)
throw_dimension_incompatible("limited_H79_extrapolation_assign(y, cs)",
"y", y);
// `cs' must be dimension-compatible with the two polyhedra.
const dimension_type cs_space_dim = cs.space_dimension();
if (x.space_dim < cs_space_dim)
throw_dimension_incompatible("limited_H79_extrapolation_assign(y, cs)",
"cs", cs);
#ifndef NDEBUG
{
// We assume that y is contained in or equal to x.
const Polyhedron x_copy = x;
const Polyhedron y_copy = y;
PPL_ASSERT_HEAVY(x_copy.contains(y_copy));
}
#endif
if (y.marked_empty())
return;
if (x.marked_empty())
return;
// The limited H79-widening between two polyhedra in a
// zero-dimensional space is a polyhedron in a zero-dimensional
// space, too.
if (x.space_dim == 0)
return;
if (!y.minimize())
// We have just discovered that `y' is empty.
return;
// Update the generators of `x': these are used to select,
// from the constraints in `cs', those that must be added
// to the resulting polyhedron.
if ((x.has_pending_constraints() && !x.process_pending_constraints())
|| (!x.generators_are_up_to_date() && !x.update_generators()))
// We have just discovered that `x' is empty.
return;
Constraint_System new_cs;
// The constraints to be added must be satisfied by all the
// generators of `x'. We can disregard `y' because `y <= x'.
const Generator_System& x_gen_sys = x.gen_sys;
// Iterate upwards here so as to keep the relative ordering of constraints.
// Not really an issue: just aesthetics.
for (dimension_type i = 0; i < cs_num_rows; ++i) {
const Constraint& c = cs[i];
if (x_gen_sys.satisfied_by_all_generators(c))
new_cs.insert(c);
}
x.H79_widening_assign(y, tp);
x.add_recycled_constraints(new_cs);
PPL_ASSERT_HEAVY(OK());
}
void
PPL::Polyhedron::bounded_H79_extrapolation_assign(const Polyhedron& y,
const Constraint_System& cs,
unsigned* tp) {
Rational_Box x_box(*this, ANY_COMPLEXITY);
Rational_Box y_box(y, ANY_COMPLEXITY);
x_box.CC76_widening_assign(y_box);
limited_H79_extrapolation_assign(y, cs, tp);
Constraint_System x_box_cs = x_box.constraints();
add_recycled_constraints(x_box_cs);
}
bool
PPL::Polyhedron
::BHRZ03_combining_constraints(const Polyhedron& y,
const BHRZ03_Certificate& y_cert,
const Polyhedron& H79,
const Constraint_System& x_minus_H79_cs) {
Polyhedron& x = *this;
// It is assumed that `y <= x <= H79'.
PPL_ASSERT(x.topology() == y.topology()
&& x.topology() == H79.topology()
&& x.topology() == x_minus_H79_cs.topology());
PPL_ASSERT(x.space_dim == y.space_dim
&& x.space_dim == H79.space_dim
&& x.space_dim == x_minus_H79_cs.space_dimension());
PPL_ASSERT(!x.marked_empty() && !x.has_something_pending()
&& x.constraints_are_minimized() && x.generators_are_minimized());
PPL_ASSERT(!y.marked_empty() && !y.has_something_pending()
&& y.constraints_are_minimized() && y.generators_are_minimized());
PPL_ASSERT(!H79.marked_empty() && !H79.has_something_pending()
&& H79.constraints_are_minimized() && H79.generators_are_minimized());
// We will choose from `x_minus_H79_cs' many subsets of constraints,
// that will be collected (one at a time) in `combining_cs'.
// For each group collected, we compute an average constraint,
// that will be stored in `new_cs'.
// There is no point in applying this technique when `x_minus_H79_cs'
// has one constraint at most (no ``new'' constraint can be computed).
const dimension_type x_minus_H79_cs_num_rows = x_minus_H79_cs.num_rows();
if (x_minus_H79_cs_num_rows <= 1)
return false;
const Topology topol = x.topology();
Constraint_System combining_cs(topol);
Constraint_System new_cs(topol);
// Consider the points that belong to both `x.gen_sys' and `y.gen_sys'.
// For NNC polyhedra, the role of points is played by closure points.
const bool closed = x.is_necessarily_closed();
for (dimension_type i = y.gen_sys.num_rows(); i-- > 0; ) {
const Generator& g = y.gen_sys[i];
if ((g.is_point() && closed) || (g.is_closure_point() && !closed)) {
// If in `H79.con_sys' there is already an inequality constraint
// saturating this point, then there is no need to produce another
// constraint.
bool lies_on_the_boundary_of_H79 = false;
const Constraint_System& H79_cs = H79.con_sys;
for (dimension_type j = H79_cs.num_rows(); j-- > 0; ) {
const Constraint& c = H79_cs[j];
if (c.is_inequality() && Scalar_Products::sign(c, g) == 0) {
lies_on_the_boundary_of_H79 = true;
break;
}
}
if (lies_on_the_boundary_of_H79)
continue;
// Consider all the constraints in `x_minus_H79_cs'
// that are saturated by the point `g'.
combining_cs.clear();
for (dimension_type j = x_minus_H79_cs_num_rows; j-- > 0; ) {
const Constraint& c = x_minus_H79_cs[j];
if (Scalar_Products::sign(c, g) == 0)
combining_cs.insert(c);
}
// Build a new constraint by combining all the chosen constraints.
const dimension_type combining_cs_num_rows = combining_cs.num_rows();
if (combining_cs_num_rows > 0) {
if (combining_cs_num_rows == 1)
// No combination is needed.
new_cs.insert(combining_cs[0]);
else {
Linear_Expression e(0);
bool strict_inequality = false;
for (dimension_type h = combining_cs_num_rows; h-- > 0; ) {
if (combining_cs[h].is_strict_inequality())
strict_inequality = true;
e += Linear_Expression(combining_cs[h]);
}
if (!e.all_homogeneous_terms_are_zero()) {
if (strict_inequality)
new_cs.insert(e > 0);
else
new_cs.insert(e >= 0);
}
}
}
}
}
// If none of the collected constraints strictly intersects `H79',
// then the technique was unsuccessful.
bool improves_upon_H79 = false;
const Poly_Con_Relation si = Poly_Con_Relation::strictly_intersects();
for (dimension_type i = new_cs.num_rows(); i-- > 0; )
if (H79.relation_with(new_cs[i]) == si) {
improves_upon_H79 = true;
break;
}
if (!improves_upon_H79)
return false;
// The resulting polyhedron is obtained by adding the constraints
// in `new_cs' to polyhedron `H79'.
Polyhedron result = H79;
result.add_recycled_constraints(new_cs);
// Force minimization.
result.minimize();
// Check for stabilization with respect to `y_cert' and improvement
// over `H79'.
if (y_cert.is_stabilizing(result) && !result.contains(H79)) {
// The technique was successful.
std::swap(x, result);
PPL_ASSERT_HEAVY(x.OK(true));
return true;
}
else
// The technique was unsuccessful.
return false;
}
bool
PPL::Polyhedron::BHRZ03_evolving_points(const Polyhedron& y,
const BHRZ03_Certificate& y_cert,
const Polyhedron& H79) {
Polyhedron& x = *this;
// It is assumed that `y <= x <= H79'.
PPL_ASSERT(x.topology() == y.topology()
&& x.topology() == H79.topology());
PPL_ASSERT(x.space_dim == y.space_dim
&& x.space_dim == H79.space_dim);
PPL_ASSERT(!x.marked_empty() && !x.has_something_pending()
&& x.constraints_are_minimized() && x.generators_are_minimized());
PPL_ASSERT(!y.marked_empty() && !y.has_something_pending()
&& y.constraints_are_minimized() && y.generators_are_minimized());
PPL_ASSERT(!H79.marked_empty() && !H79.has_something_pending()
&& H79.constraints_are_minimized() && H79.generators_are_minimized());
// For each point in `x.gen_sys' that is not in `y',
// this technique tries to identify a set of rays that:
// - are included in polyhedron `H79';
// - when added to `y' will subsume the point.
Generator_System candidate_rays;
const dimension_type x_gen_sys_num_rows = x.gen_sys.num_rows();
const dimension_type y_gen_sys_num_rows = y.gen_sys.num_rows();
const bool closed = x.is_necessarily_closed();
for (dimension_type i = x_gen_sys_num_rows; i-- > 0; ) {
Generator& g1 = x.gen_sys[i];
// For C polyhedra, we choose a point of `x.gen_sys'
// that is not included in `y'.
// In the case of NNC polyhedra, we can restrict attention to
// closure points (considering also points will only add redundancy).
if (((g1.is_point() && closed) || (g1.is_closure_point() && !closed))
&& y.relation_with(g1) == Poly_Gen_Relation::nothing()) {
// For each point (resp., closure point) `g2' in `y.gen_sys',
// where `g1' and `g2' are different,
// build the candidate ray `g1 - g2'.
for (dimension_type j = y_gen_sys_num_rows; j-- > 0; ) {
const Generator& g2 = y.gen_sys[j];
if ((g2.is_point() && closed)
|| (g2.is_closure_point() && !closed)) {
PPL_ASSERT(compare(g1, g2) != 0);
Generator ray_from_g2_to_g1 = g1;
ray_from_g2_to_g1.linear_combine(g2, 0);
candidate_rays.insert(ray_from_g2_to_g1);
}
}
}
}
// Be non-intrusive.
Polyhedron result = x;
result.add_recycled_generators(candidate_rays);
result.intersection_assign(H79);
// Force minimization.
result.minimize();
// Check for stabilization with respect to `y_cert' and improvement
// over `H79'.
if (y_cert.is_stabilizing(result) && !result.contains(H79)) {
// The technique was successful.
std::swap(x, result);
PPL_ASSERT_HEAVY(x.OK(true));
return true;
}
else
// The technique was unsuccessful.
return false;
}
bool
PPL::Polyhedron::BHRZ03_evolving_rays(const Polyhedron& y,
const BHRZ03_Certificate& y_cert,
const Polyhedron& H79) {
Polyhedron& x = *this;
// It is assumed that `y <= x <= H79'.
PPL_ASSERT(x.topology() == y.topology()
&& x.topology() == H79.topology());
PPL_ASSERT(x.space_dim == y.space_dim
&& x.space_dim == H79.space_dim);
PPL_ASSERT(!x.marked_empty() && !x.has_something_pending()
&& x.constraints_are_minimized() && x.generators_are_minimized());
PPL_ASSERT(!y.marked_empty() && !y.has_something_pending()
&& y.constraints_are_minimized() && y.generators_are_minimized());
PPL_ASSERT(!H79.marked_empty() && !H79.has_something_pending()
&& H79.constraints_are_minimized() && H79.generators_are_minimized());
const dimension_type x_gen_sys_num_rows = x.gen_sys.num_rows();
const dimension_type y_gen_sys_num_rows = y.gen_sys.num_rows();
// Candidate rays are kept in a temporary generator system.
Generator_System candidate_rays;
PPL_DIRTY_TEMP_COEFFICIENT(tmp);
for (dimension_type i = x_gen_sys_num_rows; i-- > 0; ) {
const Generator& x_g = x.gen_sys[i];
// We choose a ray of `x' that does not belong to `y'.
if (x_g.is_ray() && y.relation_with(x_g) == Poly_Gen_Relation::nothing()) {
for (dimension_type j = y_gen_sys_num_rows; j-- > 0; ) {
const Generator& y_g = y.gen_sys[j];
if (y_g.is_ray()) {
Generator new_ray(x_g);
// Modify `new_ray' according to the evolution of `x_g' with
// respect to `y_g'.
std::deque<bool> considered(x.space_dim + 1);
for (dimension_type k = 1; k < x.space_dim; ++k)
if (!considered[k])
for (dimension_type h = k + 1; h <= x.space_dim; ++h)
if (!considered[h]) {
tmp = x_g[k] * y_g[h];
// The following line optimizes the computation of
// tmp -= x_g[h] * y_g[k];
sub_mul_assign(tmp, x_g[h], y_g[k]);
const int clockwise
= sgn(tmp);
const int first_or_third_quadrant
= sgn(x_g[k]) * sgn(x_g[h]);
switch (clockwise * first_or_third_quadrant) {
case -1:
new_ray[k] = 0;
considered[k] = true;
break;
case 1:
new_ray[h] = 0;
considered[h] = true;
break;
default:
break;
}
}
new_ray.normalize();
candidate_rays.insert(new_ray);
}
}
}
}
// If there are no candidate rays, we cannot obtain stabilization.
if (candidate_rays.has_no_rows())
return false;
// Be non-intrusive.
Polyhedron result = x;
result.add_recycled_generators(candidate_rays);
result.intersection_assign(H79);
// Force minimization.
result.minimize();
// Check for stabilization with respect to `y' and improvement over `H79'.
if (y_cert.is_stabilizing(result) && !result.contains(H79)) {
// The technique was successful.
std::swap(x, result);
PPL_ASSERT_HEAVY(x.OK(true));
return true;
}
else
// The technique was unsuccessful.
return false;
}
void
PPL::Polyhedron::BHRZ03_widening_assign(const Polyhedron& y, unsigned* tp) {
Polyhedron& x = *this;
// Topology compatibility check.
if (x.topology() != y.topology())
throw_topology_incompatible("BHRZ03_widening_assign(y)", "y", y);
// Dimension-compatibility check.
if (x.space_dim != y.space_dim)
throw_dimension_incompatible("BHRZ03_widening_assign(y)", "y", y);
#ifndef NDEBUG
{
// We assume that y is contained in or equal to x.
const Polyhedron x_copy = x;
const Polyhedron y_copy = y;
PPL_ASSERT_HEAVY(x_copy.contains(y_copy));
}
#endif
// If any argument is zero-dimensional or empty,
// the BHRZ03-widening behaves as the identity function.
if (x.space_dim == 0 || x.marked_empty() || y.marked_empty())
return;
// `y.con_sys' and `y.gen_sys' should be in minimal form.
if (!y.minimize())
// `y' is empty: the result is `x'.
return;
// `x.con_sys' and `x.gen_sys' should be in minimal form.
x.minimize();
// Compute certificate info for polyhedron `y'.
BHRZ03_Certificate y_cert(y);
// If the iteration is stabilizing, the resulting polyhedron is `x'.
// At this point, also check if the two polyhedra are the same
// (exploiting the knowledge that `y <= x').
if (y_cert.is_stabilizing(x) || y.contains(x)) {
PPL_ASSERT_HEAVY(OK());
return;
}
// Here the iteration is not immediately stabilizing.
// If we are using the widening-with-tokens technique and
// there are tokens available, use one of them and return `x'.
if (tp != 0 && *tp > 0) {
--(*tp);
PPL_ASSERT_HEAVY(OK());
return;
}
// Copy into `H79_cs' the constraints that are common to `x' and `y',
// according to the definition of the H79 widening.
// The other ones are copied into `x_minus_H79_cs'.
const Topology topol = x.topology();
Constraint_System H79_cs(topol);
Constraint_System x_minus_H79_cs(topol);
x.select_H79_constraints(y, H79_cs, x_minus_H79_cs);
// We cannot have selected all of the rows, since otherwise
// the iteration should have been immediately stabilizing.
PPL_ASSERT(!x_minus_H79_cs.has_no_rows());
// Be careful to obtain the right space dimension
// (because `H79_cs' may be empty).
Polyhedron H79(topol, x.space_dim, UNIVERSE);
H79.add_recycled_constraints(H79_cs);
// Force minimization.
H79.minimize();
// NOTE: none of the following widening heuristics is intrusive:
// they will modify `x' only when returning successfully.
if (x.BHRZ03_combining_constraints(y, y_cert, H79, x_minus_H79_cs))
return;
PPL_ASSERT_HEAVY(H79.OK() && x.OK() && y.OK());
if (x.BHRZ03_evolving_points(y, y_cert, H79))
return;
PPL_ASSERT_HEAVY(H79.OK() && x.OK() && y.OK());
if (x.BHRZ03_evolving_rays(y, y_cert, H79))
return;
PPL_ASSERT_HEAVY(H79.OK() && x.OK() && y.OK());
// No previous technique was successful: fall back to the H79 widening.
std::swap(x, H79);
PPL_ASSERT_HEAVY(x.OK(true));
#ifndef NDEBUG
// The H79 widening is always stabilizing.
PPL_ASSERT(y_cert.is_stabilizing(x));
#endif
}
void
PPL::Polyhedron
::limited_BHRZ03_extrapolation_assign(const Polyhedron& y,
const Constraint_System& cs,
unsigned* tp) {
Polyhedron& x = *this;
const dimension_type cs_num_rows = cs.num_rows();
// If `cs' is empty, we fall back to ordinary, non-limited widening.
if (cs_num_rows == 0) {
x.BHRZ03_widening_assign(y, tp);
return;
}
// Topology compatibility check.
if (x.is_necessarily_closed()) {
if (!y.is_necessarily_closed())
throw_topology_incompatible("limited_BHRZ03_extrapolation_assign(y, cs)",
"y", y);
if (cs.has_strict_inequalities())
throw_topology_incompatible("limited_BHRZ03_extrapolation_assign(y, cs)",
"cs", cs);
}
else if (y.is_necessarily_closed())
throw_topology_incompatible("limited_BHRZ03_extrapolation_assign(y, cs)",
"y", y);
// Dimension-compatibility check.
if (x.space_dim != y.space_dim)
throw_dimension_incompatible("limited_BHRZ03_extrapolation_assign(y, cs)",
"y", y);
// `cs' must be dimension-compatible with the two polyhedra.
const dimension_type cs_space_dim = cs.space_dimension();
if (x.space_dim < cs_space_dim)
throw_dimension_incompatible("limited_BHRZ03_extrapolation_assign(y, cs)",
"cs", cs);
#ifndef NDEBUG
{
// We assume that y is contained in or equal to x.
const Polyhedron x_copy = x;
const Polyhedron y_copy = y;
PPL_ASSERT_HEAVY(x_copy.contains(y_copy));
}
#endif
if (y.marked_empty())
return;
if (x.marked_empty())
return;
// The limited BHRZ03-widening between two polyhedra in a
// zero-dimensional space is a polyhedron in a zero-dimensional
// space, too.
if (x.space_dim == 0)
return;
if (!y.minimize())
// We have just discovered that `y' is empty.
return;
// Update the generators of `x': these are used to select,
// from the constraints in `cs', those that must be added
// to the resulting polyhedron.
if ((x.has_pending_constraints() && !x.process_pending_constraints())
|| (!x.generators_are_up_to_date() && !x.update_generators()))
// We have just discovered that `x' is empty.
return;
Constraint_System new_cs;
// The constraints to be added must be satisfied by all the
// generators of `x'. We can disregard `y' because `y <= x'.
const Generator_System& x_gen_sys = x.gen_sys;
// Iterate upwards here so as to keep the relative ordering of constraints.
// Not really an issue: just aesthetics.
for (dimension_type i = 0; i < cs_num_rows; ++i) {
const Constraint& c = cs[i];
if (x_gen_sys.satisfied_by_all_generators(c))
new_cs.insert(c);
}
x.BHRZ03_widening_assign(y, tp);
x.add_recycled_constraints(new_cs);
PPL_ASSERT_HEAVY(OK());
}
void
PPL::Polyhedron
::bounded_BHRZ03_extrapolation_assign(const Polyhedron& y,
const Constraint_System& cs,
unsigned* tp) {
Rational_Box x_box(*this, ANY_COMPLEXITY);
Rational_Box y_box(y, ANY_COMPLEXITY);
x_box.CC76_widening_assign(y_box);
limited_BHRZ03_extrapolation_assign(y, cs, tp);
Constraint_System x_box_cs = x_box.constraints();
add_recycled_constraints(x_box_cs);
}
|