summaryrefslogtreecommitdiff
path: root/src/Polyhedron_nonpublic.cc
blob: b1f0bba605db946a5ec68135f83e9acb04dc937e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
/* Polyhedron class implementation
   (non-inline private or protected functions).
   Copyright (C) 2001-2010 Roberto Bagnara <bagnara@cs.unipr.it>
   Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com)

This file is part of the Parma Polyhedra Library (PPL).

The PPL is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

The PPL is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA.

For the most up-to-date information see the Parma Polyhedra Library
site: http://www.cs.unipr.it/ppl/ . */

#include <ppl-config.h>

#include "Polyhedron.defs.hh"
#include "Scalar_Products.defs.hh"
#include "assert.hh"
#include <string>
#include <iostream>
#include <sstream>
#include <stdexcept>

#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \ingroup PPL_defines
  \brief
  Controls the laziness level of the implementation.

  Temporarily used in a few of the function implementations to
  switch to an even more lazy algorithm. To be removed as soon as
  we collect enough information to decide which is the better
  implementation alternative.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
#define BE_LAZY 1

namespace PPL = Parma_Polyhedra_Library;

PPL::Polyhedron::Polyhedron(const Topology topol,
			    const dimension_type num_dimensions,
			    const Degenerate_Element kind)
  : con_sys(topol),
    gen_sys(topol),
    sat_c(),
    sat_g() {
  // Protecting against space dimension overflow is up to the caller.
  PPL_ASSERT(num_dimensions <= max_space_dimension());

  if (kind == EMPTY)
    status.set_empty();
  else if (num_dimensions > 0) {
    con_sys.add_low_level_constraints();
    con_sys.adjust_topology_and_space_dimension(topol, num_dimensions);
    set_constraints_minimized();
  }
  space_dim = num_dimensions;
  PPL_ASSERT_HEAVY(OK());
}

PPL::Polyhedron::Polyhedron(const Polyhedron& y, Complexity_Class)
  : con_sys(y.topology()),
    gen_sys(y.topology()),
    status(y.status),
    space_dim(y.space_dim) {
  // Being a protected method, we simply assert that topologies do match.
  PPL_ASSERT(topology() == y.topology());
  if (y.constraints_are_up_to_date())
    con_sys.assign_with_pending(y.con_sys);
  if (y.generators_are_up_to_date())
    gen_sys.assign_with_pending(y.gen_sys);
  if (y.sat_c_is_up_to_date())
    sat_c = y.sat_c;
  if (y.sat_g_is_up_to_date())
    sat_g = y.sat_g;
}

PPL::Polyhedron::Polyhedron(const Topology topol, const Constraint_System& ccs)
  : con_sys(topol),
    gen_sys(topol),
    sat_c(),
    sat_g() {
  // Protecting against space dimension overflow is up to the caller.
  PPL_ASSERT(ccs.space_dimension() <= max_space_dimension());

  // TODO: this implementation is just an executable specification.
  Constraint_System cs = ccs;

  // Try to adapt `cs' to the required topology.
  const dimension_type cs_space_dim = cs.space_dimension();
  if (!cs.adjust_topology_and_space_dimension(topol, cs_space_dim))
    throw_topology_incompatible((topol == NECESSARILY_CLOSED)
				? "C_Polyhedron(cs)"
				: "NNC_Polyhedron(cs)", "cs", cs);

  // Set the space dimension.
  space_dim = cs_space_dim;

  if (space_dim > 0) {
    // Stealing the rows from `cs'.
    std::swap(con_sys, cs);
    if (con_sys.num_pending_rows() > 0) {
      // Even though `cs' has pending constraints, since the generators
      // of the polyhedron are not up-to-date, the polyhedron cannot
      // have pending constraints. By integrating the pending part
      // of `con_sys' we may loose sortedness.
      con_sys.unset_pending_rows();
      con_sys.set_sorted(false);
    }
    con_sys.add_low_level_constraints();
    set_constraints_up_to_date();
  }
  else {
    // Here `space_dim == 0'.
    if (cs.num_columns() > 0)
      // See if an inconsistent constraint has been passed.
      for (dimension_type i = cs.num_rows(); i-- > 0; )
	if (cs[i].is_inconsistent()) {
	  // Inconsistent constraint found: the polyhedron is empty.
	  set_empty();
	  break;
	}
  }
  PPL_ASSERT_HEAVY(OK());
}

PPL::Polyhedron::Polyhedron(const Topology topol,
			    Constraint_System& cs,
			    Recycle_Input)
  : con_sys(topol),
    gen_sys(topol),
    sat_c(),
    sat_g() {
  // Protecting against space dimension overflow is up to the caller.
  PPL_ASSERT(cs.space_dimension() <= max_space_dimension());

  // Try to adapt `cs' to the required topology.
  const dimension_type cs_space_dim = cs.space_dimension();
  if (!cs.adjust_topology_and_space_dimension(topol, cs_space_dim))
    throw_topology_incompatible((topol == NECESSARILY_CLOSED)
				? "C_Polyhedron(cs, recycle)"
				: "NNC_Polyhedron(cs, recycle)", "cs", cs);

  // Set the space dimension.
  space_dim = cs_space_dim;

  if (space_dim > 0) {
    // Stealing the rows from `cs'.
    std::swap(con_sys, cs);
    if (con_sys.num_pending_rows() > 0) {
      // Even though `cs' has pending constraints, since the generators
      // of the polyhedron are not up-to-date, the polyhedron cannot
      // have pending constraints. By integrating the pending part
      // of `con_sys' we may loose sortedness.
      con_sys.unset_pending_rows();
      con_sys.set_sorted(false);
    }
    con_sys.add_low_level_constraints();
    set_constraints_up_to_date();
  }
  else {
    // Here `space_dim == 0'.
    if (cs.num_columns() > 0)
      // See if an inconsistent constraint has been passed.
      for (dimension_type i = cs.num_rows(); i-- > 0; )
	if (cs[i].is_inconsistent()) {
	  // Inconsistent constraint found: the polyhedron is empty.
	  set_empty();
	  break;
	}
  }
  PPL_ASSERT_HEAVY(OK());
}

PPL::Polyhedron::Polyhedron(const Topology topol, const Generator_System& cgs)
  : con_sys(topol),
    gen_sys(topol),
    sat_c(),
    sat_g() {
  // Protecting against space dimension overflow is up to the caller.
  PPL_ASSERT(cgs.space_dimension() <= max_space_dimension());

  // TODO: this implementation is just an executable specification.
  Generator_System gs = cgs;

  // An empty set of generators defines the empty polyhedron.
  if (gs.has_no_rows()) {
    space_dim = gs.space_dimension();
    status.set_empty();
    PPL_ASSERT_HEAVY(OK());
    return;
  }

  // Non-empty valid generator systems have a supporting point, at least.
  if (!gs.has_points())
    throw_invalid_generators((topol == NECESSARILY_CLOSED)
			     ? "C_Polyhedron(gs)"
			     : "NNC_Polyhedron(gs)", "gs");

  const dimension_type gs_space_dim = gs.space_dimension();
  // Try to adapt `gs' to the required topology.
  if (!gs.adjust_topology_and_space_dimension(topol, gs_space_dim))
    throw_topology_incompatible((topol == NECESSARILY_CLOSED)
				? "C_Polyhedron(gs)"
				: "NNC_Polyhedron(gs)", "gs", gs);

  if (gs_space_dim > 0) {
    // Stealing the rows from `gs'.
    std::swap(gen_sys, gs);
    // In a generator system describing a NNC polyhedron,
    // for each point we must also have the corresponding closure point.
    if (topol == NOT_NECESSARILY_CLOSED)
      gen_sys.add_corresponding_closure_points();
    if (gen_sys.num_pending_rows() > 0) {
      // Even though `gs' has pending generators, since the constraints
      // of the polyhedron are not up-to-date, the polyhedron cannot
      // have pending generators. By integrating the pending part
      // of `gen_sys' we may loose sortedness.
      gen_sys.unset_pending_rows();
      gen_sys.set_sorted(false);
    }
    // Generators are now up-to-date.
    set_generators_up_to_date();

    // Set the space dimension.
    space_dim = gs_space_dim;
    PPL_ASSERT_HEAVY(OK());
    return;
  }

  // Here `gs.num_rows > 0' and `gs_space_dim == 0':
  // we already checked for both the topology-compatibility
  // and the supporting point.
  space_dim = 0;
  PPL_ASSERT_HEAVY(OK());
}

PPL::Polyhedron::Polyhedron(const Topology topol,
			    Generator_System& gs,
			    Recycle_Input)
  : con_sys(topol),
    gen_sys(topol),
    sat_c(),
    sat_g() {
  // Protecting against space dimension overflow is up to the caller.
  PPL_ASSERT(gs.space_dimension() <= max_space_dimension());

  // An empty set of generators defines the empty polyhedron.
  if (gs.has_no_rows()) {
    space_dim = gs.space_dimension();
    status.set_empty();
    PPL_ASSERT_HEAVY(OK());
    return;
  }

  // Non-empty valid generator systems have a supporting point, at least.
  if (!gs.has_points())
    throw_invalid_generators((topol == NECESSARILY_CLOSED)
			     ? "C_Polyhedron(gs, recycle)"
			     : "NNC_Polyhedron(gs, recycle)", "gs");

  const dimension_type gs_space_dim = gs.space_dimension();
  // Try to adapt `gs' to the required topology.
  if (!gs.adjust_topology_and_space_dimension(topol, gs_space_dim))
    throw_topology_incompatible((topol == NECESSARILY_CLOSED)
				? "C_Polyhedron(gs, recycle)"
				: "NNC_Polyhedron(gs, recycle)", "gs", gs);

  if (gs_space_dim > 0) {
    // Stealing the rows from `gs'.
    std::swap(gen_sys, gs);
    // In a generator system describing a NNC polyhedron,
    // for each point we must also have the corresponding closure point.
    if (topol == NOT_NECESSARILY_CLOSED)
      gen_sys.add_corresponding_closure_points();
    if (gen_sys.num_pending_rows() > 0) {
      // Even though `gs' has pending generators, since the constraints
      // of the polyhedron are not up-to-date, the polyhedron cannot
      // have pending generators. By integrating the pending part
      // of `gen_sys' we may loose sortedness.
      gen_sys.unset_pending_rows();
      gen_sys.set_sorted(false);
    }
    // Generators are now up-to-date.
    set_generators_up_to_date();

    // Set the space dimension.
    space_dim = gs_space_dim;
    PPL_ASSERT_HEAVY(OK());
    return;
  }

  // Here `gs.num_rows > 0' and `gs_space_dim == 0':
  // we already checked for both the topology-compatibility
  // and the supporting point.
  space_dim = 0;
  PPL_ASSERT_HEAVY(OK());
}

PPL::Polyhedron&
PPL::Polyhedron::operator=(const Polyhedron& y) {
  // Being a protected method, we simply assert that topologies do match.
  PPL_ASSERT(topology() == y.topology());
  space_dim = y.space_dim;
  if (y.marked_empty())
    set_empty();
  else if (space_dim == 0)
    set_zero_dim_univ();
  else {
    status = y.status;
    if (y.constraints_are_up_to_date())
      con_sys.assign_with_pending(y.con_sys);
    if (y.generators_are_up_to_date())
      gen_sys.assign_with_pending(y.gen_sys);
    if (y.sat_c_is_up_to_date())
      sat_c = y.sat_c;
    if (y.sat_g_is_up_to_date())
      sat_g = y.sat_g;
  }
  return *this;
}

PPL::Polyhedron::Three_Valued_Boolean
PPL::Polyhedron::quick_equivalence_test(const Polyhedron& y) const {
  // Private method: the caller must ensure the following.
  PPL_ASSERT(topology() == y.topology());
  PPL_ASSERT(space_dim == y.space_dim);
  PPL_ASSERT(!marked_empty() && !y.marked_empty() && space_dim > 0);

  const Polyhedron& x = *this;

  if (x.is_necessarily_closed()) {
    if (!x.has_something_pending() && !y.has_something_pending()) {
      bool css_normalized = false;
      if (x.constraints_are_minimized() && y.constraints_are_minimized()) {
	// Equivalent minimized constraint systems have:
	//  - the same number of constraints; ...
	if (x.con_sys.num_rows() != y.con_sys.num_rows())
	  return Polyhedron::TVB_FALSE;
	//  - the same number of equalities; ...
	dimension_type x_num_equalities = x.con_sys.num_equalities();
	if (x_num_equalities != y.con_sys.num_equalities())
	  return Polyhedron::TVB_FALSE;
	//  - if there are no equalities, they have the same constraints.
	//    Delay this test: try cheaper tests on generators first.
	css_normalized = (x_num_equalities == 0);
      }

      if (x.generators_are_minimized() && y.generators_are_minimized()) {
	// Equivalent minimized generator systems have:
	//  - the same number of generators; ...
	if (x.gen_sys.num_rows() != y.gen_sys.num_rows())
	  return Polyhedron::TVB_FALSE;
	//  - the same number of lines; ...
	const dimension_type x_num_lines = x.gen_sys.num_lines();
	if (x_num_lines != y.gen_sys.num_lines())
	  return Polyhedron::TVB_FALSE;
	//  - if there are no lines, they have the same generators.
	if (x_num_lines == 0) {
	  // Sort the two systems and check for syntactic identity.
	  x.obtain_sorted_generators();
	  y.obtain_sorted_generators();
	  if (x.gen_sys == y.gen_sys)
	    return Polyhedron::TVB_TRUE;
	  else
	    return Polyhedron::TVB_FALSE;
	}
      }

      if (css_normalized) {
	// Sort the two systems and check for identity.
	x.obtain_sorted_constraints();
	y.obtain_sorted_constraints();
	if (x.con_sys == y.con_sys)
	    return Polyhedron::TVB_TRUE;
	  else
	    return Polyhedron::TVB_FALSE;
      }
    }
  }
  return Polyhedron::TVB_DONT_KNOW;
}

bool
PPL::Polyhedron::is_included_in(const Polyhedron& y) const {
  // Private method: the caller must ensure the following.
  PPL_ASSERT(topology() == y.topology());
  PPL_ASSERT(space_dim == y.space_dim);
  PPL_ASSERT(!marked_empty() && !y.marked_empty() && space_dim > 0);

  const Polyhedron& x = *this;

  // `x' cannot have pending constraints, because we need its generators.
  if (x.has_pending_constraints() && !x.process_pending_constraints())
    return true;
  // `y' cannot have pending generators, because we need its constraints.
  if (y.has_pending_generators())
    y.process_pending_generators();

#if BE_LAZY
  if (!x.generators_are_up_to_date() && !x.update_generators())
    return true;
  if (!y.constraints_are_up_to_date())
    y.update_constraints();
#else
  if (!x.generators_are_minimized())
    x.minimize();
  if (!y.constraints_are_minimized())
    y.minimize();
#endif

  PPL_ASSERT_HEAVY(x.OK());
  PPL_ASSERT_HEAVY(y.OK());

  const Generator_System& gs = x.gen_sys;
  const Constraint_System& cs = y.con_sys;

  if (x.is_necessarily_closed())
    // When working with necessarily closed polyhedra,
    // `x' is contained in `y' if and only if all the generators of `x'
    // satisfy all the inequalities and saturate all the equalities of `y'.
    // This comes from the definition of a polyhedron as the set of
    // vectors satisfying a constraint system and the fact that all
    // vectors in `x' can be obtained by suitably combining its generators.
    for (dimension_type i = cs.num_rows(); i-- > 0; ) {
      const Constraint& c = cs[i];
      if (c.is_inequality()) {
	for (dimension_type j = gs.num_rows(); j-- > 0; ) {
	  const Generator& g = gs[j];
	  const int sp_sign = Scalar_Products::sign(c, g);
	  if (g.is_line()) {
	    if (sp_sign != 0)
	      return false;
	  }
	  else
	    // `g' is a ray or a point.
	    if (sp_sign < 0)
	      return false;
	}
      }
      else {
	// `c' is an equality.
	for (dimension_type j = gs.num_rows(); j-- > 0; )
	  if (Scalar_Products::sign(c, gs[j]) != 0)
	    return false;
      }
    }
  else {
    // Here we have an NNC polyhedron: using the reduced scalar product,
    // which ignores the epsilon coefficient.
    for (dimension_type i = cs.num_rows(); i-- > 0; ) {
      const Constraint& c = cs[i];
      switch (c.type()) {
      case Constraint::NONSTRICT_INEQUALITY:
	for (dimension_type j = gs.num_rows(); j-- > 0; ) {
	  const Generator& g = gs[j];
	  const int sp_sign = Scalar_Products::reduced_sign(c, g);
	  if (g.is_line()) {
	    if (sp_sign != 0)
	      return false;
	  }
	  else
	    // `g' is a ray or a point or a closure point.
	    if (sp_sign < 0)
	      return false;
	}
	break;
      case Constraint::EQUALITY:
	for (dimension_type j = gs.num_rows(); j-- > 0; )
	  if (Scalar_Products::reduced_sign(c, gs[j]) != 0)
	    return false;
	break;
      case Constraint::STRICT_INEQUALITY:
	for (dimension_type j = gs.num_rows(); j-- > 0; ) {
	  const Generator& g = gs[j];
	  const int sp_sign = Scalar_Products::reduced_sign(c, g);
	  switch (g.type()) {
	  case Generator::POINT:
	    // If a point violates or saturates a strict inequality
	    // (when ignoring the epsilon coefficients) then it is
	    // not included in the polyhedron.
	    if (sp_sign <= 0)
	      return false;
	    break;
	  case Generator::LINE:
	    // Lines have to saturate all constraints.
	    if (sp_sign != 0)
	      return false;
	    break;
	  case Generator::RAY:
	    // Intentionally fall through.
	  case Generator::CLOSURE_POINT:
	    // The generator is a ray or closure point: usual test.
	    if (sp_sign < 0)
	      return false;
	    break;
	  }
	}
	break;
      }
    }
  }

  // Inclusion holds.
  return true;
}

bool
PPL::Polyhedron::bounds(const Linear_Expression& expr,
			const bool from_above) const {
  // The dimension of `expr' should not be greater than the dimension
  // of `*this'.
  const dimension_type expr_space_dim = expr.space_dimension();
  if (space_dim < expr_space_dim)
    throw_dimension_incompatible((from_above
				  ? "bounds_from_above(e)"
				  : "bounds_from_below(e)"), "e", expr);

  // A zero-dimensional or empty polyhedron bounds everything.
  if (space_dim == 0
      || marked_empty()
      || (has_pending_constraints() && !process_pending_constraints())
      || (!generators_are_up_to_date() && !update_generators()))
    return true;

  // The polyhedron has updated, possibly pending generators.
  for (dimension_type i = gen_sys.num_rows(); i-- > 0; ) {
    const Generator& g = gen_sys[i];
    // Only lines and rays in `*this' can cause `expr' to be unbounded.
    if (g.is_line_or_ray()) {
      const int sp_sign = Scalar_Products::homogeneous_sign(expr, g);
      if (sp_sign != 0
	  && (g.is_line()
	      || (from_above && sp_sign > 0)
	      || (!from_above && sp_sign < 0)))
	// `*this' does not bound `expr'.
	return false;
    }
  }
  // No sources of unboundedness have been found for `expr'
  // in the given direction.
  return true;
}

bool
PPL::Polyhedron::max_min(const Linear_Expression& expr,
			 const bool maximize,
			 Coefficient& ext_n, Coefficient& ext_d,
			 bool& included,
			 Generator& g) const {
  // The dimension of `expr' should not be greater than the dimension
  // of `*this'.
  const dimension_type expr_space_dim = expr.space_dimension();
  if (space_dim < expr_space_dim)
    throw_dimension_incompatible((maximize
				  ? "maximize(e, ...)"
				  : "minimize(e, ...)"), "e", expr);

  // Deal with zero-dim polyhedra first.
  if (space_dim == 0) {
    if (marked_empty())
      return false;
    else {
      ext_n = expr.inhomogeneous_term();
      ext_d = 1;
      included = true;
      g = point();
      return true;
    }
  }

  // For an empty polyhedron we simply return false.
  if (marked_empty()
      || (has_pending_constraints() && !process_pending_constraints())
      || (!generators_are_up_to_date() && !update_generators()))
    return false;

  // The polyhedron has updated, possibly pending generators.
  // The following loop will iterate through the generator
  // to find the extremum.
  PPL_DIRTY_TEMP0(mpq_class, extremum);

  // True if we have no other candidate extremum to compare with.
  bool first_candidate = true;

  // To store the position of the current candidate extremum.
  PPL_UNINITIALIZED(dimension_type, ext_position);

  // Whether the current candidate extremum is included or not.
  PPL_UNINITIALIZED(bool, ext_included);

  PPL_DIRTY_TEMP_COEFFICIENT(sp);
  for (dimension_type i = gen_sys.num_rows(); i-- > 0; ) {
    const Generator& gen_sys_i = gen_sys[i];
    Scalar_Products::homogeneous_assign(sp, expr, gen_sys_i);
    // Lines and rays in `*this' can cause `expr' to be unbounded.
    if (gen_sys_i.is_line_or_ray()) {
      const int sp_sign = sgn(sp);
      if (sp_sign != 0
	  && (gen_sys_i.is_line()
	      || (maximize && sp_sign > 0)
	      || (!maximize && sp_sign < 0)))
	// `expr' is unbounded in `*this'.
	return false;
    }
    else {
      // We have a point or a closure point.
      PPL_ASSERT(gen_sys_i.is_point() || gen_sys_i.is_closure_point());
      // Notice that we are ignoring the constant term in `expr' here.
      // We will add it to the extremum as soon as we find it.
      PPL_DIRTY_TEMP0(mpq_class, candidate);
      assign_r(candidate.get_num(), sp, ROUND_NOT_NEEDED);
      assign_r(candidate.get_den(), gen_sys_i[0], ROUND_NOT_NEEDED);
      candidate.canonicalize();
      const bool g_is_point = gen_sys_i.is_point();
      if (first_candidate
	  || (maximize
	      && (candidate > extremum
		  || (g_is_point
		      && !ext_included
		      && candidate == extremum)))
	  || (!maximize
	      && (candidate < extremum
		  || (g_is_point
		      && !ext_included
		      && candidate == extremum)))) {
	// We have a (new) candidate extremum.
	first_candidate = false;
	extremum = candidate;
	ext_position = i;
	ext_included = g_is_point;
      }
    }
  }

  // Add in the constant term in `expr'.
  PPL_DIRTY_TEMP0(mpz_class, n);
  assign_r(n, expr.inhomogeneous_term(), ROUND_NOT_NEEDED);
  extremum += n;

  // The polyhedron is bounded in the right direction and we have
  // computed the extremum: write the result into the caller's structures.
  PPL_ASSERT(!first_candidate);
  // FIXME: avoid these temporaries, if possible.
  // This can be done adding an `assign' function working on native
  // and checked or an operator= that have on one side a checked and
  // on the other a native or checked.
  // The reason why now we can't use operator= is the fact that we
  // still can have Coefficient defined to mpz_class (and not
  // Checked_Number<mpz_class>).
  ext_n = Coefficient(extremum.get_num());
  ext_d = Coefficient(extremum.get_den());
  included = ext_included;
  g = gen_sys[ext_position];

  return true;
}

void
PPL::Polyhedron::set_zero_dim_univ() {
  status.set_zero_dim_univ();
  space_dim = 0;
  con_sys.clear();
  gen_sys.clear();
}

void
PPL::Polyhedron::set_empty() {
  status.set_empty();
  // The polyhedron is empty: we can thus throw away everything.
  con_sys.clear();
  gen_sys.clear();
  sat_c.clear();
  sat_g.clear();
}

bool
PPL::Polyhedron::process_pending_constraints() const {
  PPL_ASSERT(space_dim > 0 && !marked_empty());
  PPL_ASSERT(has_pending_constraints() && !has_pending_generators());

  Polyhedron& x = const_cast<Polyhedron&>(*this);

  // Integrate the pending part of the system of constraints and minimize.
  // We need `sat_c' up-to-date and `con_sys' sorted (together with `sat_c').
  if (!x.sat_c_is_up_to_date())
    x.sat_c.transpose_assign(x.sat_g);
  if (!x.con_sys.is_sorted())
    x.obtain_sorted_constraints_with_sat_c();
  // We sort in place the pending constraints, erasing those constraints
  // that also occur in the non-pending part of `con_sys'.
  x.con_sys.sort_pending_and_remove_duplicates();
  if (x.con_sys.num_pending_rows() == 0) {
    // All pending constraints were duplicates.
    x.clear_pending_constraints();
    PPL_ASSERT_HEAVY(OK(true));
    return true;
  }

  const bool empty = add_and_minimize(true, x.con_sys, x.gen_sys, x.sat_c);
  PPL_ASSERT(x.con_sys.num_pending_rows() == 0);

  if (empty)
    x.set_empty();
  else {
    x.clear_pending_constraints();
    x.clear_sat_g_up_to_date();
    x.set_sat_c_up_to_date();
  }
  PPL_ASSERT_HEAVY(OK(!empty));
  return !empty;
}

void
PPL::Polyhedron::process_pending_generators() const {
  PPL_ASSERT(space_dim > 0 && !marked_empty());
  PPL_ASSERT(has_pending_generators() && !has_pending_constraints());

  Polyhedron& x = const_cast<Polyhedron&>(*this);

  // Integrate the pending part of the system of generators and minimize.
  // We need `sat_g' up-to-date and `gen_sys' sorted (together with `sat_g').
  if (!x.sat_g_is_up_to_date())
    x.sat_g.transpose_assign(x.sat_c);
  if (!x.gen_sys.is_sorted())
    x.obtain_sorted_generators_with_sat_g();
  // We sort in place the pending generators, erasing those generators
  // that also occur in the non-pending part of `gen_sys'.
  x.gen_sys.sort_pending_and_remove_duplicates();
  if (x.gen_sys.num_pending_rows() == 0) {
    // All pending generators were duplicates.
    x.clear_pending_generators();
    PPL_ASSERT_HEAVY(OK(true));
    return;
  }

  add_and_minimize(false, x.gen_sys, x.con_sys, x.sat_g);
  PPL_ASSERT(x.gen_sys.num_pending_rows() == 0);

  x.clear_pending_generators();
  x.clear_sat_c_up_to_date();
  x.set_sat_g_up_to_date();
}

void
PPL::Polyhedron::remove_pending_to_obtain_constraints() const {
  PPL_ASSERT(has_something_pending());

  Polyhedron& x = const_cast<Polyhedron&>(*this);

  // If the polyhedron has pending constraints, simply unset them.
  if (x.has_pending_constraints()) {
    // Integrate the pending constraints, which are possibly not sorted.
    x.con_sys.unset_pending_rows();
    x.con_sys.set_sorted(false);
    x.clear_pending_constraints();
    x.clear_constraints_minimized();
    x.clear_generators_up_to_date();
  }
  else {
    PPL_ASSERT(x.has_pending_generators());
    // We must process the pending generators and obtain the
    // corresponding system of constraints.
    x.process_pending_generators();
  }
  PPL_ASSERT_HEAVY(OK(true));
}

bool
PPL::Polyhedron::remove_pending_to_obtain_generators() const {
  PPL_ASSERT(has_something_pending());

  Polyhedron& x = const_cast<Polyhedron&>(*this);

  // If the polyhedron has pending generators, simply unset them.
  if (x.has_pending_generators()) {
    // Integrate the pending generators, which are possibly not sorted.
    x.gen_sys.unset_pending_rows();
    x.gen_sys.set_sorted(false);
    x.clear_pending_generators();
    x.clear_generators_minimized();
    x.clear_constraints_up_to_date();
    PPL_ASSERT_HEAVY(OK(true));
    return true;
  }
  else {
    PPL_ASSERT(x.has_pending_constraints());
    // We must integrate the pending constraints and obtain the
    // corresponding system of generators.
    return x.process_pending_constraints();
  }
}

void
PPL::Polyhedron::update_constraints() const {
  PPL_ASSERT(space_dim > 0);
  PPL_ASSERT(!marked_empty());
  PPL_ASSERT(generators_are_up_to_date());
  // We assume the polyhedron has no pending constraints or generators.
  PPL_ASSERT(!has_something_pending());

  Polyhedron& x = const_cast<Polyhedron&>(*this);
  minimize(false, x.gen_sys, x.con_sys, x.sat_c);
  // `sat_c' is the only saturation matrix up-to-date.
  x.set_sat_c_up_to_date();
  x.clear_sat_g_up_to_date();
  // The system of constraints and the system of generators
  // are minimized.
  x.set_constraints_minimized();
  x.set_generators_minimized();
}

bool
PPL::Polyhedron::update_generators() const {
  PPL_ASSERT(space_dim > 0);
  PPL_ASSERT(!marked_empty());
  PPL_ASSERT(constraints_are_up_to_date());
  // We assume the polyhedron has no pending constraints or generators.
  PPL_ASSERT(!has_something_pending());

  Polyhedron& x = const_cast<Polyhedron&>(*this);
  // If the system of constraints is not consistent the
  // polyhedron is empty.
  const bool empty = minimize(true, x.con_sys, x.gen_sys, x.sat_g);
  if (empty)
    x.set_empty();
  else {
    // `sat_g' is the only saturation matrix up-to-date.
    x.set_sat_g_up_to_date();
    x.clear_sat_c_up_to_date();
    // The system of constraints and the system of generators
    // are minimized.
    x.set_constraints_minimized();
    x.set_generators_minimized();
  }
  return !empty;
}

void
PPL::Polyhedron::update_sat_c() const {
  PPL_ASSERT(constraints_are_minimized());
  PPL_ASSERT(generators_are_minimized());
  PPL_ASSERT(!sat_c_is_up_to_date());

  // We only consider non-pending rows.
  const dimension_type csr = con_sys.first_pending_row();
  const dimension_type gsr = gen_sys.first_pending_row();
  Polyhedron& x = const_cast<Polyhedron&>(*this);

  // The columns of `sat_c' represent the constraints and
  // its rows represent the generators: resize accordingly.
  x.sat_c.resize(gsr, csr);
  for (dimension_type i = gsr; i-- > 0; )
    for (dimension_type j = csr; j-- > 0; ) {
      const int sp_sign = Scalar_Products::sign(con_sys[j], gen_sys[i]);
      // The negativity of this scalar product would mean
      // that the generator `gen_sys[i]' violates the constraint
      // `con_sys[j]' and it is not possible because both generators
      // and constraints are up-to-date.
      PPL_ASSERT(sp_sign >= 0);
      if (sp_sign > 0)
	// `gen_sys[i]' satisfies (without saturate) `con_sys[j]'.
	x.sat_c[i].set(j);
      else
	// `gen_sys[i]' saturates `con_sys[j]'.
	x.sat_c[i].clear(j);
    }
  x.set_sat_c_up_to_date();
}

void
PPL::Polyhedron::update_sat_g() const {
  PPL_ASSERT(constraints_are_minimized());
  PPL_ASSERT(generators_are_minimized());
  PPL_ASSERT(!sat_g_is_up_to_date());

  // We only consider non-pending rows.
  const dimension_type csr = con_sys.first_pending_row();
  const dimension_type gsr = gen_sys.first_pending_row();
  Polyhedron& x = const_cast<Polyhedron&>(*this);

  // The columns of `sat_g' represent generators and its
  // rows represent the constraints: resize accordingly.
  x.sat_g.resize(csr, gsr);
  for (dimension_type i = csr; i-- > 0; )
    for (dimension_type j = gsr; j-- > 0; ) {
      const int sp_sign = Scalar_Products::sign(con_sys[i], gen_sys[j]);
      // The negativity of this scalar product would mean
      // that the generator `gen_sys[j]' violates the constraint
      // `con_sys[i]' and it is not possible because both generators
      // and constraints are up-to-date.
      PPL_ASSERT(sp_sign >= 0);
      if (sp_sign > 0)
	// `gen_sys[j]' satisfies (without saturate) `con_sys[i]'.
	x.sat_g[i].set(j);
      else
	// `gen_sys[j]' saturates `con_sys[i]'.
	x.sat_g[i].clear(j);
    }
  x.set_sat_g_up_to_date();
}

void
PPL::Polyhedron::obtain_sorted_constraints() const {
  PPL_ASSERT(constraints_are_up_to_date());
  // `con_sys' will be sorted up to `index_first_pending'.
  Polyhedron& x = const_cast<Polyhedron&>(*this);
  if (!x.con_sys.is_sorted()) {
    if (x.sat_g_is_up_to_date()) {
      // Sorting constraints keeping `sat_g' consistent.
      x.con_sys.sort_and_remove_with_sat(x.sat_g);
      // `sat_c' is not up-to-date anymore.
      x.clear_sat_c_up_to_date();
    }
    else if (x.sat_c_is_up_to_date()) {
      // Using `sat_c' to obtain `sat_g', then it is like previous case.
      x.sat_g.transpose_assign(x.sat_c);
      x.con_sys.sort_and_remove_with_sat(x.sat_g);
      x.set_sat_g_up_to_date();
      x.clear_sat_c_up_to_date();
    }
    else
      // If neither `sat_g' nor `sat_c' are up-to-date,
      // we just sort the constraints.
      x.con_sys.sort_rows();
  }

  PPL_ASSERT(con_sys.check_sorted());
}

void
PPL::Polyhedron::obtain_sorted_generators() const {
  PPL_ASSERT(generators_are_up_to_date());
  // `gen_sys' will be sorted up to `index_first_pending'.
  Polyhedron& x = const_cast<Polyhedron&>(*this);
  if (!x.gen_sys.is_sorted()) {
    if (x.sat_c_is_up_to_date()) {
      // Sorting generators keeping 'sat_c' consistent.
      x.gen_sys.sort_and_remove_with_sat(x.sat_c);
      // `sat_g' is not up-to-date anymore.
      x.clear_sat_g_up_to_date();
    }
    else if (x.sat_g_is_up_to_date()) {
      // Obtaining `sat_c' from `sat_g' and proceeding like previous case.
      x.sat_c.transpose_assign(x.sat_g);
      x.gen_sys.sort_and_remove_with_sat(x.sat_c);
      x.set_sat_c_up_to_date();
      x.clear_sat_g_up_to_date();
    }
    else
      // If neither `sat_g' nor `sat_c' are up-to-date, we just sort
      // the generators.
      x.gen_sys.sort_rows();
  }

  PPL_ASSERT(gen_sys.check_sorted());
}

void
PPL::Polyhedron::obtain_sorted_constraints_with_sat_c() const {
  PPL_ASSERT(constraints_are_up_to_date());
  PPL_ASSERT(constraints_are_minimized());
  // `con_sys' will be sorted up to `index_first_pending'.
  Polyhedron& x = const_cast<Polyhedron&>(*this);
  // At least one of the saturation matrices must be up-to-date.
  if (!x.sat_c_is_up_to_date() && !x.sat_g_is_up_to_date())
    x.update_sat_c();

  if (x.con_sys.is_sorted()) {
    if (x.sat_c_is_up_to_date())
      // If constraints are already sorted and sat_c is up to
      // date there is nothing to do.
      return;
  }
  else {
    if (!x.sat_g_is_up_to_date()) {
      // If constraints are not sorted and sat_g is not up-to-date
      // we obtain sat_g from sat_c (that has to be up-to-date)...
      x.sat_g.transpose_assign(x.sat_c);
      x.set_sat_g_up_to_date();
    }
    // ... and sort it together with constraints.
    x.con_sys.sort_and_remove_with_sat(x.sat_g);
  }
  // Obtaining sat_c from sat_g.
  x.sat_c.transpose_assign(x.sat_g);
  x.set_sat_c_up_to_date();
  // Constraints are sorted now.
  x.con_sys.set_sorted(true);

  PPL_ASSERT(con_sys.check_sorted());
}

void
PPL::Polyhedron::obtain_sorted_generators_with_sat_g() const {
  PPL_ASSERT(generators_are_up_to_date());
  // `gen_sys' will be sorted up to `index_first_pending'.
  Polyhedron& x = const_cast<Polyhedron&>(*this);
  // At least one of the saturation matrices must be up-to-date.
  if (!x.sat_c_is_up_to_date() && !x.sat_g_is_up_to_date())
    x.update_sat_g();

  if (x.gen_sys.is_sorted()) {
    if (x.sat_g_is_up_to_date())
      // If generators are already sorted and sat_g is up to
      // date there is nothing to do.
      return;
  }
  else {
    if (!x.sat_c_is_up_to_date()) {
      // If generators are not sorted and sat_c is not up-to-date
      // we obtain sat_c from sat_g (that has to be up-to-date)...
      x.sat_c.transpose_assign(x.sat_g);
      x.set_sat_c_up_to_date();
    }
    // ... and sort it together with generators.
    x.gen_sys.sort_and_remove_with_sat(x.sat_c);
  }
  // Obtaining sat_g from sat_c.
  x.sat_g.transpose_assign(sat_c);
  x.set_sat_g_up_to_date();
  // Generators are sorted now.
  x.gen_sys.set_sorted(true);

  PPL_ASSERT(gen_sys.check_sorted());
}

bool
PPL::Polyhedron::minimize() const {
  // 0-dim space or empty polyhedra are already minimized.
  if (marked_empty())
    return false;
  if (space_dim == 0)
    return true;

  // If the polyhedron has something pending, process it.
  if (has_something_pending()) {
    const bool not_empty = process_pending();
    PPL_ASSERT_HEAVY(OK());
    return not_empty;
  }

  // Here there are no pending constraints or generators.
  // Is the polyhedron already minimized?
  if (constraints_are_minimized() && generators_are_minimized())
    return true;

  // If constraints or generators are up-to-date, invoking
  // update_generators() or update_constraints(), respectively,
  // minimizes both constraints and generators.
  // If both are up-to-date it does not matter whether we use
  // update_generators() or update_constraints():
  // both minimize constraints and generators.
  if (constraints_are_up_to_date()) {
    // We may discover here that `*this' is empty.
    const bool ret = update_generators();
    PPL_ASSERT_HEAVY(OK());
    return ret;
  }
  else {
    PPL_ASSERT(generators_are_up_to_date());
    update_constraints();
    PPL_ASSERT_HEAVY(OK());
    return true;
  }
}

bool
PPL::Polyhedron::strongly_minimize_constraints() const {
  PPL_ASSERT(!is_necessarily_closed());

  // From the user perspective, the polyhedron will not change.
  Polyhedron& x = const_cast<Polyhedron&>(*this);

  // We need `con_sys' (weakly) minimized and `gen_sys' up-to-date.
  // `minimize()' will process any pending constraints or generators.
  if (!minimize())
    return false;

  // If the polyhedron `*this' is zero-dimensional
  // at this point it must be a universe polyhedron.
  if (x.space_dim == 0)
    return true;

  // We also need `sat_g' up-to-date.
  if (!sat_g_is_up_to_date()) {
    PPL_ASSERT(sat_c_is_up_to_date());
    x.sat_g.transpose_assign(sat_c);
  }

  // These Bit_Row's will be later used as masks in order to
  // check saturation conditions restricted to particular subsets of
  // the generator system.
  Bit_Row sat_all_but_rays;
  Bit_Row sat_all_but_points;
  Bit_Row sat_all_but_closure_points;

  const dimension_type gs_rows = gen_sys.num_rows();
  const dimension_type n_lines = gen_sys.num_lines();
  for (dimension_type i = gs_rows; i-- > n_lines; )
    switch (gen_sys[i].type()) {
    case Generator::RAY:
      sat_all_but_rays.set(i);
      break;
    case Generator::POINT:
      sat_all_but_points.set(i);
      break;
    case Generator::CLOSURE_POINT:
      sat_all_but_closure_points.set(i);
      break;
    default:
      // Found a line with index i >= n_lines.
      throw std::runtime_error("PPL internal error: "
			       "strongly_minimize_constraints.");
    }
  Bit_Row sat_lines_and_rays(sat_all_but_points, sat_all_but_closure_points);
  Bit_Row sat_lines_and_closure_points(sat_all_but_rays, sat_all_but_points);
  Bit_Row sat_lines(sat_lines_and_rays, sat_lines_and_closure_points);

  // These flags are maintained to later decide if we have to add the
  // eps_leq_one constraint and whether or not the constraint system
  // was changed.
  bool changed = false;
  bool found_eps_leq_one = false;

  // For all the strict inequalities in `con_sys', check for
  // eps-redundancy and eventually move them to the bottom part of the
  // system.
  Constraint_System& cs = x.con_sys;
  Bit_Matrix& sat = x.sat_g;
  dimension_type cs_rows = cs.num_rows();
  const dimension_type eps_index = cs.num_columns() - 1;
  for (dimension_type i = 0; i < cs_rows; )
    if (cs[i].is_strict_inequality()) {
      // First, check if it is saturated by no closure points
      Bit_Row sat_ci;
      set_union(sat[i], sat_lines_and_closure_points, sat_ci);
      if (sat_ci == sat_lines) {
	// It is saturated by no closure points.
	if (!found_eps_leq_one) {
	  // Check if it is the eps_leq_one constraint.
	  const Constraint& c = cs[i];
	  bool all_zeroes = true;
	  for (dimension_type k = eps_index; k-- > 1; )
	    if (c[k] != 0) {
	      all_zeroes = false;
	      break;
	    }
	  if (all_zeroes && (c[0] + c[eps_index] == 0)) {
	    // We found the eps_leq_one constraint.
	    found_eps_leq_one = true;
	    // Consider next constraint.
	    ++i;
	    continue;
	  }
	}
	// Here `cs[i]' is not the eps_leq_one constraint,
	// so it is eps-redundant.
	// Move it to the bottom of the constraint system,
	// while keeping `sat_g' consistent.
	--cs_rows;
	std::swap(cs[i], cs[cs_rows]);
	std::swap(sat[i], sat[cs_rows]);
	// The constraint system is changed.
	changed = true;
	// Continue by considering next constraint,
	// which is already in place due to the swap.
	continue;
      }
      // Now we check if there exists another strict inequality
      // constraint having a superset of its saturators,
      // when disregarding points.
      sat_ci.clear();
      set_union(sat[i], sat_all_but_points, sat_ci);
      bool eps_redundant = false;
      for (dimension_type j = 0; j < cs_rows; ++j)
	if (i != j && cs[j].is_strict_inequality()
	    && subset_or_equal(sat[j], sat_ci)) {
	  // Constraint `cs[i]' is eps-redundant:
	  // move it to the bottom of the constraint system,
	  // while keeping `sat_g' consistent.
	  --cs_rows;
	  std::swap(cs[i], cs[cs_rows]);
	  std::swap(sat[i], sat[cs_rows]);
	  eps_redundant = true;
	  // The constraint system is changed.
	  changed = true;
	  break;
	}
      // Continue with next constraint, which is already in place
      // due to the swap if we have found an eps-redundant constraint.
      if (!eps_redundant)
	++i;
    }
    else
      // `cs[i]' is not a strict inequality: consider next constraint.
      ++i;

  if (changed) {
    // If the constraint system has been changed, we have to erase
    // the epsilon-redundant constraints.
    PPL_ASSERT(cs_rows < cs.num_rows());
    cs.erase_to_end(cs_rows);
    // The remaining constraints are not pending.
    cs.unset_pending_rows();
    // The constraint system is no longer sorted.
    cs.set_sorted(false);
    // The generator system is no longer up-to-date.
    x.clear_generators_up_to_date();

    // If we haven't found an upper bound for the epsilon dimension,
    // then we have to check whether such an upper bound is implied
    // by the remaining constraints (exploiting the simplex algorithm).
    if (!found_eps_leq_one) {
      MIP_Problem lp;
      // KLUDGE: temporarily mark the constraint system as if it was
      // necessarily closed, so that we can interpret the epsilon
      // dimension as a standard dimension. Be careful to reset the
      // topology of `cs' even on exceptional execution path.
      cs.set_necessarily_closed();
      try {
	lp.add_space_dimensions_and_embed(cs.space_dimension());
	lp.add_constraints(cs);
	cs.set_not_necessarily_closed();
      }
      catch (...) {
	cs.set_not_necessarily_closed();
	throw;
      }
      // The objective function is `epsilon'.
      lp.set_objective_function(Variable(x.space_dim));
      lp.set_optimization_mode(MAXIMIZATION);
      MIP_Problem_Status status = lp.solve();
      PPL_ASSERT(status != UNFEASIBLE_MIP_PROBLEM);
      // If the epsilon dimension is actually unbounded,
      // then add the eps_leq_one constraint.
      if (status == UNBOUNDED_MIP_PROBLEM)
	cs.insert(Constraint::epsilon_leq_one());
    }
  }

  PPL_ASSERT_HEAVY(OK());
  return true;
}

bool
PPL::Polyhedron::strongly_minimize_generators() const {
  PPL_ASSERT(!is_necessarily_closed());

  // From the user perspective, the polyhedron will not change.
  Polyhedron& x = const_cast<Polyhedron&>(*this);

  // We need `gen_sys' (weakly) minimized and `con_sys' up-to-date.
  // `minimize()' will process any pending constraints or generators.
  if (!minimize())
    return false;

  // If the polyhedron `*this' is zero-dimensional
  // at this point it must be a universe polyhedron.
  if (x.space_dim == 0)
    return true;

  // We also need `sat_c' up-to-date.
  if (!sat_c_is_up_to_date()) {
    PPL_ASSERT(sat_g_is_up_to_date());
    x.sat_c.transpose_assign(sat_g);
  }

  // This Bit_Row will have all and only the indexes
  // of strict inequalities set to 1.
  Bit_Row sat_all_but_strict_ineq;
  const dimension_type cs_rows = con_sys.num_rows();
  const dimension_type n_equals = con_sys.num_equalities();
  for (dimension_type i = cs_rows; i-- > n_equals; )
    if (con_sys[i].is_strict_inequality())
      sat_all_but_strict_ineq.set(i);

  // Will record whether or not we changed the generator system.
  bool changed = false;

  // For all points in the generator system, check for eps-redundancy
  // and eventually move them to the bottom part of the system.
  Generator_System& gs = const_cast<Generator_System&>(gen_sys);
  Bit_Matrix& sat = const_cast<Bit_Matrix&>(sat_c);
  dimension_type gs_rows = gs.num_rows();
  const dimension_type n_lines = gs.num_lines();
  const dimension_type eps_index = gs.num_columns() - 1;
  for (dimension_type i = n_lines; i < gs_rows; )
    if (gs[i].is_point()) {
      // Compute the Bit_Row corresponding to the candidate point
      // when strict inequality constraints are ignored.
      Bit_Row sat_gi(sat[i], sat_all_but_strict_ineq);
      // Check if the candidate point is actually eps-redundant:
      // namely, if there exists another point that saturates
      // all the non-strict inequalities saturated by the candidate.
      bool eps_redundant = false;
      for (dimension_type j = n_lines; j < gs_rows; ++j)
	if (i != j && gs[j].is_point() && subset_or_equal(sat[j], sat_gi)) {
	  // Point `gs[i]' is eps-redundant:
	  // move it to the bottom of the generator system,
	  // while keeping `sat_c' consistent.
	  --gs_rows;
	  std::swap(gs[i], gs[gs_rows]);
	  std::swap(sat[i], sat[gs_rows]);
	  eps_redundant = true;
	  changed = true;
	  break;
	}
      if (!eps_redundant) {
	// Let all point encodings have epsilon coordinate 1.
	Generator& gi = gs[i];
	if (gi[eps_index] != gi[0]) {
	  gi[eps_index] = gi[0];
	  // Enforce normalization.
	  gi.normalize();
	  changed = true;
	}
	// Consider next generator.
	++i;
      }
    }
    else
      // Consider next generator.
      ++i;

  // If needed, erase the eps-redundant generators (also updating
  // `index_first_pending').
  if (gs_rows < gs.num_rows()) {
    gs.erase_to_end(gs_rows);
    gs.unset_pending_rows();
  }

  if (changed) {
    // The generator system is no longer sorted.
    x.gen_sys.set_sorted(false);
    // The constraint system is no longer up-to-date.
    x.clear_constraints_up_to_date();
  }

  PPL_ASSERT_HEAVY(OK());
  return true;
}

void
PPL::Polyhedron::refine_no_check(const Constraint& c) {
  PPL_ASSERT(!marked_empty());
  PPL_ASSERT(space_dim >= c.space_dimension());

  // Dealing with a zero-dimensional space polyhedron first.
  if (space_dim == 0) {
    if (c.is_inconsistent())
      set_empty();
    return;
  }

  // The constraints (possibly with pending rows) are required.
  if (has_pending_generators())
    process_pending_generators();
  else if (!constraints_are_up_to_date())
    update_constraints();

  const bool adding_pending = can_have_something_pending();

  if (c.is_necessarily_closed() || !is_necessarily_closed())
    // Since `con_sys' is not empty, the topology and space dimension
    // of the inserted constraint are automatically adjusted.
    if (adding_pending)
      con_sys.insert_pending(c);
    else
      con_sys.insert(c);
  else {
    // Here we know that the system of constraints has at least a row.
    // However, by barely invoking `con_sys.insert(c)' we would
    // cause a change in the topology of `con_sys', which is wrong.
    // Thus, we insert a "topology corrected" copy of `c'.
    Linear_Expression nc_expr = Linear_Expression(c);
    if (c.is_equality())
      if (adding_pending)
        con_sys.insert_pending(nc_expr == 0);
      else
        con_sys.insert(nc_expr == 0);
    else
      if (adding_pending)
        con_sys.insert_pending(nc_expr >= 0);
      else
        con_sys.insert(nc_expr >= 0);
  }

  if (adding_pending)
    set_constraints_pending();
  else {
    // Constraints are not minimized and generators are not up-to-date.
    clear_constraints_minimized();
    clear_generators_up_to_date();
  }

  // Note: the constraint system may have become unsatisfiable, thus
  // we do not check for satisfiability.
  PPL_ASSERT_HEAVY(OK());
}

bool
PPL::Polyhedron::BHZ09_poly_hull_assign_if_exact(const Polyhedron& y) {
  Polyhedron& x = *this;

  // Private method: the caller must ensure the following.
  PPL_ASSERT(x.topology() == y.topology());
  PPL_ASSERT(x.space_dim == y.space_dim);

  // The zero-dim case is trivial.
  if (x.space_dim == 0) {
    x.upper_bound_assign(y);
    return true;
  }

  // If `x' or `y' are (known to be) empty, the upper bound is exact.
  if (x.marked_empty()) {
    x = y;
    return true;
  }
  else if (y.is_empty())
    return true;
  else if (x.is_empty()) {
    x = y;
    return true;
  }

  if (x.is_necessarily_closed())
    return x.BHZ09_C_poly_hull_assign_if_exact(y);
  else
    return x.BHZ09_NNC_poly_hull_assign_if_exact(y);
}

bool
PPL::Polyhedron::BHZ09_C_poly_hull_assign_if_exact(const Polyhedron& y) {
  Polyhedron& x = *this;
  // Private method: the caller must ensure the following.
  PPL_ASSERT(x.is_necessarily_closed() && y.is_necessarily_closed());
  PPL_ASSERT(x.space_dim > 0 && x.space_dim == y.space_dim);
  PPL_ASSERT(!x.is_empty() && !y.is_empty());

  // Minimization is not really required, but it is probably the best
  // way of getting constraints, generators and saturation matrices
  // up-to-date; it also removes redundant constraints/generators.
  (void) x.minimize();
  (void) y.minimize();

  // Handle a special case: for topologically closed polyhedra P and Q,
  // if the affine dimension of P is greater than that of Q, then
  // their upper bound is exact if and only if P includes Q.
  const dimension_type x_affine_dim = x.affine_dimension();
  const dimension_type y_affine_dim = y.affine_dimension();
  if (x_affine_dim > y_affine_dim)
    return y.is_included_in(x);
  else if (x_affine_dim < y_affine_dim) {
    if (x.is_included_in(y)) {
      x = y;
      return true;
    }
    else
      return false;
  }

  const Constraint_System& x_cs = x.con_sys;
  const Generator_System& x_gs = x.gen_sys;
  const Generator_System& y_gs = y.gen_sys;
  const dimension_type x_gs_num_rows = x_gs.num_rows();
  const dimension_type y_gs_num_rows = y_gs.num_rows();

  // Step 1: generators of `x' that are redundant in `y', and vice versa.
  Bit_Row x_gs_red_in_y;
  dimension_type num_x_gs_red_in_y = 0;
  for (dimension_type i = x_gs_num_rows; i-- > 0; )
    if (y.relation_with(x_gs[i]).implies(Poly_Gen_Relation::subsumes())) {
      x_gs_red_in_y.set(i);
      ++num_x_gs_red_in_y;
    }
  Bit_Row y_gs_red_in_x;
  dimension_type num_y_gs_red_in_x = 0;
  for (dimension_type i = y_gs_num_rows; i-- > 0; )
    if (x.relation_with(y_gs[i]).implies(Poly_Gen_Relation::subsumes())) {
      y_gs_red_in_x.set(i);
      ++num_y_gs_red_in_x;
    }

  // Step 2: filter away special cases.

  // Step 2.1: inclusion tests.
  if (num_y_gs_red_in_x == y_gs_num_rows)
    // `y' is included into `x': upper bound `x' is exact.
    return true;
  if (num_x_gs_red_in_y == x_gs_num_rows) {
    // `x' is included into `y': upper bound `y' is exact.
    x = y;
    return true;
  }

  // Step 2.2: if no generator of `x' is redundant for `y', then
  // (as by 2.1 there exists a constraint of `x' non-redundant for `y')
  // the upper bound is not exact; the same if exchanging `x' and `y'.
  if (num_x_gs_red_in_y == 0 || num_y_gs_red_in_x == 0)
    return false;

  // Step 3: see if `x' has a non-redundant constraint `c_x' that is not
  // satisfied by `y' and a non-redundant generator in `y' (see Step 1)
  // saturating `c_x'. If so, the upper bound is not exact.

  // Make sure the saturation matrix for `x' is up to date.
  // Any sat matrix would do: we choose `sat_g' because it matches
  // the two nested loops (constraints on rows and generators on columns).
  if (!x.sat_g_is_up_to_date())
    x.update_sat_g();
  const Bit_Matrix& x_sat = x.sat_g;

  Bit_Row all_ones;
  all_ones.set_until(x_gs_num_rows);
  Bit_Row row_union;
  for (dimension_type i = x_cs.num_rows(); i-- > 0; ) {
    const bool included
      = y.relation_with(x_cs[i]).implies(Poly_Con_Relation::is_included());
    if (!included) {
      set_union(x_gs_red_in_y, x_sat[i], row_union);
      if (row_union != all_ones)
        return false;
    }
  }

  // Here we know that the upper bound is exact: compute it.
  for (dimension_type j = y_gs_num_rows; j-- > 0; )
    if (!y_gs_red_in_x[j])
      add_generator(y_gs[j]);

  PPL_ASSERT_HEAVY(OK());
  return true;
}

bool
PPL::Polyhedron::BHZ09_NNC_poly_hull_assign_if_exact(const Polyhedron& y) {
  const Polyhedron& x = *this;
  // Private method: the caller must ensure the following.
  PPL_ASSERT(!x.is_necessarily_closed() && !y.is_necessarily_closed());
  PPL_ASSERT(x.space_dim > 0 && x.space_dim == y.space_dim);
  PPL_ASSERT(!x.is_empty() && !y.is_empty());

  // Minimization is not really required, but it is probably the best
  // way of getting constraints, generators and saturation matrices
  // up-to-date; it also removes redundant constraints/generators.
  (void) x.minimize();
  (void) y.minimize();

  const Generator_System& x_gs = x.gen_sys;
  const Generator_System& y_gs = y.gen_sys;
  const dimension_type x_gs_num_rows = x_gs.num_rows();
  const dimension_type y_gs_num_rows = y_gs.num_rows();

  // Compute generators of `x' that are non-redundant in `y' ...
  Bit_Row x_gs_nonred_in_y;
  Bit_Row x_points_nonred_in_y;
  Bit_Row x_closure_points;
  dimension_type num_x_gs_nonred_in_y = 0;
  for (dimension_type i = x_gs_num_rows; i-- > 0; ) {
    const Generator& x_gs_i = x_gs[i];
    if (x_gs_i.is_closure_point())
      x_closure_points.set(i);
    if (y.relation_with(x_gs[i]).implies(Poly_Gen_Relation::subsumes()))
      continue;
    x_gs_nonred_in_y.set(i);
    ++num_x_gs_nonred_in_y;
    if (x_gs_i.is_point())
      x_points_nonred_in_y.set(i);
  }

  // If `x' is included into `y', the upper bound `y' is exact.
  if (num_x_gs_nonred_in_y == 0) {
    *this = y;
    return true;
  }

  // ... and vice versa, generators of `y' that are non-redundant in `x'.
  Bit_Row y_gs_nonred_in_x;
  Bit_Row y_points_nonred_in_x;
  Bit_Row y_closure_points;
  dimension_type num_y_gs_nonred_in_x = 0;
  for (dimension_type i = y_gs_num_rows; i-- > 0; ) {
    const Generator& y_gs_i = y_gs[i];
    if (y_gs_i.is_closure_point())
      y_closure_points.set(i);
    if (x.relation_with(y_gs_i).implies(Poly_Gen_Relation::subsumes()))
      continue;
    y_gs_nonred_in_x.set(i);
    ++num_y_gs_nonred_in_x;
    if (y_gs_i.is_point())
      y_points_nonred_in_x.set(i);
  }

  // If `y' is included into `x', the upper bound `x' is exact.
  if (num_y_gs_nonred_in_x == 0)
    return true;

  Bit_Row x_nonpoints_nonred_in_y;
  set_difference(x_gs_nonred_in_y, x_points_nonred_in_y,
                 x_nonpoints_nonred_in_y);

  const Constraint_System& x_cs = x.con_sys;
  const Constraint_System& y_cs = y.con_sys;
  const dimension_type x_cs_num_rows = x_cs.num_rows();
  const dimension_type y_cs_num_rows = y_cs.num_rows();

  // Filter away the points of `x_gs' that would be redundant
  // in the topological closure of `y'.
  Bit_Row x_points_nonred_in_y_closure;
  for (dimension_type i = x_points_nonred_in_y.first();
       i != ULONG_MAX; i = x_points_nonred_in_y.next(i)) {
    const Generator& x_p = x_gs[i];
    PPL_ASSERT(x_p.is_point());
    // NOTE: we cannot use Constraint_System::relation_with()
    // as we need to treat strict inequalities as if they were nonstrict.
    for (dimension_type j = y_cs_num_rows; j-- > 0; ) {
      const Constraint& y_c = y_cs[j];
      const int sp_sign = Scalar_Products::reduced_sign(y_c, x_p);
      if (sp_sign < 0 || (y_c.is_equality() && sp_sign > 0)) {
        x_points_nonred_in_y_closure.set(i);
        break;
      }
    }
  }

  // Make sure the saturation matrix for `x' is up to date.
  // Any sat matrix would do: we choose `sat_g' because it matches
  // the two nested loops (constraints on rows and generators on columns).
  if (!x.sat_g_is_up_to_date())
    x.update_sat_g();
  const Bit_Matrix& x_sat = x.sat_g;

  Bit_Row x_cs_condition_3;
  Bit_Row x_gs_condition_3;
  Bit_Row all_ones;
  all_ones.set_until(x_gs_num_rows);
  Bit_Row saturators;
  Bit_Row tmp_set;
  for (dimension_type i = x_cs_num_rows; i-- > 0; ) {
    const Constraint& x_c = x_cs[i];
    // Skip constraint if it is not violated by `y'.
    if (y.relation_with(x_c).implies(Poly_Con_Relation::is_included()))
      continue;
    set_difference(all_ones, x_sat[i], saturators);
    // Check condition 1.
    set_intersection(x_nonpoints_nonred_in_y, saturators, tmp_set);
    if (!tmp_set.empty())
      return false;
    if (x_c.is_strict_inequality()) {
      // Postpone check for condition 3.
      x_cs_condition_3.set(i);
      set_intersection(x_closure_points, saturators, tmp_set);
      set_union(x_gs_condition_3, tmp_set, x_gs_condition_3);
    }
    else {
      // Check condition 2.
      set_intersection(x_points_nonred_in_y_closure, saturators, tmp_set);
      if (!tmp_set.empty())
        return false;
    }
  }

  // Now exchange the roles of `x' and `y'
  // (the statement of the NNC theorem in BHZ09 is symmetric).

  Bit_Row y_nonpoints_nonred_in_x;
  set_difference(y_gs_nonred_in_x, y_points_nonred_in_x,
                 y_nonpoints_nonred_in_x);

  // Filter away the points of `y_gs' that would be redundant
  // in the topological closure of `x'.
  Bit_Row y_points_nonred_in_x_closure;
  for (dimension_type i = y_points_nonred_in_x.first();
       i != ULONG_MAX; i = y_points_nonred_in_x.next(i)) {
    const Generator& y_p = y_gs[i];
    PPL_ASSERT(y_p.is_point());
    // NOTE: we cannot use Constraint_System::relation_with()
    // as we need to treat strict inequalities as if they were nonstrict.
    for (dimension_type j = x_cs_num_rows; j-- > 0; ) {
      const Constraint& x_c = x_cs[j];
      const int sp_sign = Scalar_Products::reduced_sign(x_c, y_p);
      if (sp_sign < 0 || (x_c.is_equality() && sp_sign > 0)) {
        y_points_nonred_in_x_closure.set(i);
        break;
      }
    }
  }

  // Make sure the saturation matrix `sat_g' for `y' is up to date.
  if (!y.sat_g_is_up_to_date())
    y.update_sat_g();
  const Bit_Matrix& y_sat = y.sat_g;

  Bit_Row y_cs_condition_3;
  Bit_Row y_gs_condition_3;
  all_ones.clear();
  all_ones.set_until(y_gs_num_rows);
  for (dimension_type i = y_cs_num_rows; i-- > 0; ) {
    const Constraint& y_c = y_cs[i];
    // Skip constraint if it is not violated by `x'.
    if (x.relation_with(y_c).implies(Poly_Con_Relation::is_included()))
      continue;
    set_difference(all_ones, y_sat[i], saturators);
    // Check condition 1.
    set_intersection(y_nonpoints_nonred_in_x, saturators, tmp_set);
    if (!tmp_set.empty())
      return false;
    if (y_c.is_strict_inequality()) {
      // Postpone check for condition 3.
      y_cs_condition_3.set(i);
      set_intersection(y_closure_points, saturators, tmp_set);
      set_union(y_gs_condition_3, tmp_set, y_gs_condition_3);
    }
    else {
      // Check condition 2.
      set_intersection(y_points_nonred_in_x_closure, saturators, tmp_set);
      if (!tmp_set.empty())
        return false;
    }
  }

  // Now considering condition 3.

  if (x_cs_condition_3.empty() && y_cs_condition_3.empty()) {
    // No test for condition 3 is needed.
    // The hull is exact: compute it.
    for (dimension_type j = y_gs_num_rows; j-- > 0; )
      if (y_gs_nonred_in_x[j])
        add_generator(y_gs[j]);
    return true;
  }

  // We have anyway to compute the upper bound and its constraints too.
  Polyhedron ub(x);
  for (dimension_type j = y_gs_num_rows; j-- > 0; )
    if (y_gs_nonred_in_x[j])
      ub.add_generator(y_gs[j]);
  (void) ub.minimize();
  PPL_ASSERT(!ub.is_empty());

  // NOTE: the following computation of x_gs_condition_3_not_in_y
  // (resp., y_gs_condition_3_not_in_x) is not required for correctness.
  // It is done so as to later apply a speculative test
  // (i.e., a non-conclusive but computationally lighter test).

  // Filter away from `x_gs_condition_3' those closure points
  // that, when considered as points, would belong to `y',
  // i.e., those that violate no strict constraint in `y_cs'.
  Bit_Row x_gs_condition_3_not_in_y;
  for (dimension_type i = y_cs_num_rows; i-- > 0; ) {
    const Constraint& y_c = y_cs[i];
    if (y_c.is_strict_inequality()) {
      for (dimension_type j = x_gs_condition_3.first();
           j != ULONG_MAX; j = x_gs_condition_3.next(j)) {
        const Generator& x_cp = x_gs[j];
        PPL_ASSERT(x_cp.is_closure_point());
        const int sp_sign = Scalar_Products::reduced_sign(y_c, x_cp);
        PPL_ASSERT(sp_sign >= 0);
        if (sp_sign == 0) {
          x_gs_condition_3.clear(j);
          x_gs_condition_3_not_in_y.set(j);
        }
      }
      if (x_gs_condition_3.empty())
        break;
    }
  }
  // Symmetrically, filter away from `y_gs_condition_3' those
  // closure points that, when considered as points, would belong to `x',
  // i.e., those that violate no strict constraint in `x_cs'.
  Bit_Row y_gs_condition_3_not_in_x;
  for (dimension_type i = x_cs_num_rows; i-- > 0; ) {
    if (x_cs[i].is_strict_inequality()) {
      const Constraint& x_c = x_cs[i];
      for (dimension_type j = y_gs_condition_3.first();
           j != ULONG_MAX; j = y_gs_condition_3.next(j)) {
        const Generator& y_cp = y_gs[j];
        PPL_ASSERT(y_cp.is_closure_point());
        const int sp_sign = Scalar_Products::reduced_sign(x_c, y_cp);
        PPL_ASSERT(sp_sign >= 0);
        if (sp_sign == 0) {
          y_gs_condition_3.clear(j);
          y_gs_condition_3_not_in_x.set(j);
        }
      }
      if (y_gs_condition_3.empty())
        break;
    }
  }

  // NOTE: here we apply the speculative test.
  // Check if there exists a closure point in `x_gs_condition_3_not_in_y'
  // or `y_gs_condition_3_not_in_x' that belongs (as point) to the hull.
  // If so, the hull is not exact.
  const Constraint_System& ub_cs = ub.constraints();
  for (dimension_type i = ub_cs.num_rows(); i-- > 0; ) {
    if (ub_cs[i].is_strict_inequality()) {
      const Constraint& ub_c = ub_cs[i];
      for (dimension_type j = x_gs_condition_3_not_in_y.first();
           j != ULONG_MAX; j = x_gs_condition_3_not_in_y.next(j)) {
        const Generator& x_cp = x_gs[j];
        PPL_ASSERT(x_cp.is_closure_point());
        const int sp_sign = Scalar_Products::reduced_sign(ub_c, x_cp);
        PPL_ASSERT(sp_sign >= 0);
        if (sp_sign == 0)
          x_gs_condition_3_not_in_y.clear(j);
      }
      for (dimension_type j = y_gs_condition_3_not_in_x.first();
           j != ULONG_MAX; j = y_gs_condition_3_not_in_x.next(j)) {
        const Generator& y_cp = y_gs[j];
        PPL_ASSERT(y_cp.is_closure_point());
        const int sp_sign = Scalar_Products::reduced_sign(ub_c, y_cp);
        PPL_ASSERT(sp_sign >= 0);
        if (sp_sign == 0)
          y_gs_condition_3_not_in_x.clear(j);
      }
    }
  }

  if (!(x_gs_condition_3_not_in_y.empty()
        && y_gs_condition_3_not_in_x.empty()))
    // There exist a closure point satisfying condition 3,
    // hence the hull is not exact.
    return false;

  // The speculative test was not successful:
  // apply the expensive (but conclusive) test for condition 3.

  // Consider strict inequalities in `x' violated by `y'.
  for (dimension_type i = x_cs_condition_3.first();
       i != ULONG_MAX; i = x_cs_condition_3.next(i)) {
    const Constraint& x_cs_i = x_cs[i];
    PPL_ASSERT(x_cs_i.is_strict_inequality());
    // Build the equality constraint induced by x_cs_i.
    Constraint eq_i(Linear_Expression(x_cs_i) == 0);
    PPL_ASSERT(!(ub.relation_with(eq_i)
                 .implies(Poly_Con_Relation::is_disjoint())));
    Polyhedron ub_inters_hyperplane(ub);
    ub_inters_hyperplane.add_constraint(eq_i);
    Polyhedron y_inters_hyperplane(y);
    y_inters_hyperplane.add_constraint(eq_i);
    if (!y_inters_hyperplane.contains(ub_inters_hyperplane))
      // The hull is not exact.
      return false;
  }

  // Consider strict inequalities in `y' violated by `x'.
  for (dimension_type i = y_cs_condition_3.first();
       i != ULONG_MAX; i = y_cs_condition_3.next(i)) {
    const Constraint& y_cs_i = y_cs[i];
    PPL_ASSERT(y_cs_i.is_strict_inequality());
    // Build the equality constraint induced by y_cs_i.
    Constraint eq_i(Linear_Expression(y_cs_i) == 0);
    PPL_ASSERT(!(ub.relation_with(eq_i)
                 .implies(Poly_Con_Relation::is_disjoint())));
    Polyhedron ub_inters_hyperplane(ub);
    ub_inters_hyperplane.add_constraint(eq_i);
    Polyhedron x_inters_hyperplane(x);
    x_inters_hyperplane.add_constraint(eq_i);
    if (!x_inters_hyperplane.contains(ub_inters_hyperplane))
      // The hull is not exact.
      return false;
  }

  // The hull is exact.
  swap(ub);
  return true;
}

bool
PPL::Polyhedron::BFT00_poly_hull_assign_if_exact(const Polyhedron& y) {
  // Declare a const reference to *this (to avoid accidental modifications).
  const Polyhedron& x = *this;
  // Private method: the caller must ensure the following.
  PPL_ASSERT(x.is_necessarily_closed());
  PPL_ASSERT(x.topology() == y.topology());
  PPL_ASSERT(x.space_dim == y.space_dim);

  // The zero-dim case is trivial.
  if (x.space_dim == 0) {
    upper_bound_assign(y);
    return true;
  }
  // If `x' or `y' is (known to be) empty, the convex union is exact.
  if (x.marked_empty()) {
    *this = y;
    return true;
  }
  else if (y.is_empty())
    return true;
  else if (x.is_empty()) {
    *this = y;
    return true;
  }

  // Here both `x' and `y' are known to be non-empty.

  // Implementation based on Algorithm 8.1 (page 15) in [BemporadFT00TR],
  // generalized so as to also allow for unbounded polyhedra.
  // The extension to unbounded polyhedra is obtained by mimicking
  // what done in Algorithm 8.2 (page 19) wrt Algorithm 6.2 (page 13).
  // We also apply a couple of improvements (see steps 2.1, 3.1, 6.1, 7.1)
  // so as to quickly handle special cases and avoid the splitting
  // of equalities/lines into pairs of inequalities/rays.

  (void) x.minimize();
  (void) y.minimize();
  const Constraint_System& x_cs = x.con_sys;
  const Constraint_System& y_cs = y.con_sys;
  const Generator_System& x_gs = x.gen_sys;
  const Generator_System& y_gs = y.gen_sys;
  const dimension_type x_gs_num_rows = x_gs.num_rows();
  const dimension_type y_gs_num_rows = y_gs.num_rows();

  // Step 1: generators of `x' that are redundant in `y', and vice versa.
  std::vector<bool> x_gs_red_in_y(x_gs_num_rows, false);
  dimension_type num_x_gs_red_in_y = 0;
  for (dimension_type i = x_gs_num_rows; i-- > 0; )
    if (y.relation_with(x_gs[i]).implies(Poly_Gen_Relation::subsumes())) {
      x_gs_red_in_y[i] = true;
      ++num_x_gs_red_in_y;
    }
  std::vector<bool> y_gs_red_in_x(y_gs_num_rows, false);
  dimension_type num_y_gs_red_in_x = 0;
  for (dimension_type i = y_gs_num_rows; i-- > 0; )
    if (x.relation_with(y_gs[i]).implies(Poly_Gen_Relation::subsumes())) {
      y_gs_red_in_x[i] = true;
      ++num_y_gs_red_in_x;
    }

  // Step 2: if no redundant generator has been identified,
  // then the union is not convex. CHECKME: why?
  if (num_x_gs_red_in_y == 0 && num_y_gs_red_in_x == 0)
    return false;

  // Step 2.1: while at it, also perform quick inclusion tests.
  if (num_y_gs_red_in_x == y_gs_num_rows)
    // `y' is included into `x': union is convex.
    return true;
  if (num_x_gs_red_in_y == x_gs_num_rows) {
    // `x' is included into `y': union is convex.
    *this = y;
    return true;
  }

  // Here we know that `x' is not included in `y', and vice versa.

  // Step 3: constraints of `x' that are satisfied by `y', and vice versa.
  const dimension_type x_cs_num_rows = x_cs.num_rows();
  std::vector<bool> x_cs_red_in_y(x_cs_num_rows, false);
  for (dimension_type i = x_cs_num_rows; i-- > 0; ) {
    const Constraint& x_cs_i = x_cs[i];
    if (y.relation_with(x_cs_i).implies(Poly_Con_Relation::is_included()))
      x_cs_red_in_y[i] = true;
    else if (x_cs_i.is_equality())
      // Step 3.1: `x' has an equality not satified by `y':
      // union is not convex (recall that `y' does not contain `x').
      // NOTE: this would be false for NNC polyhedra.
      // Example: x = { A == 0 }, y = { 0 < A <= 1 }.
      return false;
  }
  const dimension_type y_cs_num_rows = y_cs.num_rows();
  std::vector<bool> y_cs_red_in_x(y_cs_num_rows, false);
  for (dimension_type i = y_cs_num_rows; i-- > 0; ) {
    const Constraint& y_cs_i = y_cs[i];
    if (x.relation_with(y_cs_i).implies(Poly_Con_Relation::is_included()))
      y_cs_red_in_x[i] = true;
    else if (y_cs_i.is_equality())
      // Step 3.1: `y' has an equality not satified by `x':
      // union is not convex (see explanation above).
      return false;
  }

  // Loop in steps 5-9: for each pair of non-redundant generators,
  // compute their "mid-point" and check if it is both in `x' and `y'.

  // Note: reasoning at the polyhedral cone level.
  // CHECKME, FIXME: Polyhedron is a (deprecated) friend of Generator.
  // Here below we systematically exploit such a friendship, so as to
  // freely reinterpret a Generator as a Linear_Row and vice versa.
  Linear_Row mid_row;
  const Generator& mid_g = static_cast<const Generator&>(mid_row);

  for (dimension_type i = x_gs_num_rows; i-- > 0; ) {
    if (x_gs_red_in_y[i])
      continue;
    const Linear_Row& x_row = static_cast<const Linear_Row&>(x_gs[i]);
    const dimension_type row_sz = x_row.size();
    const bool x_row_is_line = x_row.is_line_or_equality();
    for (dimension_type j = y_gs_num_rows; j-- > 0; ) {
      if (y_gs_red_in_x[j])
        continue;
      const Linear_Row& y_row = static_cast<const Linear_Row&>(y_gs[j]);
      const bool y_row_is_line = y_row.is_line_or_equality();

      // Step 6: compute mid_row = x_row + y_row.
      // NOTE: no need to actually compute the "mid-point",
      // since any strictly positive combination would do.
      mid_row = x_row;
      for (dimension_type k = row_sz; k-- > 0; )
        mid_row[k] += y_row[k];
      // A zero ray is not a well formed generator.
      const bool illegal_ray
        = (mid_row[0] == 0 && mid_row.all_homogeneous_terms_are_zero());
      // A zero ray cannot be generated from a line: this holds
      // because x_row (resp., y_row) is not subsumed by y (resp., x).
      PPL_ASSERT(!(illegal_ray && (x_row_is_line || y_row_is_line)));
      if (illegal_ray)
        continue;
      if (x_row_is_line) {
        mid_row.normalize();
        if (y_row_is_line)
          // mid_row is a line too: sign normalization is needed.
          mid_row.sign_normalize();
        else
          // mid_row is a ray/point.
          mid_row.set_is_ray_or_point_or_inequality();
      }

      // Step 7: check if mid_g is in the union of x and y.
      if (x.relation_with(mid_g) == Poly_Gen_Relation::nothing()
          && y.relation_with(mid_g) == Poly_Gen_Relation::nothing())
        return false;

      // If either x_row or y_row is a line, we should use its
      // negation to produce another generator to be tested too.
      // NOTE: exclusive-or is meant.
      if (!x_row_is_line && y_row_is_line) {
        // Step 6.1: (re-)compute mid_row = x_row - y_row.
        mid_row = x_row;
        for (dimension_type k = row_sz; k-- > 0; )
          mid_row[k] -= y_row[k];
        mid_row.normalize();
        // Step 7.1: check if mid_g is in the union of x and y.
        if (x.relation_with(mid_g) == Poly_Gen_Relation::nothing()
            && y.relation_with(mid_g) == Poly_Gen_Relation::nothing())
          return false;
      }
      else if (x_row_is_line && !y_row_is_line) {
        // Step 6.1: (re-)compute mid_row = - x_row + y_row.
        mid_row = y_row;
        for (dimension_type k = row_sz; k-- > 0; )
          mid_row[k] -= x_row[k];
        mid_row.normalize();
        // Step 7.1: check if mid_g is in the union of x and y.
        if (x.relation_with(mid_g) == Poly_Gen_Relation::nothing()
            && y.relation_with(mid_g) == Poly_Gen_Relation::nothing())
          return false;
      }
    }
  }

  // Here we know that the union of x and y is convex.
  // TODO: exploit knowledge on the cardinality of non-redudnant
  // constraints/generators to improve the convex-hull computation.
  // Using generators allows for exploiting incrementality.
  for (dimension_type j = 0; j < y_gs_num_rows; ++j) {
    if (!y_gs_red_in_x[j])
      add_generator(y_gs[j]);
  }
  PPL_ASSERT_HEAVY(OK());
  return true;
}

void
PPL::Polyhedron::drop_some_non_integer_points(const Variables_Set* pvars,
					      Complexity_Class complexity) {
  // There is nothing to do for an empty set of variables.
  if (pvars != 0 && pvars->empty())
    return;

  // Any empty polyhedron does not contain integer points.
  if (marked_empty())
    return;

  // A zero-dimensional, universe polyhedron has, by convention, an
  // integer point.
  if (space_dim == 0) {
    set_empty();
    return;
  }

  // The constraints (possibly with pending rows) are required.
  if (has_pending_generators()) {
    // Processing of pending generators is exponential in the worst case.
    if (complexity != ANY_COMPLEXITY)
      return;
    else
      process_pending_generators();
  }
  if (!constraints_are_up_to_date()) {
    // Constraints update is exponential in the worst case.
    if (complexity != ANY_COMPLEXITY)
      return;
    else
      update_constraints();
  }
  // For NNC polyhedra we need to process any pending constraints.
  if (!is_necessarily_closed() && has_pending_constraints()) {
    if (complexity != ANY_COMPLEXITY)
      return;
    else if (!process_pending_constraints())
      // We just discovered the polyhedron is empty.
      return;
  }

  PPL_ASSERT(!has_pending_generators() && constraints_are_up_to_date());
  PPL_ASSERT(is_necessarily_closed() || !has_pending_constraints());

  bool changed = false;
  const dimension_type eps_index = space_dim + 1;
  PPL_DIRTY_TEMP_COEFFICIENT(gcd);

  for (dimension_type j = con_sys.num_rows(); j-- > 0; ) {
    Constraint& c = con_sys[j];
    if (c.is_tautological())
      goto next_constraint;

    if (pvars != 0) {
      for (dimension_type i = space_dim; i-- > 0; )
	if (c[i+1] != 0 && pvars->find(i) == pvars->end())
	  goto next_constraint;
    }

    if (!is_necessarily_closed()) {
      // Transform all strict inequalities into non-strict ones,
      // with the inhomogeneous term incremented by 1.
      if (c[eps_index] < 0) {
	c[eps_index] = 0;
	--c[0];
	// Enforce normalization.
	// FIXME: is this really necessary?
	c.normalize();
	changed = true;
      }
    }

    {
      // Compute the GCD of all the homogeneous terms.
      dimension_type i = space_dim+1;
      while (i > 1) {
	const Coefficient& c_i = c[--i];
	if (const int c_i_sign = sgn(c_i)) {
	  gcd = c_i;
	  if (c_i_sign < 0)
	    neg_assign(gcd);
	  goto compute_gcd;
	}
      }
      // We reach this point only if all the coefficients were zero.
      goto next_constraint;

    compute_gcd:
      if (gcd == 1)
	goto next_constraint;
      while (i > 1) {
	const Coefficient& c_i = c[--i];
	if (c_i != 0) {
	  // See the comment in Row::normalize().
	  gcd_assign(gcd, c_i, gcd);
	  if (gcd == 1)
	    goto next_constraint;
	}
      }
      PPL_ASSERT(gcd != 1);
      PPL_ASSERT(c[0] % gcd != 0);

      // If we have an equality, the polyhedron becomes empty.
      if (c.is_equality()) {
	set_empty();
	return;
      }

      // Divide the inhomogeneous coefficients by the GCD.
      for (dimension_type k = space_dim+1; --k > 0; ) {
	Coefficient& c_k = c[k];
	exact_div_assign(c_k, c_k, gcd);
      }
      Coefficient& c_0 = c[0];
      const int c_0_sign = sgn(c_0);
      c_0 /= gcd;
      if (c_0_sign < 0)
	--c_0;
      changed = true;
    }

  next_constraint:
    ;
  }

  if (changed) {
    if (!is_necessarily_closed()) {
      con_sys.insert(Constraint::epsilon_leq_one());
      // FIXME: make sure that the following line really can stay here
      // and should not be moved below the brace.
      con_sys.set_sorted(false);
    }

    // After changing the system of constraints, the generators
    // are no longer up-to-date and the constraints are no longer
    // minimized.
    clear_generators_up_to_date();
    clear_constraints_minimized();
  }
  PPL_ASSERT_HEAVY(OK());
}

void
PPL::Polyhedron::throw_runtime_error(const char* method) const {
  std::ostringstream s;
  s << "PPL::";
  if (is_necessarily_closed())
    s << "C_";
  else
    s << "NNC_";
  s << "Polyhedron::" << method << "." << std::endl;
  throw std::runtime_error(s.str());
}

void
PPL::Polyhedron::throw_invalid_argument(const char* method,
					const char* reason) const {
  std::ostringstream s;
  s << "PPL::";
  if (is_necessarily_closed())
    s << "C_";
  else
    s << "NNC_";
  s << "Polyhedron::" << method << ":" << std::endl
    << reason << ".";
  throw std::invalid_argument(s.str());
}

void
PPL::Polyhedron::throw_topology_incompatible(const char* method,
					     const char* ph_name,
					     const Polyhedron& ph) const {
  std::ostringstream s;
  s << "PPL::";
  if (is_necessarily_closed())
    s << "C_";
  else
    s << "NNC_";
  s << "Polyhedron::" << method << ":" << std::endl
    << ph_name << " is a ";
  if (ph.is_necessarily_closed())
    s << "C_";
  else
    s << "NNC_";
  s << "Polyhedron." << std::endl;
  throw std::invalid_argument(s.str());
}

void
PPL::Polyhedron::throw_topology_incompatible(const char* method,
					     const char* c_name,
					     const Constraint&) const {
  PPL_ASSERT(is_necessarily_closed());
  std::ostringstream s;
  s << "PPL::C_Polyhedron::" << method << ":" << std::endl
    << c_name << " is a strict inequality.";
  throw std::invalid_argument(s.str());
}

void
PPL::Polyhedron::throw_topology_incompatible(const char* method,
					     const char* g_name,
					     const Generator&) const {
  PPL_ASSERT(is_necessarily_closed());
  std::ostringstream s;
  s << "PPL::C_Polyhedron::" << method << ":" << std::endl
    << g_name << " is a closure point.";
  throw std::invalid_argument(s.str());
}

void
PPL::Polyhedron::throw_topology_incompatible(const char* method,
					     const char* cs_name,
					     const Constraint_System&) const {
  PPL_ASSERT(is_necessarily_closed());
  std::ostringstream s;
  s << "PPL::C_Polyhedron::" << method << ":" << std::endl
    << cs_name << " contains strict inequalities.";
  throw std::invalid_argument(s.str());
}

void
PPL::Polyhedron::throw_topology_incompatible(const char* method,
					     const char* gs_name,
					     const Generator_System&) const {
  std::ostringstream s;
  s << "PPL::C_Polyhedron::" << method << ":" << std::endl
    << gs_name << " contains closure points.";
  throw std::invalid_argument(s.str());
}

void
PPL::Polyhedron::throw_dimension_incompatible(const char* method,
					      const char* other_name,
					      dimension_type other_dim) const {
  std::ostringstream s;
  s << "PPL::"
    << (is_necessarily_closed() ? "C_" : "NNC_")
    << "Polyhedron::" << method << ":\n"
    << "this->space_dimension() == " << space_dimension() << ", "
    << other_name << ".space_dimension() == " << other_dim << ".";
  throw std::invalid_argument(s.str());
}

void
PPL::Polyhedron::throw_dimension_incompatible(const char* method,
					      const char* ph_name,
					      const Polyhedron& ph) const {
  throw_dimension_incompatible(method, ph_name, ph.space_dimension());
}

void
PPL::Polyhedron::throw_dimension_incompatible(const char* method,
					      const char* e_name,
					      const Linear_Expression& e) const {
  throw_dimension_incompatible(method, e_name, e.space_dimension());
}

void
PPL::Polyhedron::throw_dimension_incompatible(const char* method,
					      const char* c_name,
					      const Constraint& c) const {
  throw_dimension_incompatible(method, c_name, c.space_dimension());
}

void
PPL::Polyhedron::throw_dimension_incompatible(const char* method,
					      const char* g_name,
					      const Generator& g) const {
  throw_dimension_incompatible(method, g_name, g.space_dimension());
}

void
PPL::Polyhedron::throw_dimension_incompatible(const char* method,
					      const char* cg_name,
					      const Congruence& cg) const {
  throw_dimension_incompatible(method, cg_name, cg.space_dimension());
}

void
PPL::Polyhedron::throw_dimension_incompatible(const char* method,
					      const char* cs_name,
					      const Constraint_System& cs) const {
  throw_dimension_incompatible(method, cs_name, cs.space_dimension());
}

void
PPL::Polyhedron::throw_dimension_incompatible(const char* method,
					      const char* gs_name,
					      const Generator_System& gs) const {
  throw_dimension_incompatible(method, gs_name, gs.space_dimension());
}

void
PPL::Polyhedron::throw_dimension_incompatible(const char* method,
					      const char* cgs_name,
					      const Congruence_System& cgs) const {
  throw_dimension_incompatible(method, cgs_name, cgs.space_dimension());
}

void
PPL::Polyhedron::throw_dimension_incompatible(const char* method,
					      const char* var_name,
					      const Variable var) const {
  std::ostringstream s;
  s << "PPL::";
  if (is_necessarily_closed())
    s << "C_";
  else
    s << "NNC_";
  s << "Polyhedron::" << method << ":" << std::endl
    << "this->space_dimension() == " << space_dimension() << ", "
    << var_name << ".space_dimension() == " << var.space_dimension() << ".";
  throw std::invalid_argument(s.str());
}

void
PPL::Polyhedron::
throw_dimension_incompatible(const char* method,
			     dimension_type required_space_dim) const {
  std::ostringstream s;
  s << "PPL::";
  if (is_necessarily_closed())
    s << "C_";
  else
    s << "NNC_";
  s << "Polyhedron::" << method << ":" << std::endl
    << "this->space_dimension() == " << space_dimension()
    << ", required space dimension == " << required_space_dim << ".";
  throw std::invalid_argument(s.str());
}

void
PPL::Polyhedron::throw_space_dimension_overflow(const Topology topol,
						const char* method,
						const char* reason) {
  std::ostringstream s;
  s << "PPL::";
  if (topol == NECESSARILY_CLOSED)
    s << "C_";
  else
    s << "NNC_";
  s << "Polyhedron::" << method << ":" << std::endl
    << reason << ".";
  throw std::length_error(s.str());
}

void
PPL::Polyhedron::throw_invalid_generator(const char* method,
					 const char* g_name) const {
  std::ostringstream s;
  s << "PPL::";
  if (is_necessarily_closed())
    s << "C_";
  else
    s << "NNC_";
  s << "Polyhedron::" << method << ":" << std::endl
    << "*this is an empty polyhedron and "
    << g_name << " is not a point.";
  throw std::invalid_argument(s.str());
}

void
PPL::Polyhedron::throw_invalid_generators(const char* method,
					  const char* gs_name) const {
  std::ostringstream s;
  s << "PPL::";
  if (is_necessarily_closed())
    s << "C_";
  else
    s << "NNC_";
  s << "Polyhedron::" << method << ":" << std::endl
    << "*this is an empty polyhedron and" << std::endl
    << "the non-empty generator system " << gs_name << " contains no points.";
  throw std::invalid_argument(s.str());
}