1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
|
/* Poly_Con_Relation class implementation: inline functions.
Copyright (C) 2001-2010 Roberto Bagnara <bagnara@cs.unipr.it>
Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com)
This file is part of the Parma Polyhedra Library (PPL).
The PPL is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The PPL is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA.
For the most up-to-date information see the Parma Polyhedra Library
site: http://www.cs.unipr.it/ppl/ . */
#ifndef PPL_Poly_Con_Relation_inlines_hh
#define PPL_Poly_Con_Relation_inlines_hh 1
namespace Parma_Polyhedra_Library {
inline
Poly_Con_Relation::Poly_Con_Relation(flags_t mask)
: flags(mask) {
}
inline Poly_Con_Relation::flags_t
Poly_Con_Relation::get_flags() const {
return flags;
}
inline Poly_Con_Relation
Poly_Con_Relation::nothing() {
return Poly_Con_Relation(NOTHING);
}
inline Poly_Con_Relation
Poly_Con_Relation::is_disjoint() {
return Poly_Con_Relation(IS_DISJOINT);
}
inline Poly_Con_Relation
Poly_Con_Relation::strictly_intersects() {
return Poly_Con_Relation(STRICTLY_INTERSECTS);
}
inline Poly_Con_Relation
Poly_Con_Relation::is_included() {
return Poly_Con_Relation(IS_INCLUDED);
}
inline Poly_Con_Relation
Poly_Con_Relation::saturates() {
return Poly_Con_Relation(SATURATES);
}
inline bool
Poly_Con_Relation::implies(flags_t x, flags_t y) {
return (x & y) == y;
}
inline bool
Poly_Con_Relation::implies(const Poly_Con_Relation& y) const {
return implies(flags, y.flags);
}
/*! \relates Poly_Con_Relation */
inline bool
operator==(const Poly_Con_Relation& x, const Poly_Con_Relation& y) {
return x.flags == y.flags;
}
/*! \relates Poly_Con_Relation */
inline bool
operator!=(const Poly_Con_Relation& x, const Poly_Con_Relation& y) {
return x.flags != y.flags;
}
/*! \relates Poly_Con_Relation */
inline Poly_Con_Relation
operator&&(const Poly_Con_Relation& x, const Poly_Con_Relation& y) {
return Poly_Con_Relation(x.flags | y.flags);
}
/*! \relates Poly_Con_Relation */
inline Poly_Con_Relation
operator-(const Poly_Con_Relation& x, const Poly_Con_Relation& y) {
return Poly_Con_Relation(x.flags & ~y.flags);
}
} // namespace Parma_Polyhedra_Library
#endif // !defined(PPL_Poly_Con_Relation_inlines_hh)
|