1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
|
/* Polyhedron class implementation: inline functions.
Copyright (C) 2001-2010 Roberto Bagnara <bagnara@cs.unipr.it>
Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com)
This file is part of the Parma Polyhedra Library (PPL).
The PPL is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The PPL is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA.
For the most up-to-date information see the Parma Polyhedra Library
site: http://www.cs.unipr.it/ppl/ . */
#ifndef PPL_Polyhedron_inlines_hh
#define PPL_Polyhedron_inlines_hh 1
#include "Generator.defs.hh"
#include "compiler.hh"
#include <algorithm>
#include <deque>
namespace Parma_Polyhedra_Library {
inline memory_size_type
Polyhedron::total_memory_in_bytes() const {
return sizeof(*this) + external_memory_in_bytes();
}
inline dimension_type
Polyhedron::space_dimension() const {
return space_dim;
}
inline int32_t
Polyhedron::hash_code() const {
return space_dimension() & 0x7fffffff;
}
inline dimension_type
Polyhedron::max_space_dimension() {
using std::min;
// One dimension is reserved to have a value of type dimension_type
// that does not represent a legal dimension.
return min(std::numeric_limits<dimension_type>::max() - 1,
min(Constraint_System::max_space_dimension(),
Generator_System::max_space_dimension()
)
);
}
inline Topology
Polyhedron::topology() const {
// We can check either one of the two matrices.
// (`con_sys' is slightly better, since it is placed at offset 0.)
return con_sys.topology();
}
inline bool
Polyhedron::is_discrete() const {
return affine_dimension() == 0;
}
inline bool
Polyhedron::is_necessarily_closed() const {
// We can check either one of the two matrices.
// (`con_sys' is slightly better, since it is placed at offset 0.)
return con_sys.is_necessarily_closed();
}
inline void
Polyhedron::upper_bound_assign(const Polyhedron& y) {
poly_hull_assign(y);
}
inline void
Polyhedron::difference_assign(const Polyhedron& y) {
poly_difference_assign(y);
}
inline void
Polyhedron::widening_assign(const Polyhedron& y, unsigned* tp) {
H79_widening_assign(y, tp);
}
inline
Polyhedron::~Polyhedron() {
}
inline void
Polyhedron::swap(Polyhedron& y) {
if (topology() != y.topology())
throw_topology_incompatible("swap(y)", "y", y);
std::swap(con_sys, y.con_sys);
std::swap(gen_sys, y.gen_sys);
std::swap(sat_c, y.sat_c);
std::swap(sat_g, y.sat_g);
std::swap(status, y.status);
std::swap(space_dim, y.space_dim);
}
inline bool
Polyhedron::can_recycle_constraint_systems() {
return true;
}
inline bool
Polyhedron::can_recycle_congruence_systems() {
return false;
}
inline bool
Polyhedron::marked_empty() const {
return status.test_empty();
}
inline bool
Polyhedron::constraints_are_up_to_date() const {
return status.test_c_up_to_date();
}
inline bool
Polyhedron::generators_are_up_to_date() const {
return status.test_g_up_to_date();
}
inline bool
Polyhedron::constraints_are_minimized() const {
return status.test_c_minimized();
}
inline bool
Polyhedron::generators_are_minimized() const {
return status.test_g_minimized();
}
inline bool
Polyhedron::sat_c_is_up_to_date() const {
return status.test_sat_c_up_to_date();
}
inline bool
Polyhedron::sat_g_is_up_to_date() const {
return status.test_sat_g_up_to_date();
}
inline bool
Polyhedron::has_pending_constraints() const {
return status.test_c_pending();
}
inline bool
Polyhedron::has_pending_generators() const {
return status.test_g_pending();
}
inline bool
Polyhedron::has_something_pending() const {
return status.test_c_pending() || status.test_g_pending();
}
inline bool
Polyhedron::can_have_something_pending() const {
return constraints_are_minimized()
&& generators_are_minimized()
&& (sat_c_is_up_to_date() || sat_g_is_up_to_date());
}
inline bool
Polyhedron::is_empty() const {
if (marked_empty())
return true;
// Try a fast-fail test: if generators are up-to-date and
// there are no pending constraints, then the generator system
// (since it is well formed) contains a point.
if (generators_are_up_to_date() && !has_pending_constraints())
return false;
return !minimize();
}
inline void
Polyhedron::set_constraints_up_to_date() {
status.set_c_up_to_date();
}
inline void
Polyhedron::set_generators_up_to_date() {
status.set_g_up_to_date();
}
inline void
Polyhedron::set_constraints_minimized() {
set_constraints_up_to_date();
status.set_c_minimized();
}
inline void
Polyhedron::set_generators_minimized() {
set_generators_up_to_date();
status.set_g_minimized();
}
inline void
Polyhedron::set_constraints_pending() {
status.set_c_pending();
}
inline void
Polyhedron::set_generators_pending() {
status.set_g_pending();
}
inline void
Polyhedron::set_sat_c_up_to_date() {
status.set_sat_c_up_to_date();
}
inline void
Polyhedron::set_sat_g_up_to_date() {
status.set_sat_g_up_to_date();
}
inline void
Polyhedron::clear_empty() {
status.reset_empty();
}
inline void
Polyhedron::clear_constraints_minimized() {
status.reset_c_minimized();
}
inline void
Polyhedron::clear_generators_minimized() {
status.reset_g_minimized();
}
inline void
Polyhedron::clear_pending_constraints() {
status.reset_c_pending();
}
inline void
Polyhedron::clear_pending_generators() {
status.reset_g_pending();
}
inline void
Polyhedron::clear_sat_c_up_to_date() {
status.reset_sat_c_up_to_date();
// Can get rid of sat_c here.
}
inline void
Polyhedron::clear_sat_g_up_to_date() {
status.reset_sat_g_up_to_date();
// Can get rid of sat_g here.
}
inline void
Polyhedron::clear_constraints_up_to_date() {
clear_pending_constraints();
clear_constraints_minimized();
clear_sat_c_up_to_date();
clear_sat_g_up_to_date();
status.reset_c_up_to_date();
// Can get rid of con_sys here.
}
inline void
Polyhedron::clear_generators_up_to_date() {
clear_pending_generators();
clear_generators_minimized();
clear_sat_c_up_to_date();
clear_sat_g_up_to_date();
status.reset_g_up_to_date();
// Can get rid of gen_sys here.
}
inline bool
Polyhedron::process_pending() const {
PPL_ASSERT(space_dim > 0 && !marked_empty());
PPL_ASSERT(has_something_pending());
Polyhedron& x = const_cast<Polyhedron&>(*this);
if (x.has_pending_constraints())
return x.process_pending_constraints();
PPL_ASSERT(x.has_pending_generators());
x.process_pending_generators();
return true;
}
inline bool
Polyhedron::bounds_from_above(const Linear_Expression& expr) const {
return bounds(expr, true);
}
inline bool
Polyhedron::bounds_from_below(const Linear_Expression& expr) const {
return bounds(expr, false);
}
inline bool
Polyhedron::maximize(const Linear_Expression& expr,
Coefficient& sup_n, Coefficient& sup_d,
bool& maximum) const {
Generator g(point());
return max_min(expr, true, sup_n, sup_d, maximum, g);
}
inline bool
Polyhedron::maximize(const Linear_Expression& expr,
Coefficient& sup_n, Coefficient& sup_d, bool& maximum,
Generator& g) const {
return max_min(expr, true, sup_n, sup_d, maximum, g);
}
inline bool
Polyhedron::minimize(const Linear_Expression& expr,
Coefficient& inf_n, Coefficient& inf_d,
bool& minimum) const {
Generator g(point());
return max_min(expr, false, inf_n, inf_d, minimum, g);
}
inline bool
Polyhedron::minimize(const Linear_Expression& expr,
Coefficient& inf_n, Coefficient& inf_d, bool& minimum,
Generator& g) const {
return max_min(expr, false, inf_n, inf_d, minimum, g);
}
inline Constraint_System
Polyhedron::simplified_constraints() const {
PPL_ASSERT(constraints_are_up_to_date());
Constraint_System cs(con_sys);
if (cs.num_pending_rows() > 0)
cs.unset_pending_rows();
if (has_pending_constraints() || !constraints_are_minimized())
cs.simplify();
return cs;
}
inline Congruence_System
Polyhedron::congruences() const {
return Congruence_System(minimized_constraints());
}
inline Congruence_System
Polyhedron::minimized_congruences() const {
return Congruence_System(minimized_constraints());
}
inline Grid_Generator_System
Polyhedron::minimized_grid_generators() const {
return grid_generators();
}
inline void
Polyhedron::add_recycled_congruences(Congruence_System& cgs) {
add_congruences(cgs);
}
/*! \relates Polyhedron */
inline bool
operator!=(const Polyhedron& x, const Polyhedron& y) {
return !(x == y);
}
inline bool
Polyhedron::strictly_contains(const Polyhedron& y) const {
const Polyhedron& x = *this;
return x.contains(y) && !y.contains(x);
}
inline void
Polyhedron::drop_some_non_integer_points(Complexity_Class complexity) {
const Variables_Set* p_vs = 0;
drop_some_non_integer_points(p_vs, complexity);
}
inline void
Polyhedron::drop_some_non_integer_points(const Variables_Set& vars,
Complexity_Class complexity) {
drop_some_non_integer_points(&vars, complexity);
}
namespace Interfaces {
inline bool
is_necessarily_closed_for_interfaces(const Polyhedron& ph) {
return ph.is_necessarily_closed();
}
} // namespace Interfaces
} // namespace Parma_Polyhedra_Library
namespace std {
/*! \relates Parma_Polyhedra_Library::Polyhedron */
inline void
swap(Parma_Polyhedra_Library::Polyhedron& x,
Parma_Polyhedra_Library::Polyhedron& y) {
x.swap(y);
}
} // namespace std
#endif // !defined(PPL_Polyhedron_inlines_hh)
|