1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
|
/* Polyhedron class declaration.
Copyright (C) 2001-2010 Roberto Bagnara <bagnara@cs.unipr.it>
Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com)
This file is part of the Parma Polyhedra Library (PPL).
The PPL is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The PPL is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA.
For the most up-to-date information see the Parma Polyhedra Library
site: http://www.cs.unipr.it/ppl/ . */
#ifndef PPL_Polyhedron_defs_hh
#define PPL_Polyhedron_defs_hh 1
#include "Polyhedron.types.hh"
#include "globals.types.hh"
#include "Variable.defs.hh"
#include "Variables_Set.types.hh"
#include "Linear_Expression.types.hh"
#include "Constraint_System.defs.hh"
#include "Constraint_System.inlines.hh"
#include "Generator_System.defs.hh"
#include "Generator_System.inlines.hh"
#include "Congruence_System.defs.hh"
#include "Congruence_System.inlines.hh"
#include "Grid_Generator_System.defs.hh"
#include "Grid_Generator_System.inlines.hh"
#include "Bit_Matrix.defs.hh"
#include "Constraint.types.hh"
#include "Generator.types.hh"
#include "Congruence.types.hh"
#include "Poly_Con_Relation.defs.hh"
#include "Poly_Gen_Relation.defs.hh"
#include "BHRZ03_Certificate.types.hh"
#include "H79_Certificate.types.hh"
#include "Box.types.hh"
#include "BD_Shape.types.hh"
#include "Octagonal_Shape.types.hh"
#include <vector>
#include <iosfwd>
namespace Parma_Polyhedra_Library {
namespace IO_Operators {
//! Output operator.
/*!
\relates Parma_Polyhedra_Library::Polyhedron
Writes a textual representation of \p ph on \p s:
<CODE>false</CODE> is written if \p ph is an empty polyhedron;
<CODE>true</CODE> is written if \p ph is a universe polyhedron;
a minimized system of constraints defining \p ph is written otherwise,
all constraints in one row separated by ", ".
*/
std::ostream&
operator<<(std::ostream& s, const Polyhedron& ph);
} // namespace IO_Operators
/*! \brief
Returns <CODE>true</CODE> if and only if
\p x and \p y are the same polyhedron.
\relates Polyhedron
Note that \p x and \p y may be topology- and/or dimension-incompatible
polyhedra: in those cases, the value <CODE>false</CODE> is returned.
*/
bool operator==(const Polyhedron& x, const Polyhedron& y);
/*! \brief
Returns <CODE>true</CODE> if and only if
\p x and \p y are different polyhedra.
\relates Polyhedron
Note that \p x and \p y may be topology- and/or dimension-incompatible
polyhedra: in those cases, the value <CODE>true</CODE> is returned.
*/
bool operator!=(const Polyhedron& x, const Polyhedron& y);
namespace Interfaces {
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
Returns \c true if and only if
<code>ph.topology() == NECESSARILY_CLOSED</code>.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
bool is_necessarily_closed_for_interfaces(const Polyhedron& ph);
} // namespace Interfaces
} // namespace Parma_Polyhedra_Library
//! The base class for convex polyhedra.
/*! \ingroup PPL_CXX_interface
An object of the class Polyhedron represents a convex polyhedron
in the vector space \f$\Rset^n\f$.
A polyhedron can be specified as either a finite system of constraints
or a finite system of generators (see Section \ref representation)
and it is always possible to obtain either representation.
That is, if we know the system of constraints, we can obtain
from this the system of generators that define the same polyhedron
and vice versa.
These systems can contain redundant members: in this case we say
that they are not in the minimal form.
Two key attributes of any polyhedron are its topological kind
(recording whether it is a C_Polyhedron or an NNC_Polyhedron object)
and its space dimension (the dimension \f$n \in \Nset\f$ of
the enclosing vector space):
- all polyhedra, the empty ones included, are endowed with
a specific topology and space dimension;
- most operations working on a polyhedron and another object
(i.e., another polyhedron, a constraint or generator,
a set of variables, etc.) will throw an exception if
the polyhedron and the object are not both topology-compatible
and dimension-compatible (see Section \ref representation);
- the topology of a polyhedron cannot be changed;
rather, there are constructors for each of the two derived classes
that will build a new polyhedron with the topology of that class
from another polyhedron from either class and any topology;
- the only ways in which the space dimension of a polyhedron can
be changed are:
- <EM>explicit</EM> calls to operators provided for that purpose;
- standard copy, assignment and swap operators.
Note that four different polyhedra can be defined on
the zero-dimension space:
the empty polyhedron, either closed or NNC,
and the universe polyhedron \f$R^0\f$, again either closed or NNC.
\par
In all the examples it is assumed that variables
<CODE>x</CODE> and <CODE>y</CODE> are defined (where they are
used) as follows:
\code
Variable x(0);
Variable y(1);
\endcode
\par Example 1
The following code builds a polyhedron corresponding to
a square in \f$\Rset^2\f$, given as a system of constraints:
\code
Constraint_System cs;
cs.insert(x >= 0);
cs.insert(x <= 3);
cs.insert(y >= 0);
cs.insert(y <= 3);
C_Polyhedron ph(cs);
\endcode
The following code builds the same polyhedron as above,
but starting from a system of generators specifying
the four vertices of the square:
\code
Generator_System gs;
gs.insert(point(0*x + 0*y));
gs.insert(point(0*x + 3*y));
gs.insert(point(3*x + 0*y));
gs.insert(point(3*x + 3*y));
C_Polyhedron ph(gs);
\endcode
\par Example 2
The following code builds an unbounded polyhedron
corresponding to a half-strip in \f$\Rset^2\f$,
given as a system of constraints:
\code
Constraint_System cs;
cs.insert(x >= 0);
cs.insert(x - y <= 0);
cs.insert(x - y + 1 >= 0);
C_Polyhedron ph(cs);
\endcode
The following code builds the same polyhedron as above,
but starting from the system of generators specifying
the two vertices of the polyhedron and one ray:
\code
Generator_System gs;
gs.insert(point(0*x + 0*y));
gs.insert(point(0*x + y));
gs.insert(ray(x - y));
C_Polyhedron ph(gs);
\endcode
\par Example 3
The following code builds the polyhedron corresponding to
a half-plane by adding a single constraint
to the universe polyhedron in \f$\Rset^2\f$:
\code
C_Polyhedron ph(2);
ph.add_constraint(y >= 0);
\endcode
The following code builds the same polyhedron as above,
but starting from the empty polyhedron in the space \f$\Rset^2\f$
and inserting the appropriate generators
(a point, a ray and a line).
\code
C_Polyhedron ph(2, EMPTY);
ph.add_generator(point(0*x + 0*y));
ph.add_generator(ray(y));
ph.add_generator(line(x));
\endcode
Note that, although the above polyhedron has no vertices, we must add
one point, because otherwise the result of the Minkowski's sum
would be an empty polyhedron.
To avoid subtle errors related to the minimization process,
it is required that the first generator inserted in an empty
polyhedron is a point (otherwise, an exception is thrown).
\par Example 4
The following code shows the use of the function
<CODE>add_space_dimensions_and_embed</CODE>:
\code
C_Polyhedron ph(1);
ph.add_constraint(x == 2);
ph.add_space_dimensions_and_embed(1);
\endcode
We build the universe polyhedron in the 1-dimension space \f$\Rset\f$.
Then we add a single equality constraint,
thus obtaining the polyhedron corresponding to the singleton set
\f$\{ 2 \} \sseq \Rset\f$.
After the last line of code, the resulting polyhedron is
\f[
\bigl\{\,
(2, y)^\transpose \in \Rset^2
\bigm|
y \in \Rset
\,\bigr\}.
\f]
\par Example 5
The following code shows the use of the function
<CODE>add_space_dimensions_and_project</CODE>:
\code
C_Polyhedron ph(1);
ph.add_constraint(x == 2);
ph.add_space_dimensions_and_project(1);
\endcode
The first two lines of code are the same as in Example 4 for
<CODE>add_space_dimensions_and_embed</CODE>.
After the last line of code, the resulting polyhedron is
the singleton set
\f$\bigl\{ (2, 0)^\transpose \bigr\} \sseq \Rset^2\f$.
\par Example 6
The following code shows the use of the function
<CODE>affine_image</CODE>:
\code
C_Polyhedron ph(2, EMPTY);
ph.add_generator(point(0*x + 0*y));
ph.add_generator(point(0*x + 3*y));
ph.add_generator(point(3*x + 0*y));
ph.add_generator(point(3*x + 3*y));
Linear_Expression expr = x + 4;
ph.affine_image(x, expr);
\endcode
In this example the starting polyhedron is a square in
\f$\Rset^2\f$, the considered variable is \f$x\f$ and the affine
expression is \f$x+4\f$. The resulting polyhedron is the same
square translated to the right. Moreover, if the affine
transformation for the same variable \p x is \f$x+y\f$:
\code
Linear_Expression expr = x + y;
\endcode
the resulting polyhedron is a parallelogram with the height equal to
the side of the square and the oblique sides parallel to the line
\f$x-y\f$.
Instead, if we do not use an invertible transformation for the same
variable; for example, the affine expression \f$y\f$:
\code
Linear_Expression expr = y;
\endcode
the resulting polyhedron is a diagonal of the square.
\par Example 7
The following code shows the use of the function
<CODE>affine_preimage</CODE>:
\code
C_Polyhedron ph(2);
ph.add_constraint(x >= 0);
ph.add_constraint(x <= 3);
ph.add_constraint(y >= 0);
ph.add_constraint(y <= 3);
Linear_Expression expr = x + 4;
ph.affine_preimage(x, expr);
\endcode
In this example the starting polyhedron, \p var and the affine
expression and the denominator are the same as in Example 6,
while the resulting polyhedron is again the same square,
but translated to the left.
Moreover, if the affine transformation for \p x is \f$x+y\f$
\code
Linear_Expression expr = x + y;
\endcode
the resulting polyhedron is a parallelogram with the height equal to
the side of the square and the oblique sides parallel to the line
\f$x+y\f$.
Instead, if we do not use an invertible transformation for the same
variable \p x, for example, the affine expression \f$y\f$:
\code
Linear_Expression expr = y;
\endcode
the resulting polyhedron is a line that corresponds to the \f$y\f$ axis.
\par Example 8
For this example we use also the variables:
\code
Variable z(2);
Variable w(3);
\endcode
The following code shows the use of the function
<CODE>remove_space_dimensions</CODE>:
\code
Generator_System gs;
gs.insert(point(3*x + y +0*z + 2*w));
C_Polyhedron ph(gs);
Variables_Set vars;
vars.insert(y);
vars.insert(z);
ph.remove_space_dimensions(vars);
\endcode
The starting polyhedron is the singleton set
\f$\bigl\{ (3, 1, 0, 2)^\transpose \bigr\} \sseq \Rset^4\f$, while
the resulting polyhedron is
\f$\bigl\{ (3, 2)^\transpose \bigr\} \sseq \Rset^2\f$.
Be careful when removing space dimensions <EM>incrementally</EM>:
since dimensions are automatically renamed after each application
of the <CODE>remove_space_dimensions</CODE> operator, unexpected
results can be obtained.
For instance, by using the following code we would obtain
a different result:
\code
set<Variable> vars1;
vars1.insert(y);
ph.remove_space_dimensions(vars1);
set<Variable> vars2;
vars2.insert(z);
ph.remove_space_dimensions(vars2);
\endcode
In this case, the result is the polyhedron
\f$\bigl\{(3, 0)^\transpose \bigr\} \sseq \Rset^2\f$:
when removing the set of dimensions \p vars2
we are actually removing variable \f$w\f$ of the original polyhedron.
For the same reason, the operator \p remove_space_dimensions
is not idempotent: removing twice the same non-empty set of dimensions
is never the same as removing them just once.
*/
class Parma_Polyhedra_Library::Polyhedron {
public:
//! The numeric type of coefficients.
typedef Coefficient coefficient_type;
//! Returns the maximum space dimension all kinds of Polyhedron can handle.
static dimension_type max_space_dimension();
/*! \brief
Returns \c true indicating that this domain has methods that
can recycle constraints.
*/
static bool can_recycle_constraint_systems();
//! Initializes the class.
static void initialize();
//! Finalizes the class.
static void finalize();
/*! \brief
Returns \c false indicating that this domain cannot recycle congruences.
*/
static bool can_recycle_congruence_systems();
protected:
//! Builds a polyhedron having the specified properties.
/*!
\param topol
The topology of the polyhedron;
\param num_dimensions
The number of dimensions of the vector space enclosing the polyhedron;
\param kind
Specifies whether the universe or the empty polyhedron has to be built.
*/
Polyhedron(Topology topol,
dimension_type num_dimensions,
Degenerate_Element kind);
//! Ordinary copy constructor.
/*!
The complexity argument is ignored.
*/
Polyhedron(const Polyhedron& y,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Builds a polyhedron from a system of constraints.
/*!
The polyhedron inherits the space dimension of the constraint system.
\param topol
The topology of the polyhedron;
\param cs
The system of constraints defining the polyhedron.
\exception std::invalid_argument
Thrown if the topology of \p cs is incompatible with \p topol.
*/
Polyhedron(Topology topol, const Constraint_System& cs);
//! Builds a polyhedron recycling a system of constraints.
/*!
The polyhedron inherits the space dimension of the constraint system.
\param topol
The topology of the polyhedron;
\param cs
The system of constraints defining the polyhedron. It is not
declared <CODE>const</CODE> because its data-structures may be
recycled to build the polyhedron.
\param dummy
A dummy tag to syntactically differentiate this one
from the other constructors.
\exception std::invalid_argument
Thrown if the topology of \p cs is incompatible with \p topol.
*/
Polyhedron(Topology topol, Constraint_System& cs, Recycle_Input dummy);
//! Builds a polyhedron from a system of generators.
/*!
The polyhedron inherits the space dimension of the generator system.
\param topol
The topology of the polyhedron;
\param gs
The system of generators defining the polyhedron.
\exception std::invalid_argument
Thrown if the topology of \p gs is incompatible with \p topol,
or if the system of generators is not empty but has no points.
*/
Polyhedron(Topology topol, const Generator_System& gs);
//! Builds a polyhedron recycling a system of generators.
/*!
The polyhedron inherits the space dimension of the generator system.
\param topol
The topology of the polyhedron;
\param gs
The system of generators defining the polyhedron. It is not
declared <CODE>const</CODE> because its data-structures may be
recycled to build the polyhedron.
\param dummy
A dummy tag to syntactically differentiate this one
from the other constructors.
\exception std::invalid_argument
Thrown if the topology of \p gs is incompatible with \p topol,
or if the system of generators is not empty but has no points.
*/
Polyhedron(Topology topol, Generator_System& gs, Recycle_Input dummy);
//! Builds a polyhedron from a box.
/*!
This will use an algorithm whose complexity is polynomial and build
the smallest polyhedron with topology \p topol containing \p box.
\param topol
The topology of the polyhedron;
\param box
The box representing the polyhedron to be built;
\param complexity
This argument is ignored.
*/
template <typename Interval>
Polyhedron(Topology topol, const Box<Interval>& box,
Complexity_Class complexity = ANY_COMPLEXITY);
/*! \brief
The assignment operator.
(\p *this and \p y can be dimension-incompatible.)
*/
Polyhedron& operator=(const Polyhedron& y);
public:
//! \name Member Functions that Do Not Modify the Polyhedron
//@{
//! Returns the dimension of the vector space enclosing \p *this.
dimension_type space_dimension() const;
/*! \brief
Returns \f$0\f$, if \p *this is empty; otherwise, returns the
\ref Affine_Independence_and_Affine_Dimension "affine dimension"
of \p *this.
*/
dimension_type affine_dimension() const;
//! Returns the system of constraints.
const Constraint_System& constraints() const;
//! Returns the system of constraints, with no redundant constraint.
const Constraint_System& minimized_constraints() const;
//! Returns the system of generators.
const Generator_System& generators() const;
//! Returns the system of generators, with no redundant generator.
const Generator_System& minimized_generators() const;
//! Returns a system of (equality) congruences satisfied by \p *this.
Congruence_System congruences() const;
/*! \brief
Returns a system of (equality) congruences satisfied by \p *this,
with no redundant congruences and having the same affine dimension
as \p *this.
*/
Congruence_System minimized_congruences() const;
//! Returns a universe system of grid generators.
Grid_Generator_System grid_generators() const;
//! Returns a universe system of grid generators.
Grid_Generator_System minimized_grid_generators() const;
/*! \brief
Returns the relations holding between the polyhedron \p *this
and the constraint \p c.
\exception std::invalid_argument
Thrown if \p *this and constraint \p c are dimension-incompatible.
*/
Poly_Con_Relation relation_with(const Constraint& c) const;
/*! \brief
Returns the relations holding between the polyhedron \p *this
and the generator \p g.
\exception std::invalid_argument
Thrown if \p *this and generator \p g are dimension-incompatible.
*/
Poly_Gen_Relation relation_with(const Generator& g) const;
/*! \brief
Returns the relations holding between the polyhedron \p *this
and the congruence \p c.
\exception std::invalid_argument
Thrown if \p *this and congruence \p c are dimension-incompatible.
*/
Poly_Con_Relation relation_with(const Congruence& cg) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is
an empty polyhedron.
*/
bool is_empty() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this
is a universe polyhedron.
*/
bool is_universe() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this
is a topologically closed subset of the vector space.
*/
bool is_topologically_closed() const;
//! Returns <CODE>true</CODE> if and only if \p *this and \p y are disjoint.
/*!
\exception std::invalid_argument
Thrown if \p x and \p y are topology-incompatible or
dimension-incompatible.
*/
bool is_disjoint_from(const Polyhedron& y) const;
//! Returns <CODE>true</CODE> if and only if \p *this is discrete.
bool is_discrete() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this
is a bounded polyhedron.
*/
bool is_bounded() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this
contains at least one integer point.
*/
bool contains_integer_point() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p var is constrained in
\p *this.
\exception std::invalid_argument
Thrown if \p var is not a space dimension of \p *this.
*/
bool constrains(Variable var) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p expr is
bounded from above in \p *this.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
*/
bool bounds_from_above(const Linear_Expression& expr) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p expr is
bounded from below in \p *this.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
*/
bool bounds_from_below(const Linear_Expression& expr) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is not empty
and \p expr is bounded from above in \p *this, in which case
the supremum value is computed.
\param expr
The linear expression to be maximized subject to \p *this;
\param sup_n
The numerator of the supremum value;
\param sup_d
The denominator of the supremum value;
\param maximum
<CODE>true</CODE> if and only if the supremum is also the maximum value.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded from above,
<CODE>false</CODE> is returned and \p sup_n, \p sup_d
and \p maximum are left untouched.
*/
bool maximize(const Linear_Expression& expr,
Coefficient& sup_n, Coefficient& sup_d, bool& maximum) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is not empty
and \p expr is bounded from above in \p *this, in which case
the supremum value and a point where \p expr reaches it are computed.
\param expr
The linear expression to be maximized subject to \p *this;
\param sup_n
The numerator of the supremum value;
\param sup_d
The denominator of the supremum value;
\param maximum
<CODE>true</CODE> if and only if the supremum is also the maximum value;
\param g
When maximization succeeds, will be assigned the point or
closure point where \p expr reaches its supremum value.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded from above,
<CODE>false</CODE> is returned and \p sup_n, \p sup_d, \p maximum
and \p g are left untouched.
*/
bool maximize(const Linear_Expression& expr,
Coefficient& sup_n, Coefficient& sup_d, bool& maximum,
Generator& g) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is not empty
and \p expr is bounded from below in \p *this, in which case
the infimum value is computed.
\param expr
The linear expression to be minimized subject to \p *this;
\param inf_n
The numerator of the infimum value;
\param inf_d
The denominator of the infimum value;
\param minimum
<CODE>true</CODE> if and only if the infimum is also the minimum value.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded from below,
<CODE>false</CODE> is returned and \p inf_n, \p inf_d
and \p minimum are left untouched.
*/
bool minimize(const Linear_Expression& expr,
Coefficient& inf_n, Coefficient& inf_d, bool& minimum) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is not empty
and \p expr is bounded from below in \p *this, in which case
the infimum value and a point where \p expr reaches it are computed.
\param expr
The linear expression to be minimized subject to \p *this;
\param inf_n
The numerator of the infimum value;
\param inf_d
The denominator of the infimum value;
\param minimum
<CODE>true</CODE> if and only if the infimum is also the minimum value;
\param g
When minimization succeeds, will be assigned a point or
closure point where \p expr reaches its infimum value.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded from below,
<CODE>false</CODE> is returned and \p inf_n, \p inf_d, \p minimum
and \p g are left untouched.
*/
bool minimize(const Linear_Expression& expr,
Coefficient& inf_n, Coefficient& inf_d, bool& minimum,
Generator& g) const;
/*! \brief
Returns <CODE>true</CODE> if and only if there exist a
unique value \p val such that \p *this
saturates the equality <CODE>expr = val</CODE>.
\param expr
The linear expression for which the frequency is needed;
\param freq_n
If <CODE>true</CODE> is returned, the value is set to \f$0\f$;
Present for interface compatibility with class Grid, where
the \ref Grid_Frequency "frequency" can have a non-zero value;
\param freq_d
If <CODE>true</CODE> is returned, the value is set to \f$1\f$;
\param val_n
The numerator of \p val;
\param val_d
The denominator of \p val;
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If <CODE>false</CODE> is returned, then \p freq_n, \p freq_d,
\p val_n and \p val_d are left untouched.
*/
bool frequency(const Linear_Expression& expr,
Coefficient& freq_n, Coefficient& freq_d,
Coefficient& val_n, Coefficient& val_d) const;
//! Returns <CODE>true</CODE> if and only if \p *this contains \p y.
/*!
\exception std::invalid_argument
Thrown if \p *this and \p y are topology-incompatible or
dimension-incompatible.
*/
bool contains(const Polyhedron& y) const;
//! Returns <CODE>true</CODE> if and only if \p *this strictly contains \p y.
/*!
\exception std::invalid_argument
Thrown if \p *this and \p y are topology-incompatible or
dimension-incompatible.
*/
bool strictly_contains(const Polyhedron& y) const;
//! Checks if all the invariants are satisfied.
/*!
\return
<CODE>true</CODE> if and only if \p *this satisfies all the
invariants and either \p check_not_empty is <CODE>false</CODE> or
\p *this is not empty.
\param check_not_empty
<CODE>true</CODE> if and only if, in addition to checking the
invariants, \p *this must be checked to be not empty.
The check is performed so as to intrude as little as possible. If
the library has been compiled with run-time assertions enabled,
error messages are written on <CODE>std::cerr</CODE> in case
invariants are violated. This is useful for the purpose of
debugging the library.
*/
bool OK(bool check_not_empty = false) const;
//@} // Member Functions that Do Not Modify the Polyhedron
//! \name Space Dimension Preserving Member Functions that May Modify the Polyhedron
//@{
/*! \brief
Adds a copy of constraint \p c to the system of constraints
of \p *this (without minimizing the result).
\param c
The constraint that will be added to the system of
constraints of \p *this.
\exception std::invalid_argument
Thrown if \p *this and constraint \p c are topology-incompatible
or dimension-incompatible.
*/
void add_constraint(const Constraint& c);
/*! \brief
Adds a copy of generator \p g to the system of generators
of \p *this (without minimizing the result).
\exception std::invalid_argument
Thrown if \p *this and generator \p g are topology-incompatible or
dimension-incompatible, or if \p *this is an empty polyhedron and
\p g is not a point.
*/
void add_generator(const Generator& g);
/*! \brief
Adds a copy of congruence \p cg to \p *this,
if \p cg can be exactly represented by a polyhedron.
\exception std::invalid_argument
Thrown if \p *this and congruence \p cg are dimension-incompatible,
of if \p cg is a proper congruence which is neither a tautology,
nor a contradiction.
*/
void add_congruence(const Congruence& cg);
/*! \brief
Adds a copy of the constraints in \p cs to the system
of constraints of \p *this (without minimizing the result).
\param cs
Contains the constraints that will be added to the system of
constraints of \p *this.
\exception std::invalid_argument
Thrown if \p *this and \p cs are topology-incompatible or
dimension-incompatible.
*/
void add_constraints(const Constraint_System& cs);
/*! \brief
Adds the constraints in \p cs to the system of constraints
of \p *this (without minimizing the result).
\param cs
The constraint system to be added to \p *this. The constraints in
\p cs may be recycled.
\exception std::invalid_argument
Thrown if \p *this and \p cs are topology-incompatible or
dimension-incompatible.
\warning
The only assumption that can be made on \p cs upon successful or
exceptional return is that it can be safely destroyed.
*/
void add_recycled_constraints(Constraint_System& cs);
/*! \brief
Adds a copy of the generators in \p gs to the system
of generators of \p *this (without minimizing the result).
\param gs
Contains the generators that will be added to the system of
generators of \p *this.
\exception std::invalid_argument
Thrown if \p *this and \p gs are topology-incompatible or
dimension-incompatible, or if \p *this is empty and the system of
generators \p gs is not empty, but has no points.
*/
void add_generators(const Generator_System& gs);
/*! \brief
Adds the generators in \p gs to the system of generators
of \p *this (without minimizing the result).
\param gs
The generator system to be added to \p *this. The generators in
\p gs may be recycled.
\exception std::invalid_argument
Thrown if \p *this and \p gs are topology-incompatible or
dimension-incompatible, or if \p *this is empty and the system of
generators \p gs is not empty, but has no points.
\warning
The only assumption that can be made on \p gs upon successful or
exceptional return is that it can be safely destroyed.
*/
void add_recycled_generators(Generator_System& gs);
/*! \brief
Adds a copy of the congruences in \p cgs to \p *this,
if all the congruences can be exactly represented by a polyhedron.
\param cgs
The congruences to be added.
\exception std::invalid_argument
Thrown if \p *this and \p cgs are dimension-incompatible,
of if there exists in \p cgs a proper congruence which is
neither a tautology, nor a contradiction.
*/
void add_congruences(const Congruence_System& cgs);
/*! \brief
Adds the congruences in \p cgs to \p *this,
if all the congruences can be exactly represented by a polyhedron.
\param cgs
The congruences to be added. Its elements may be recycled.
\exception std::invalid_argument
Thrown if \p *this and \p cgs are dimension-incompatible,
of if there exists in \p cgs a proper congruence which is
neither a tautology, nor a contradiction
\warning
The only assumption that can be made on \p cgs upon successful or
exceptional return is that it can be safely destroyed.
*/
void add_recycled_congruences(Congruence_System& cgs);
/*! \brief
Uses a copy of constraint \p c to refine \p *this.
\exception std::invalid_argument
Thrown if \p *this and constraint \p c are dimension-incompatible.
*/
void refine_with_constraint(const Constraint& c);
/*! \brief
Uses a copy of congruence \p cg to refine \p *this.
\exception std::invalid_argument
Thrown if \p *this and congruence \p cg are dimension-incompatible.
*/
void refine_with_congruence(const Congruence& cg);
/*! \brief
Uses a copy of the constraints in \p cs to refine \p *this.
\param cs
Contains the constraints used to refine the system of
constraints of \p *this.
\exception std::invalid_argument
Thrown if \p *this and \p cs are dimension-incompatible.
*/
void refine_with_constraints(const Constraint_System& cs);
/*! \brief
Uses a copy of the congruences in \p cgs to refine \p *this.
\param cgs
Contains the congruences used to refine the system of
constraints of \p *this.
\exception std::invalid_argument
Thrown if \p *this and \p cgs are dimension-incompatible.
*/
void refine_with_congruences(const Congruence_System& cgs);
/*! \brief
Computes the \ref Cylindrification "cylindrification" of \p *this with
respect to space dimension \p var, assigning the result to \p *this.
\param var
The space dimension that will be unconstrained.
\exception std::invalid_argument
Thrown if \p var is not a space dimension of \p *this.
*/
void unconstrain(Variable var);
/*! \brief
Computes the \ref Cylindrification "cylindrification" of \p *this with
respect to the set of space dimensions \p vars,
assigning the result to \p *this.
\param vars
The set of space dimension that will be unconstrained.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with one of the
Variable objects contained in \p vars.
*/
void unconstrain(const Variables_Set& vars);
/*! \brief
Assigns to \p *this the intersection of \p *this and \p y.
\exception std::invalid_argument
Thrown if \p *this and \p y are topology-incompatible or
dimension-incompatible.
*/
void intersection_assign(const Polyhedron& y);
/*! \brief
Assigns to \p *this the poly-hull of \p *this and \p y.
\exception std::invalid_argument
Thrown if \p *this and \p y are topology-incompatible or
dimension-incompatible.
*/
void poly_hull_assign(const Polyhedron& y);
//! Same as poly_hull_assign(y).
void upper_bound_assign(const Polyhedron& y);
/*! \brief
Assigns to \p *this
the \ref Convex_Polyhedral_Difference "poly-difference"
of \p *this and \p y.
\exception std::invalid_argument
Thrown if \p *this and \p y are topology-incompatible or
dimension-incompatible.
*/
void poly_difference_assign(const Polyhedron& y);
//! Same as poly_difference_assign(y).
void difference_assign(const Polyhedron& y);
/*! \brief
Assigns to \p *this a \ref Meet_Preserving_Simplification
"meet-preserving simplification" of \p *this with respect to \p y.
If \c false is returned, then the intersection is empty.
\exception std::invalid_argument
Thrown if \p *this and \p y are topology-incompatible or
dimension-incompatible.
*/
bool simplify_using_context_assign(const Polyhedron& y);
/*! \brief
Assigns to \p *this the
\ref Single_Update_Affine_Functions "affine image"
of \p *this under the function mapping variable \p var to the
affine expression specified by \p expr and \p denominator.
\param var
The variable to which the affine expression is assigned;
\param expr
The numerator of the affine expression;
\param denominator
The denominator of the affine expression (optional argument with
default value 1).
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p expr and \p *this are
dimension-incompatible or if \p var is not a space dimension of
\p *this.
\if Include_Implementation_Details
When considering the generators of a polyhedron, the
affine transformation
\f[
\frac{\sum_{i=0}^{n-1} a_i x_i + b}{\mathrm{denominator}}
\f]
is assigned to \p var where \p expr is
\f$\sum_{i=0}^{n-1} a_i x_i + b\f$
(\f$b\f$ is the inhomogeneous term).
If constraints are up-to-date, it uses the specialized function
affine_preimage() (for the system of constraints)
and inverse transformation to reach the same result.
To obtain the inverse transformation we use the following observation.
Observation:
-# The affine transformation is invertible if the coefficient
of \p var in this transformation (i.e., \f$a_\mathrm{var}\f$)
is different from zero.
-# If the transformation is invertible, then we can write
\f[
\mathrm{denominator} * {x'}_\mathrm{var}
= \sum_{i = 0}^{n - 1} a_i x_i + b
= a_\mathrm{var} x_\mathrm{var}
+ \sum_{i \neq var} a_i x_i + b,
\f]
so that the inverse transformation is
\f[
a_\mathrm{var} x_\mathrm{var}
= \mathrm{denominator} * {x'}_\mathrm{var}
- \sum_{i \neq j} a_i x_i - b.
\f]
Then, if the transformation is invertible, all the entities that
were up-to-date remain up-to-date. Otherwise only generators remain
up-to-date.
In other words, if \f$R\f$ is a \f$m_1 \times n\f$ matrix representing
the rays of the polyhedron, \f$V\f$ is a \f$m_2 \times n\f$
matrix representing the points of the polyhedron and
\f[
P = \bigl\{\,
\vect{x} = (x_0, \ldots, x_{n-1})^\mathrm{T}
\bigm|
\vect{x} = \vect{\lambda} R + \vect{\mu} V,
\vect{\lambda} \in \Rset^{m_1}_+,
\vect{\mu} \in \Rset^{m_2}_+,
\sum_{i = 0}^{m_2 - 1} \mu_i = 1
\,\bigr\}
\f]
and \f$T\f$ is the affine transformation to apply to \f$P\f$, then
the resulting polyhedron is
\f[
P' = \bigl\{\,
(x_0, \ldots, T(x_0, \ldots, x_{n-1}),
\ldots, x_{n-1})^\mathrm{T}
\bigm|
(x_0, \ldots, x_{n-1})^\mathrm{T} \in P
\,\bigr\}.
\f]
Affine transformations are, for example:
- translations
- rotations
- symmetries.
\endif
*/
void affine_image(Variable var,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*! \brief
Assigns to \p *this the
\ref Single_Update_Affine_Functions "affine preimage"
of \p *this under the function mapping variable \p var to the
affine expression specified by \p expr and \p denominator.
\param var
The variable to which the affine expression is substituted;
\param expr
The numerator of the affine expression;
\param denominator
The denominator of the affine expression (optional argument with
default value 1).
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p expr and \p *this are
dimension-incompatible or if \p var is not a space dimension of \p *this.
\if Include_Implementation_Details
When considering constraints of a polyhedron, the affine transformation
\f[
\frac{\sum_{i=0}^{n-1} a_i x_i + b}{denominator},
\f]
is assigned to \p var where \p expr is
\f$\sum_{i=0}^{n-1} a_i x_i + b\f$
(\f$b\f$ is the inhomogeneous term).
If generators are up-to-date, then the specialized function
affine_image() is used (for the system of generators)
and inverse transformation to reach the same result.
To obtain the inverse transformation, we use the following observation.
Observation:
-# The affine transformation is invertible if the coefficient
of \p var in this transformation (i.e. \f$a_\mathrm{var}\f$)
is different from zero.
-# If the transformation is invertible, then we can write
\f[
\mathrm{denominator} * {x'}_\mathrm{var}
= \sum_{i = 0}^{n - 1} a_i x_i + b
= a_\mathrm{var} x_\mathrm{var}
+ \sum_{i \neq \mathrm{var}} a_i x_i + b,
\f],
the inverse transformation is
\f[
a_\mathrm{var} x_\mathrm{var}
= \mathrm{denominator} * {x'}_\mathrm{var}
- \sum_{i \neq j} a_i x_i - b.
\f].
Then, if the transformation is invertible, all the entities that
were up-to-date remain up-to-date. Otherwise only constraints remain
up-to-date.
In other words, if \f$A\f$ is a \f$m \times n\f$ matrix representing
the constraints of the polyhedron, \f$T\f$ is the affine transformation
to apply to \f$P\f$ and
\f[
P = \bigl\{\,
\vect{x} = (x_0, \ldots, x_{n-1})^\mathrm{T}
\bigm|
A\vect{x} \geq \vect{0}
\,\bigr\}.
\f]
The resulting polyhedron is
\f[
P' = \bigl\{\,
\vect{x} = (x_0, \ldots, x_{n-1}))^\mathrm{T}
\bigm|
A'\vect{x} \geq \vect{0}
\,\bigr\},
\f]
where \f$A'\f$ is defined as follows:
\f[
{a'}_{ij}
= \begin{cases}
a_{ij} * \mathrm{denominator} + a_{i\mathrm{var}}*\mathrm{expr}[j]
\quad \mathrm{for } j \neq \mathrm{var}; \\
\mathrm{expr}[\mathrm{var}] * a_{i\mathrm{var}},
\quad \text{for } j = \mathrm{var}.
\end{cases}
\f]
\endif
*/
void affine_preimage(Variable var,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*! \brief
Assigns to \p *this the image of \p *this with respect to the
\ref Generalized_Affine_Relations "generalized affine relation"
\f$\mathrm{var}' \relsym \frac{\mathrm{expr}}{\mathrm{denominator}}\f$,
where \f$\mathord{\relsym}\f$ is the relation symbol encoded
by \p relsym.
\param var
The left hand side variable of the generalized affine relation;
\param relsym
The relation symbol;
\param expr
The numerator of the right hand side affine expression;
\param denominator
The denominator of the right hand side affine expression (optional
argument with default value 1).
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p expr and \p *this are
dimension-incompatible or if \p var is not a space dimension of \p *this
or if \p *this is a C_Polyhedron and \p relsym is a strict
relation symbol.
*/
void generalized_affine_image(Variable var,
Relation_Symbol relsym,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*! \brief
Assigns to \p *this the preimage of \p *this with respect to the
\ref Generalized_Affine_Relations "generalized affine relation"
\f$\mathrm{var}' \relsym \frac{\mathrm{expr}}{\mathrm{denominator}}\f$,
where \f$\mathord{\relsym}\f$ is the relation symbol encoded
by \p relsym.
\param var
The left hand side variable of the generalized affine relation;
\param relsym
The relation symbol;
\param expr
The numerator of the right hand side affine expression;
\param denominator
The denominator of the right hand side affine expression (optional
argument with default value 1).
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p expr and \p *this are
dimension-incompatible or if \p var is not a space dimension of \p *this
or if \p *this is a C_Polyhedron and \p relsym is a strict
relation symbol.
*/
void
generalized_affine_preimage(Variable var,
Relation_Symbol relsym,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*! \brief
Assigns to \p *this the image of \p *this with respect to the
\ref Generalized_Affine_Relations "generalized affine relation"
\f$\mathrm{lhs}' \relsym \mathrm{rhs}\f$, where
\f$\mathord{\relsym}\f$ is the relation symbol encoded by \p relsym.
\param lhs
The left hand side affine expression;
\param relsym
The relation symbol;
\param rhs
The right hand side affine expression.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with \p lhs or \p rhs
or if \p *this is a C_Polyhedron and \p relsym is a strict
relation symbol.
*/
void generalized_affine_image(const Linear_Expression& lhs,
Relation_Symbol relsym,
const Linear_Expression& rhs);
/*! \brief
Assigns to \p *this the preimage of \p *this with respect to the
\ref Generalized_Affine_Relations "generalized affine relation"
\f$\mathrm{lhs}' \relsym \mathrm{rhs}\f$, where
\f$\mathord{\relsym}\f$ is the relation symbol encoded by \p relsym.
\param lhs
The left hand side affine expression;
\param relsym
The relation symbol;
\param rhs
The right hand side affine expression.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with \p lhs or \p rhs
or if \p *this is a C_Polyhedron and \p relsym is a strict
relation symbol.
*/
void generalized_affine_preimage(const Linear_Expression& lhs,
Relation_Symbol relsym,
const Linear_Expression& rhs);
/*!
\brief
Assigns to \p *this the image of \p *this with respect to the
\ref Single_Update_Bounded_Affine_Relations "bounded affine relation"
\f$\frac{\mathrm{lb\_expr}}{\mathrm{denominator}}
\leq \mathrm{var}'
\leq \frac{\mathrm{ub\_expr}}{\mathrm{denominator}}\f$.
\param var
The variable updated by the affine relation;
\param lb_expr
The numerator of the lower bounding affine expression;
\param ub_expr
The numerator of the upper bounding affine expression;
\param denominator
The (common) denominator for the lower and upper bounding
affine expressions (optional argument with default value 1).
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p lb_expr (resp., \p ub_expr)
and \p *this are dimension-incompatible or if \p var is not a space
dimension of \p *this.
*/
void bounded_affine_image(Variable var,
const Linear_Expression& lb_expr,
const Linear_Expression& ub_expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*!
\brief
Assigns to \p *this the preimage of \p *this with respect to the
\ref Single_Update_Bounded_Affine_Relations "bounded affine relation"
\f$\frac{\mathrm{lb\_expr}}{\mathrm{denominator}}
\leq \mathrm{var}'
\leq \frac{\mathrm{ub\_expr}}{\mathrm{denominator}}\f$.
\param var
The variable updated by the affine relation;
\param lb_expr
The numerator of the lower bounding affine expression;
\param ub_expr
The numerator of the upper bounding affine expression;
\param denominator
The (common) denominator for the lower and upper bounding
affine expressions (optional argument with default value 1).
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p lb_expr (resp., \p ub_expr)
and \p *this are dimension-incompatible or if \p var is not a space
dimension of \p *this.
*/
void bounded_affine_preimage(Variable var,
const Linear_Expression& lb_expr,
const Linear_Expression& ub_expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*! \brief
Assigns to \p *this the result of computing the
\ref Time_Elapse_Operator "time-elapse" between \p *this and \p y.
\exception std::invalid_argument
Thrown if \p *this and \p y are topology-incompatible or
dimension-incompatible.
*/
void time_elapse_assign(const Polyhedron& y);
/*! \brief
\ref Wrapping_Operator "Wraps" the specified dimensions of the
vector space.
\param vars
The set of Variable objects corresponding to the space dimensions
to be wrapped.
\param w
The width of the bounded integer type corresponding to
all the dimensions to be wrapped.
\param r
The representation of the bounded integer type corresponding to
all the dimensions to be wrapped.
\param o
The overflow behavior of the bounded integer type corresponding to
all the dimensions to be wrapped.
\param pcs
Possibly null pointer to a constraint system whose variables
are contained in \p vars. If <CODE>*pcs</CODE> depends on
variables not in \p vars, the behavior is undefined.
When non-null, the pointed-to constraint system is assumed to
represent the conditional or looping construct guard with respect
to which wrapping is performed. Since wrapping requires the
computation of upper bounds and due to non-distributivity of
constraint refinement over upper bounds, passing a constraint
system in this way can be more precise than refining the result of
the wrapping operation with the constraints in <CODE>*pcs</CODE>.
\param complexity_threshold
A precision parameter of the \ref Wrapping_Operator "wrapping operator":
higher values result in possibly improved precision.
\param wrap_individually
<CODE>true</CODE> if the dimensions should be wrapped individually
(something that results in much greater efficiency to the detriment of
precision).
\exception std::invalid_argument
Thrown if <CODE>*pcs</CODE> is dimension-incompatible with
\p vars, or if \p *this is dimension-incompatible \p vars or with
<CODE>*pcs</CODE>.
*/
void wrap_assign(const Variables_Set& vars,
Bounded_Integer_Type_Width w,
Bounded_Integer_Type_Representation r,
Bounded_Integer_Type_Overflow o,
const Constraint_System* pcs = 0,
unsigned complexity_threshold = 16,
bool wrap_individually = true);
/*! \brief
Possibly tightens \p *this by dropping some points with non-integer
coordinates.
\param complexity
The maximal complexity of any algorithms used.
\note
Currently there is no optimality guarantee, not even if
\p complexity is <CODE>ANY_COMPLEXITY</CODE>.
*/
void drop_some_non_integer_points(Complexity_Class complexity
= ANY_COMPLEXITY);
/*! \brief
Possibly tightens \p *this by dropping some points with non-integer
coordinates for the space dimensions corresponding to \p vars.
\param vars
Points with non-integer coordinates for these variables/space-dimensions
can be discarded.
\param complexity
The maximal complexity of any algorithms used.
\note
Currently there is no optimality guarantee, not even if
\p complexity is <CODE>ANY_COMPLEXITY</CODE>.
*/
void drop_some_non_integer_points(const Variables_Set& vars,
Complexity_Class complexity
= ANY_COMPLEXITY);
//! Assigns to \p *this its topological closure.
void topological_closure_assign();
/*! \brief
Assigns to \p *this the result of computing the
\ref BHRZ03_widening "BHRZ03-widening" between \p *this and \p y.
\param y
A polyhedron that <EM>must</EM> be contained in \p *this;
\param tp
An optional pointer to an unsigned variable storing the number of
available tokens (to be used when applying the
\ref Widening_with_Tokens "widening with tokens" delay technique).
\exception std::invalid_argument
Thrown if \p *this and \p y are topology-incompatible or
dimension-incompatible.
*/
void BHRZ03_widening_assign(const Polyhedron& y, unsigned* tp = 0);
/*! \brief
Assigns to \p *this the result of computing the
\ref limited_extrapolation "limited extrapolation"
between \p *this and \p y using the \ref BHRZ03_widening
"BHRZ03-widening" operator.
\param y
A polyhedron that <EM>must</EM> be contained in \p *this;
\param cs
The system of constraints used to improve the widened polyhedron;
\param tp
An optional pointer to an unsigned variable storing the number of
available tokens (to be used when applying the
\ref Widening_with_Tokens "widening with tokens" delay technique).
\exception std::invalid_argument
Thrown if \p *this, \p y and \p cs are topology-incompatible or
dimension-incompatible.
*/
void limited_BHRZ03_extrapolation_assign(const Polyhedron& y,
const Constraint_System& cs,
unsigned* tp = 0);
/*! \brief
Assigns to \p *this the result of computing the
\ref bounded_extrapolation "bounded extrapolation"
between \p *this and \p y using the \ref BHRZ03_widening
"BHRZ03-widening" operator.
\param y
A polyhedron that <EM>must</EM> be contained in \p *this;
\param cs
The system of constraints used to improve the widened polyhedron;
\param tp
An optional pointer to an unsigned variable storing the number of
available tokens (to be used when applying the
\ref Widening_with_Tokens "widening with tokens" delay technique).
\exception std::invalid_argument
Thrown if \p *this, \p y and \p cs are topology-incompatible or
dimension-incompatible.
*/
void bounded_BHRZ03_extrapolation_assign(const Polyhedron& y,
const Constraint_System& cs,
unsigned* tp = 0);
/*! \brief
Assigns to \p *this the result of computing the
\ref H79_widening "H79_widening" between \p *this and \p y.
\param y
A polyhedron that <EM>must</EM> be contained in \p *this;
\param tp
An optional pointer to an unsigned variable storing the number of
available tokens (to be used when applying the
\ref Widening_with_Tokens "widening with tokens" delay technique).
\exception std::invalid_argument
Thrown if \p *this and \p y are topology-incompatible or
dimension-incompatible.
*/
void H79_widening_assign(const Polyhedron& y, unsigned* tp = 0);
//! Same as H79_widening_assign(y, tp).
void widening_assign(const Polyhedron& y, unsigned* tp = 0);
/*! \brief
Assigns to \p *this the result of computing the
\ref limited_extrapolation "limited extrapolation"
between \p *this and \p y using the \ref H79_widening
"H79-widening" operator.
\param y
A polyhedron that <EM>must</EM> be contained in \p *this;
\param cs
The system of constraints used to improve the widened polyhedron;
\param tp
An optional pointer to an unsigned variable storing the number of
available tokens (to be used when applying the
\ref Widening_with_Tokens "widening with tokens" delay technique).
\exception std::invalid_argument
Thrown if \p *this, \p y and \p cs are topology-incompatible or
dimension-incompatible.
*/
void limited_H79_extrapolation_assign(const Polyhedron& y,
const Constraint_System& cs,
unsigned* tp = 0);
/*! \brief
Assigns to \p *this the result of computing the
\ref bounded_extrapolation "bounded extrapolation"
between \p *this and \p y using the \ref H79_widening
"H79-widening" operator.
\param y
A polyhedron that <EM>must</EM> be contained in \p *this;
\param cs
The system of constraints used to improve the widened polyhedron;
\param tp
An optional pointer to an unsigned variable storing the number of
available tokens (to be used when applying the
\ref Widening_with_Tokens "widening with tokens" delay technique).
\exception std::invalid_argument
Thrown if \p *this, \p y and \p cs are topology-incompatible or
dimension-incompatible.
*/
void bounded_H79_extrapolation_assign(const Polyhedron& y,
const Constraint_System& cs,
unsigned* tp = 0);
//@} // Space Dimension Preserving Member Functions that May Modify [...]
//! \name Member Functions that May Modify the Dimension of the Vector Space
//@{
/*! \brief
Adds \p m new space dimensions and embeds the old polyhedron
in the new vector space.
\param m
The number of dimensions to add.
\exception std::length_error
Thrown if adding \p m new space dimensions would cause the
vector space to exceed dimension <CODE>max_space_dimension()</CODE>.
The new space dimensions will be those having the highest indexes
in the new polyhedron, which is characterized by a system
of constraints in which the variables running through
the new dimensions are not constrained.
For instance, when starting from the polyhedron \f$\cP \sseq \Rset^2\f$
and adding a third space dimension, the result will be the polyhedron
\f[
\bigl\{\,
(x, y, z)^\transpose \in \Rset^3
\bigm|
(x, y)^\transpose \in \cP
\,\bigr\}.
\f]
*/
void add_space_dimensions_and_embed(dimension_type m);
/*! \brief
Adds \p m new space dimensions to the polyhedron
and does not embed it in the new vector space.
\param m
The number of space dimensions to add.
\exception std::length_error
Thrown if adding \p m new space dimensions would cause the
vector space to exceed dimension <CODE>max_space_dimension()</CODE>.
The new space dimensions will be those having the highest indexes
in the new polyhedron, which is characterized by a system
of constraints in which the variables running through
the new dimensions are all constrained to be equal to 0.
For instance, when starting from the polyhedron \f$\cP \sseq \Rset^2\f$
and adding a third space dimension, the result will be the polyhedron
\f[
\bigl\{\,
(x, y, 0)^\transpose \in \Rset^3
\bigm|
(x, y)^\transpose \in \cP
\,\bigr\}.
\f]
*/
void add_space_dimensions_and_project(dimension_type m);
/*! \brief
Assigns to \p *this the \ref Concatenating_Polyhedra "concatenation"
of \p *this and \p y, taken in this order.
\exception std::invalid_argument
Thrown if \p *this and \p y are topology-incompatible.
\exception std::length_error
Thrown if the concatenation would cause the vector space
to exceed dimension <CODE>max_space_dimension()</CODE>.
*/
void concatenate_assign(const Polyhedron& y);
//! Removes all the specified dimensions from the vector space.
/*!
\param vars
The set of Variable objects corresponding to the space dimensions
to be removed.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with one of the
Variable objects contained in \p vars.
*/
void remove_space_dimensions(const Variables_Set& vars);
/*! \brief
Removes the higher dimensions of the vector space so that
the resulting space will have dimension \p new_dimension.
\exception std::invalid_argument
Thrown if \p new_dimensions is greater than the space dimension of
\p *this.
*/
void remove_higher_space_dimensions(dimension_type new_dimension);
/*! \brief
Remaps the dimensions of the vector space according to
a \ref Mapping_the_Dimensions_of_the_Vector_Space "partial function".
\param pfunc
The partial function specifying the destiny of each space dimension.
The template type parameter Partial_Function must provide
the following methods.
\code
bool has_empty_codomain() const
\endcode
returns <CODE>true</CODE> if and only if the represented partial
function has an empty codomain (i.e., it is always undefined).
The <CODE>has_empty_codomain()</CODE> method will always be called
before the methods below. However, if
<CODE>has_empty_codomain()</CODE> returns <CODE>true</CODE>, none
of the functions below will be called.
\code
dimension_type max_in_codomain() const
\endcode
returns the maximum value that belongs to the codomain
of the partial function.
The <CODE>max_in_codomain()</CODE> method is called at most once.
\code
bool maps(dimension_type i, dimension_type& j) const
\endcode
Let \f$f\f$ be the represented function and \f$k\f$ be the value
of \p i. If \f$f\f$ is defined in \f$k\f$, then \f$f(k)\f$ is
assigned to \p j and <CODE>true</CODE> is returned.
If \f$f\f$ is undefined in \f$k\f$, then <CODE>false</CODE> is
returned.
This method is called at most \f$n\f$ times, where \f$n\f$ is the
dimension of the vector space enclosing the polyhedron.
The result is undefined if \p pfunc does not encode a partial
function with the properties described in the
\ref Mapping_the_Dimensions_of_the_Vector_Space
"specification of the mapping operator".
*/
template <typename Partial_Function>
void map_space_dimensions(const Partial_Function& pfunc);
//! Creates \p m copies of the space dimension corresponding to \p var.
/*!
\param var
The variable corresponding to the space dimension to be replicated;
\param m
The number of replicas to be created.
\exception std::invalid_argument
Thrown if \p var does not correspond to a dimension of the vector space.
\exception std::length_error
Thrown if adding \p m new space dimensions would cause the
vector space to exceed dimension <CODE>max_space_dimension()</CODE>.
If \p *this has space dimension \f$n\f$, with \f$n > 0\f$,
and <CODE>var</CODE> has space dimension \f$k \leq n\f$,
then the \f$k\f$-th space dimension is
\ref expand_space_dimension "expanded" to \p m new space dimensions
\f$n\f$, \f$n+1\f$, \f$\dots\f$, \f$n+m-1\f$.
*/
void expand_space_dimension(Variable var, dimension_type m);
//! Folds the space dimensions in \p vars into \p dest.
/*!
\param vars
The set of Variable objects corresponding to the space dimensions
to be folded;
\param dest
The variable corresponding to the space dimension that is the
destination of the folding operation.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with \p dest or with
one of the Variable objects contained in \p vars.
Also thrown if \p dest is contained in \p vars.
If \p *this has space dimension \f$n\f$, with \f$n > 0\f$,
<CODE>dest</CODE> has space dimension \f$k \leq n\f$,
\p vars is a set of variables whose maximum space dimension
is also less than or equal to \f$n\f$, and \p dest is not a member
of \p vars, then the space dimensions corresponding to
variables in \p vars are \ref fold_space_dimensions "folded"
into the \f$k\f$-th space dimension.
*/
void fold_space_dimensions(const Variables_Set& vars, Variable dest);
//@} // Member Functions that May Modify the Dimension of the Vector Space
friend bool operator==(const Polyhedron& x, const Polyhedron& y);
//! \name Miscellaneous Member Functions
//@{
//! Destructor.
~Polyhedron();
/*! \brief
Swaps \p *this with polyhedron \p y.
(\p *this and \p y can be dimension-incompatible.)
\exception std::invalid_argument
Thrown if \p x and \p y are topology-incompatible.
*/
void swap(Polyhedron& y);
PPL_OUTPUT_DECLARATIONS
/*! \brief
Loads from \p s an ASCII representation (as produced by
ascii_dump(std::ostream&) const) and sets \p *this accordingly.
Returns <CODE>true</CODE> if successful, <CODE>false</CODE> otherwise.
*/
bool ascii_load(std::istream& s);
//! Returns the total size in bytes of the memory occupied by \p *this.
memory_size_type total_memory_in_bytes() const;
//! Returns the size in bytes of the memory managed by \p *this.
memory_size_type external_memory_in_bytes() const;
/*! \brief
Returns a 32-bit hash code for \p *this.
If \p x and \p y are such that <CODE>x == y</CODE>,
then <CODE>x.hash_code() == y.hash_code()</CODE>.
*/
int32_t hash_code() const;
//@} // Miscellaneous Member Functions
private:
//! The system of constraints.
Constraint_System con_sys;
//! The system of generators.
Generator_System gen_sys;
//! The saturation matrix having constraints on its columns.
Bit_Matrix sat_c;
//! The saturation matrix having generators on its columns.
Bit_Matrix sat_g;
#define PPL_IN_Polyhedron_CLASS
#include "Ph_Status.idefs.hh"
#undef PPL_IN_Polyhedron_CLASS
//! The status flags to keep track of the polyhedron's internal state.
Status status;
//! The number of dimensions of the enclosing vector space.
dimension_type space_dim;
//! Returns the topological kind of the polyhedron.
Topology topology() const;
/*! \brief
Returns <CODE>true</CODE> if and only if the polyhedron
is necessarily closed.
*/
bool is_necessarily_closed() const;
friend bool
Parma_Polyhedra_Library::Interfaces
::is_necessarily_closed_for_interfaces(const Polyhedron&);
/*! \brief
Uses a copy of constraint \p c to refine the system of constraints
of \p *this.
\param c The constraint to be added. If it is dimension-incompatible
with \p *this, the behavior is undefined.
*/
void refine_no_check(const Constraint& c);
//! \name Private Verifiers: Verify if Individual Flags are Set
//@{
//! Returns <CODE>true</CODE> if the polyhedron is known to be empty.
/*!
The return value <CODE>false</CODE> does not necessarily
implies that \p *this is non-empty.
*/
bool marked_empty() const;
//! Returns <CODE>true</CODE> if the system of constraints is up-to-date.
bool constraints_are_up_to_date() const;
//! Returns <CODE>true</CODE> if the system of generators is up-to-date.
bool generators_are_up_to_date() const;
//! Returns <CODE>true</CODE> if the system of constraints is minimized.
/*!
Note that only \em weak minimization is entailed, so that
an NNC polyhedron may still have \f$\epsilon\f$-redundant constraints.
*/
bool constraints_are_minimized() const;
//! Returns <CODE>true</CODE> if the system of generators is minimized.
/*!
Note that only \em weak minimization is entailed, so that
an NNC polyhedron may still have \f$\epsilon\f$-redundant generators.
*/
bool generators_are_minimized() const;
//! Returns <CODE>true</CODE> if there are pending constraints.
bool has_pending_constraints() const;
//! Returns <CODE>true</CODE> if there are pending generators.
bool has_pending_generators() const;
/*! \brief
Returns <CODE>true</CODE> if there are
either pending constraints or pending generators.
*/
bool has_something_pending() const;
//! Returns <CODE>true</CODE> if the polyhedron can have something pending.
bool can_have_something_pending() const;
/*! \brief
Returns <CODE>true</CODE> if the saturation matrix \p sat_c
is up-to-date.
*/
bool sat_c_is_up_to_date() const;
/*! \brief
Returns <CODE>true</CODE> if the saturation matrix \p sat_g
is up-to-date.
*/
bool sat_g_is_up_to_date() const;
//@} // Private Verifiers: Verify if Individual Flags are Set
//! \name State Flag Setters: Set Only the Specified Flags
//@{
/*! \brief
Sets \p status to express that the polyhedron is the universe
0-dimension vector space, clearing all corresponding matrices.
*/
void set_zero_dim_univ();
/*! \brief
Sets \p status to express that the polyhedron is empty,
clearing all corresponding matrices.
*/
void set_empty();
//! Sets \p status to express that constraints are up-to-date.
void set_constraints_up_to_date();
//! Sets \p status to express that generators are up-to-date.
void set_generators_up_to_date();
//! Sets \p status to express that constraints are minimized.
void set_constraints_minimized();
//! Sets \p status to express that generators are minimized.
void set_generators_minimized();
//! Sets \p status to express that constraints are pending.
void set_constraints_pending();
//! Sets \p status to express that generators are pending.
void set_generators_pending();
//! Sets \p status to express that \p sat_c is up-to-date.
void set_sat_c_up_to_date();
//! Sets \p status to express that \p sat_g is up-to-date.
void set_sat_g_up_to_date();
//@} // State Flag Setters: Set Only the Specified Flags
//! \name State Flag Cleaners: Clear Only the Specified Flag
//@{
//! Clears the \p status flag indicating that the polyhedron is empty.
void clear_empty();
//! Sets \p status to express that constraints are no longer up-to-date.
/*!
This also implies that they are neither minimized
and both saturation matrices are no longer meaningful.
*/
void clear_constraints_up_to_date();
//! Sets \p status to express that generators are no longer up-to-date.
/*!
This also implies that they are neither minimized
and both saturation matrices are no longer meaningful.
*/
void clear_generators_up_to_date();
//! Sets \p status to express that constraints are no longer minimized.
void clear_constraints_minimized();
//! Sets \p status to express that generators are no longer minimized.
void clear_generators_minimized();
//! Sets \p status to express that there are no longer pending constraints.
void clear_pending_constraints();
//! Sets \p status to express that there are no longer pending generators.
void clear_pending_generators();
//! Sets \p status to express that \p sat_c is no longer up-to-date.
void clear_sat_c_up_to_date();
//! Sets \p status to express that \p sat_g is no longer up-to-date.
void clear_sat_g_up_to_date();
//@} // State Flag Cleaners: Clear Only the Specified Flag
//! \name The Handling of Pending Rows
//@{
/*! \brief
Processes the pending rows of either description of the polyhedron
and obtains a minimized polyhedron.
\return
<CODE>false</CODE> if and only if \p *this turns out to be an
empty polyhedron.
It is assumed that the polyhedron does have some constraints or
generators pending.
*/
bool process_pending() const;
//! Processes the pending constraints and obtains a minimized polyhedron.
/*!
\return
<CODE>false</CODE> if and only if \p *this turns out to be an
empty polyhedron.
It is assumed that the polyhedron does have some pending constraints.
*/
bool process_pending_constraints() const;
//! Processes the pending generators and obtains a minimized polyhedron.
/*!
It is assumed that the polyhedron does have some pending generators.
*/
void process_pending_generators() const;
/*! \brief
Lazily integrates the pending descriptions of the polyhedron
to obtain a constraint system without pending rows.
It is assumed that the polyhedron does have some constraints or
generators pending.
*/
void remove_pending_to_obtain_constraints() const;
/*! \brief
Lazily integrates the pending descriptions of the polyhedron
to obtain a generator system without pending rows.
\return
<CODE>false</CODE> if and only if \p *this turns out to be an
empty polyhedron.
It is assumed that the polyhedron does have some constraints or
generators pending.
*/
bool remove_pending_to_obtain_generators() const;
//@} // The Handling of Pending Rows
//! \name Updating and Sorting Matrices
//@{
//! Updates constraints starting from generators and minimizes them.
/*!
The resulting system of constraints is only partially sorted:
the equalities are in the upper part of the matrix,
while the inequalities in the lower part.
*/
void update_constraints() const;
//! Updates generators starting from constraints and minimizes them.
/*!
\return
<CODE>false</CODE> if and only if \p *this turns out to be an
empty polyhedron.
The resulting system of generators is only partially sorted:
the lines are in the upper part of the matrix,
while rays and points are in the lower part.
It is illegal to call this method when the Status field
already declares the polyhedron to be empty.
*/
bool update_generators() const;
//! Updates \p sat_c using the updated constraints and generators.
/*!
It is assumed that constraints and generators are up-to-date
and minimized and that the Status field does not already flag
\p sat_c to be up-to-date.
The values of the saturation matrix are computed as follows:
\f[
\begin{cases}
sat\_c[i][j] = 0,
\quad \text{if } G[i] \cdot C^\mathrm{T}[j] = 0; \\
sat\_c[i][j] = 1,
\quad \text{if } G[i] \cdot C^\mathrm{T}[j] > 0.
\end{cases}
\f]
*/
void update_sat_c() const;
//! Updates \p sat_g using the updated constraints and generators.
/*!
It is assumed that constraints and generators are up-to-date
and minimized and that the Status field does not already flag
\p sat_g to be up-to-date.
The values of the saturation matrix are computed as follows:
\f[
\begin{cases}
sat\_g[i][j] = 0,
\quad \text{if } C[i] \cdot G^\mathrm{T}[j] = 0; \\
sat\_g[i][j] = 1,
\quad \text{if } C[i] \cdot G^\mathrm{T}[j] > 0.
\end{cases}
\f]
*/
void update_sat_g() const;
//! Sorts the matrix of constraints keeping status consistency.
/*!
It is assumed that constraints are up-to-date.
If at least one of the saturation matrices is up-to-date,
then \p sat_g is kept consistent with the sorted matrix
of constraints.
The method is declared \p const because reordering
the constraints does not modify the polyhedron
from a \e logical point of view.
*/
void obtain_sorted_constraints() const;
//! Sorts the matrix of generators keeping status consistency.
/*!
It is assumed that generators are up-to-date.
If at least one of the saturation matrices is up-to-date,
then \p sat_c is kept consistent with the sorted matrix
of generators.
The method is declared \p const because reordering
the generators does not modify the polyhedron
from a \e logical point of view.
*/
void obtain_sorted_generators() const;
//! Sorts the matrix of constraints and updates \p sat_c.
/*!
It is assumed that both constraints and generators
are up-to-date and minimized.
The method is declared \p const because reordering
the constraints does not modify the polyhedron
from a \e logical point of view.
*/
void obtain_sorted_constraints_with_sat_c() const;
//! Sorts the matrix of generators and updates \p sat_g.
/*!
It is assumed that both constraints and generators
are up-to-date and minimized.
The method is declared \p const because reordering
the generators does not modify the polyhedron
from a \e logical point of view.
*/
void obtain_sorted_generators_with_sat_g() const;
//@} // Updating and Sorting Matrices
//! \name Weak and Strong Minimization of Descriptions
//@{
//! Applies (weak) minimization to both the constraints and generators.
/*!
\return
<CODE>false</CODE> if and only if \p *this turns out to be an
empty polyhedron.
Minimization is not attempted if the Status field already declares
both systems to be minimized.
*/
bool minimize() const;
//! Applies strong minimization to the constraints of an NNC polyhedron.
/*!
\return
<CODE>false</CODE> if and only if \p *this turns out to be an
empty polyhedron.
*/
bool strongly_minimize_constraints() const;
//! Applies strong minimization to the generators of an NNC polyhedron.
/*!
\return
<CODE>false</CODE> if and only if \p *this turns out to be an
empty polyhedron.
*/
bool strongly_minimize_generators() const;
//! If constraints are up-to-date, obtain a simplified copy of them.
Constraint_System simplified_constraints() const;
//@} // Weak and Strong Minimization of Descriptions
enum Three_Valued_Boolean {
TVB_TRUE,
TVB_FALSE,
TVB_DONT_KNOW
};
//! Polynomial but incomplete equivalence test between polyhedra.
Three_Valued_Boolean quick_equivalence_test(const Polyhedron& y) const;
//! Returns <CODE>true</CODE> if and only if \p *this is included in \p y.
bool is_included_in(const Polyhedron& y) const;
//! Checks if and how \p expr is bounded in \p *this.
/*!
Returns <CODE>true</CODE> if and only if \p from_above is
<CODE>true</CODE> and \p expr is bounded from above in \p *this,
or \p from_above is <CODE>false</CODE> and \p expr is bounded
from below in \p *this.
\param expr
The linear expression to test;
\param from_above
<CODE>true</CODE> if and only if the boundedness of interest is
"from above".
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
*/
bool bounds(const Linear_Expression& expr, bool from_above) const;
//! Maximizes or minimizes \p expr subject to \p *this.
/*!
\param expr
The linear expression to be maximized or minimized subject to \p
*this;
\param maximize
<CODE>true</CODE> if maximization is what is wanted;
\param ext_n
The numerator of the extremum value;
\param ext_d
The denominator of the extremum value;
\param included
<CODE>true</CODE> if and only if the extremum of \p expr can
actually be reached in \p * this;
\param g
When maximization or minimization succeeds, will be assigned
a point or closure point where \p expr reaches the
corresponding extremum value.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded in the appropriate
direction, <CODE>false</CODE> is returned and \p ext_n, \p ext_d,
\p included and \p g are left untouched.
*/
bool max_min(const Linear_Expression& expr,
bool maximize,
Coefficient& ext_n, Coefficient& ext_d, bool& included,
Generator& g) const;
//! \name Widening- and Extrapolation-Related Functions
//@{
/*! \brief
Copies to \p cs_selection the constraints of \p y corresponding
to the definition of the CH78-widening of \p *this and \p y.
*/
void select_CH78_constraints(const Polyhedron& y,
Constraint_System& cs_selected) const;
/*! \brief
Splits the constraints of `x' into two subsets, depending on whether
or not they are selected to compute the \ref H79_widening "H79-widening"
of \p *this and \p y.
*/
void select_H79_constraints(const Polyhedron& y,
Constraint_System& cs_selected,
Constraint_System& cs_not_selected) const;
bool BHRZ03_combining_constraints(const Polyhedron& y,
const BHRZ03_Certificate& y_cert,
const Polyhedron& H79,
const Constraint_System& x_minus_H79_con_sys);
bool BHRZ03_evolving_points(const Polyhedron& y,
const BHRZ03_Certificate& y_cert,
const Polyhedron& H79);
bool BHRZ03_evolving_rays(const Polyhedron& y,
const BHRZ03_Certificate& y_cert,
const Polyhedron& H79);
//@} // Widening- and Extrapolation-Related Functions
//! Adds new space dimensions to the given matrices.
/*!
\param mat1
The matrix to which columns are added;
\param mat2
The matrix to which rows and columns are added;
\param sat1
The saturation matrix whose columns are indexed by the rows of
matrix \p mat1. On entry it is up-to-date;
\param sat2
The saturation matrix whose columns are indexed by the rows of \p
mat2;
\param add_dim
The number of space dimensions to add.
Adds new space dimensions to the vector space modifying the matrices.
This function is invoked only by
<CODE>add_space_dimensions_and_embed()</CODE> and
<CODE>add_space_dimensions_and_project()</CODE>, passing the matrix of
constraints and that of generators (and the corresponding saturation
matrices) in different order (see those methods for details).
*/
static void add_space_dimensions(Linear_System& mat1,
Linear_System& mat2,
Bit_Matrix& sat1,
Bit_Matrix& sat2,
dimension_type add_dim);
//! \name Minimization-Related Static Member Functions
//@{
//! Builds and simplifies constraints from generators (or vice versa).
// Detailed Doxygen comment to be found in file minimize.cc.
static bool minimize(bool con_to_gen,
Linear_System& source,
Linear_System& dest,
Bit_Matrix& sat);
/*! \brief
Adds given constraints and builds minimized corresponding generators
or vice versa.
*/
// Detailed Doxygen comment to be found in file minimize.cc.
static bool add_and_minimize(bool con_to_gen,
Linear_System& source1,
Linear_System& dest,
Bit_Matrix& sat,
const Linear_System& source2);
/*! \brief
Adds given constraints and builds minimized corresponding generators
or vice versa. The given constraints are in \p source.
*/
// Detailed Doxygen comment to be found in file minimize.cc.
static bool add_and_minimize(bool con_to_gen,
Linear_System& source,
Linear_System& dest,
Bit_Matrix& sat);
//! Performs the conversion from constraints to generators and vice versa.
// Detailed Doxygen comment to be found in file conversion.cc.
static dimension_type conversion(Linear_System& source,
dimension_type start,
Linear_System& dest,
Bit_Matrix& sat,
dimension_type num_lines_or_equalities);
/*! \brief
Uses Gauss' elimination method to simplify the result of
<CODE>conversion()</CODE>.
*/
// Detailed Doxygen comment to be found in file simplify.cc.
static dimension_type simplify(Linear_System& mat, Bit_Matrix& sat);
//@} // Minimization-Related Static Member Functions
/*! \brief
Pointer to an array used by simplify().
Holds (between class initialization and finalization) a pointer to
an array, allocated with operator new[](), of
simplify_num_saturators_size elements.
*/
static dimension_type* simplify_num_saturators_p;
/*! \brief
Dimension of an array used by simplify().
Holds (between class initialization and finalization) the size of the
array pointed to by simplify_num_saturators_p.
*/
static size_t simplify_num_saturators_size;
template <typename Interval> friend class Parma_Polyhedra_Library::Box;
template <typename T> friend class Parma_Polyhedra_Library::BD_Shape;
template <typename T> friend class Parma_Polyhedra_Library::Octagonal_Shape;
friend class Parma_Polyhedra_Library::Grid;
friend class Parma_Polyhedra_Library::BHRZ03_Certificate;
friend class Parma_Polyhedra_Library::H79_Certificate;
protected:
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \brief
If the poly-hull of \p *this and \p y is exact it is assigned
to \p *this and \c true is returned, otherwise \c false is returned.
Current implementation is based on (a variant of) Algorithm 8.1 in
A. Bemporad, K. Fukuda, and F. D. Torrisi
<em>Convexity Recognition of the Union of Polyhedra</em>
Technical Report AUT00-13, ETH Zurich, 2000
\note
It is assumed that \p *this and \p y are topologically closed
and dimension-compatible;
if the assumption does not hold, the behavior is undefined.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
bool BFT00_poly_hull_assign_if_exact(const Polyhedron& y);
bool BHZ09_poly_hull_assign_if_exact(const Polyhedron& y);
bool BHZ09_C_poly_hull_assign_if_exact(const Polyhedron& y);
bool BHZ09_NNC_poly_hull_assign_if_exact(const Polyhedron& y);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! \name Exception Throwers
//@{
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
protected:
void throw_runtime_error(const char* method) const;
void throw_invalid_argument(const char* method, const char* reason) const;
void throw_topology_incompatible(const char* method,
const char* ph_name,
const Polyhedron& ph) const;
void throw_topology_incompatible(const char* method,
const char* c_name,
const Constraint& c) const;
void throw_topology_incompatible(const char* method,
const char* g_name,
const Generator& g) const;
void throw_topology_incompatible(const char* method,
const char* cs_name,
const Constraint_System& cs) const;
void throw_topology_incompatible(const char* method,
const char* gs_name,
const Generator_System& gs) const;
void throw_dimension_incompatible(const char* method,
const char* other_name,
dimension_type other_dim) const;
void throw_dimension_incompatible(const char* method,
const char* ph_name,
const Polyhedron& ph) const;
void throw_dimension_incompatible(const char* method,
const char* e_name,
const Linear_Expression& e) const;
void throw_dimension_incompatible(const char* method,
const char* c_name,
const Constraint& c) const;
void throw_dimension_incompatible(const char* method,
const char* g_name,
const Generator& g) const;
void throw_dimension_incompatible(const char* method,
const char* cg_name,
const Congruence& cg) const;
void throw_dimension_incompatible(const char* method,
const char* cs_name,
const Constraint_System& cs) const;
void throw_dimension_incompatible(const char* method,
const char* gs_name,
const Generator_System& gs) const;
void throw_dimension_incompatible(const char* method,
const char* cgs_name,
const Congruence_System& cgs) const;
void throw_dimension_incompatible(const char* method,
const char* var_name,
Variable var) const;
void throw_dimension_incompatible(const char* method,
dimension_type required_space_dim) const;
// Note: it has to be a static method, because it can be called inside
// constructors (before actually constructing the polyhedron object).
static void throw_space_dimension_overflow(Topology topol,
const char* method,
const char* reason);
void throw_invalid_generator(const char* method,
const char* g_name) const;
void throw_invalid_generators(const char* method,
const char* gs_name) const;
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//@} // Exception Throwers
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
/*! \brief
Possibly tightens \p *this by dropping some points with non-integer
coordinates for the space dimensions corresponding to \p *pvars.
\param pvars
When nonzero, points with non-integer coordinates for the
variables/space-dimensions contained in \p *pvars can be discarded.
\param complexity
The maximal complexity of any algorithms used.
\note
Currently there is no optimality guarantee, not even if
\p complexity is <CODE>ANY_COMPLEXITY</CODE>.
*/
void drop_some_non_integer_points(const Variables_Set* pvars,
Complexity_Class complexity);
};
namespace std {
//! Specializes <CODE>std::swap</CODE>.
/*! \relates Parma_Polyhedra_Library::Polyhedron */
void swap(Parma_Polyhedra_Library::Polyhedron& x,
Parma_Polyhedra_Library::Polyhedron& y);
} // namespace std
#include "Ph_Status.inlines.hh"
#include "Polyhedron.inlines.hh"
#include "Polyhedron.templates.hh"
#endif // !defined(PPL_Polyhedron_defs_hh)
|