1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
|
/* Matrix class implementation (non-inline functions).
Copyright (C) 2001-2010 Roberto Bagnara <bagnara@cs.unipr.it>
This file is part of the Parma Polyhedra Library (PPL).
The PPL is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The PPL is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA.
For the most up-to-date information see the Parma Polyhedra Library
site: http://www.cs.unipr.it/ppl/ . */
#include <ppl-config.h>
#include "Matrix.defs.hh"
#include "Row.defs.hh"
#include <algorithm>
#include <iostream>
#include <string>
namespace PPL = Parma_Polyhedra_Library;
PPL::Matrix::Matrix(const dimension_type n_rows,
const dimension_type n_columns,
Row::Flags row_flags)
:
#ifdef NDEBUG
rows(n_rows),
#else
rows(n_rows <= max_num_rows() ? n_rows : 0),
#endif
row_size(n_columns),
row_capacity(compute_capacity(n_columns, max_num_columns())) {
PPL_ASSERT(n_rows <= max_num_rows());
// Construct in direct order: will destroy in reverse order.
for (dimension_type i = 0; i < n_rows; ++i)
rows[i].construct(n_columns, row_capacity, row_flags);
PPL_ASSERT(OK());
}
void
PPL::Matrix::add_zero_rows(const dimension_type n, Row::Flags row_flags) {
PPL_ASSERT(n > 0);
PPL_ASSERT(n <= max_num_rows() - num_rows());
const dimension_type old_num_rows = rows.size();
const dimension_type new_num_rows = old_num_rows + n;
if (rows.capacity() < new_num_rows) {
// Reallocation will take place.
std::vector<Row> new_rows;
new_rows.reserve(compute_capacity(new_num_rows, max_num_rows()));
new_rows.insert(new_rows.end(), new_num_rows, Row());
// Construct the new rows.
dimension_type i = new_num_rows;
while (i-- > old_num_rows)
new_rows[i].construct(row_size, row_capacity, row_flags);
// Steal the old rows.
++i;
while (i-- > 0)
new_rows[i].swap(rows[i]);
// Put the new vector into place.
std::swap(rows, new_rows);
}
else {
// Reallocation will NOT take place.
rows.insert(rows.end(), n, Row());
for (dimension_type i = new_num_rows; i-- > old_num_rows; )
rows[i].construct(row_size, row_capacity, row_flags);
}
}
void
PPL::Matrix::add_zero_columns(const dimension_type n) {
PPL_ASSERT(n > 0);
PPL_ASSERT(n <= max_num_columns() - num_columns());
const dimension_type num_rows = rows.size();
const dimension_type new_num_columns = row_size + n;
if (new_num_columns <= row_capacity)
// We have enough capacity: we resize existing rows.
for (dimension_type i = num_rows; i-- > 0; )
rows[i].expand_within_capacity(new_num_columns);
else {
// Capacity exhausted: we must reallocate the rows and
// make sure all the rows have the same capacity.
const dimension_type new_row_capacity
= compute_capacity(new_num_columns, max_num_columns());
PPL_ASSERT(new_row_capacity <= max_num_columns());
for (dimension_type i = num_rows; i-- > 0; ) {
Row new_row(rows[i], new_num_columns, new_row_capacity);
std::swap(rows[i], new_row);
}
row_capacity = new_row_capacity;
}
// Rows have been expanded.
row_size = new_num_columns;
}
void
PPL::Matrix::add_zero_rows_and_columns(const dimension_type n,
const dimension_type m,
Row::Flags row_flags) {
PPL_ASSERT(n > 0);
PPL_ASSERT(n <= max_num_rows() - num_rows());
PPL_ASSERT(m > 0);
PPL_ASSERT(m <= max_num_columns() - num_columns());
const dimension_type old_num_rows = rows.size();
const dimension_type new_num_rows = old_num_rows + n;
const dimension_type new_num_columns = row_size + m;
if (new_num_columns <= row_capacity) {
// We can recycle the old rows.
if (rows.capacity() < new_num_rows) {
// Reallocation will take place.
std::vector<Row> new_rows;
new_rows.reserve(compute_capacity(new_num_rows, max_num_rows()));
new_rows.insert(new_rows.end(), new_num_rows, Row());
// Construct the new rows.
dimension_type i = new_num_rows;
while (i-- > old_num_rows)
new_rows[i].construct(new_num_columns, row_capacity, row_flags);
// Expand and steal the old rows.
++i;
while (i-- > 0) {
rows[i].expand_within_capacity(new_num_columns);
new_rows[i].swap(rows[i]);
}
// Put the new vector into place.
std::swap(rows, new_rows);
}
else {
// Reallocation will NOT take place.
rows.insert(rows.end(), n, Row());
// Construct the new rows.
dimension_type i = new_num_rows;
while (i-- > old_num_rows)
rows[i].construct(new_num_columns, row_capacity, row_flags);
// Expand the old rows.
++i;
while (i-- > 0)
rows[i].expand_within_capacity(new_num_columns);
}
row_size = new_num_columns;
}
else {
// We cannot even recycle the old rows.
Matrix new_matrix;
new_matrix.rows.reserve(compute_capacity(new_num_rows, max_num_rows()));
new_matrix.rows.insert(new_matrix.rows.end(), new_num_rows, Row());
// Construct the new rows.
new_matrix.row_size = new_num_columns;
new_matrix.row_capacity = compute_capacity(new_num_columns,
max_num_columns());
dimension_type i = new_num_rows;
while (i-- > old_num_rows)
new_matrix.rows[i].construct(new_matrix.row_size,
new_matrix.row_capacity,
row_flags);
// Copy the old rows.
++i;
while (i-- > 0) {
Row new_row(rows[i],
new_matrix.row_size,
new_matrix.row_capacity);
std::swap(new_matrix.rows[i], new_row);
}
// Put the new vector into place.
swap(new_matrix);
}
}
void
PPL::Matrix::add_recycled_row(Row& y) {
// The added row must have the same size and capacity as the
// existing rows of the system.
PPL_ASSERT(y.OK(row_size, row_capacity));
const dimension_type new_rows_size = rows.size() + 1;
if (rows.capacity() < new_rows_size) {
// Reallocation will take place.
std::vector<Row> new_rows;
new_rows.reserve(compute_capacity(new_rows_size, max_num_rows()));
new_rows.insert(new_rows.end(), new_rows_size, Row());
// Put the new row in place.
dimension_type i = new_rows_size-1;
std::swap(new_rows[i], y);
// Steal the old rows.
while (i-- > 0)
new_rows[i].swap(rows[i]);
// Put the new rows into place.
std::swap(rows, new_rows);
}
else
// Reallocation will NOT take place.
// Inserts a new empty row at the end,
// then substitutes it with a copy of the given row.
std::swap(*rows.insert(rows.end(), Row()), y);
PPL_ASSERT(OK());
}
void
PPL::Matrix::resize_no_copy(const dimension_type new_n_rows,
const dimension_type new_n_columns,
Row::Flags row_flags) {
dimension_type old_n_rows = rows.size();
// Note that, if we have `new_n_rows <= old_n_rows' and
// `new_n_columns >= row_size', the matrix will keep its sortedness.
// This is obvious if `new_n_columns == row_size'.
// If `new_n_columns > row_size', then sortedness is maintained
// because trailing zeroes will be added to all rows.
if (new_n_rows > old_n_rows) {
if (new_n_columns <= row_capacity) {
// We can recycle the old rows.
if (rows.capacity() < new_n_rows) {
// Reallocation (of vector `rows') will take place.
std::vector<Row> new_rows;
new_rows.reserve(compute_capacity(new_n_rows, max_num_rows()));
new_rows.insert(new_rows.end(), new_n_rows, Row());
// Construct the new rows (be careful: each new row must have
// the same capacity as each one of the old rows).
dimension_type i = new_n_rows;
while (i-- > old_n_rows)
new_rows[i].construct(new_n_columns, row_capacity, row_flags);
// Steal the old rows.
++i;
while (i-- > 0)
new_rows[i].swap(rows[i]);
// Put the new vector into place.
std::swap(rows, new_rows);
}
else {
// Reallocation (of vector `rows') will NOT take place.
rows.insert(rows.end(), new_n_rows - old_n_rows, Row());
// Be careful: each new row must have
// the same capacity as each one of the old rows.
for (dimension_type i = new_n_rows; i-- > old_n_rows; )
rows[i].construct(new_n_columns, row_capacity, row_flags);
}
}
else {
// We cannot even recycle the old rows: allocate a new matrix and swap.
Matrix new_matrix(new_n_rows, new_n_columns, row_flags);
swap(new_matrix);
return;
}
}
else if (new_n_rows < old_n_rows) {
// Drop some rows.
rows.erase(rows.begin() + new_n_rows, rows.end());
old_n_rows = new_n_rows;
}
// Here we have the right number of rows.
if (new_n_columns != row_size) {
if (new_n_columns < row_size) {
// Shrink the existing rows.
for (dimension_type i = old_n_rows; i-- > 0; )
rows[i].shrink(new_n_columns);
}
else
// We need more columns.
if (new_n_columns <= row_capacity)
// But we have enough capacity: we resize existing rows.
for (dimension_type i = old_n_rows; i-- > 0; )
rows[i].expand_within_capacity(new_n_columns);
else {
// Capacity exhausted: we must reallocate the rows and
// make sure all the rows have the same capacity.
const dimension_type new_row_capacity
= compute_capacity(new_n_columns, max_num_columns());
for (dimension_type i = old_n_rows; i-- > 0; ) {
Row new_row(new_n_columns, new_row_capacity, row_flags);
std::swap(rows[i], new_row);
}
row_capacity = new_row_capacity;
}
// Rows have grown or shrunk.
row_size = new_n_columns;
}
}
void
PPL::Matrix::ascii_dump(std::ostream& s) const {
const Matrix& x = *this;
dimension_type x_num_rows = x.num_rows();
dimension_type x_num_columns = x.num_columns();
s << x_num_rows << " x " << x_num_columns << "\n";
for (dimension_type i = 0; i < x_num_rows; ++i)
x[i].ascii_dump(s);
}
PPL_OUTPUT_DEFINITIONS_ASCII_ONLY(Matrix)
bool
PPL::Matrix::ascii_load(std::istream& s) {
Matrix& x = *this;
std::string str;
dimension_type x_num_rows;
dimension_type x_num_cols;
if (!(s >> x_num_rows))
return false;
if (!(s >> str) || str != "x")
return false;
if (!(s >> x_num_cols))
return false;
resize_no_copy(x_num_rows, x_num_cols, Row::Flags());
for (dimension_type row = 0; row < x_num_rows; ++row)
if (!x[row].ascii_load(s))
return false;
// Check invariants.
PPL_ASSERT(OK());
return true;
}
void
PPL::Matrix::swap_columns(const dimension_type i, const dimension_type j) {
PPL_ASSERT(i != j && i < num_columns() && j < num_columns());
for (dimension_type k = num_rows(); k-- > 0; ) {
Row& rows_k = rows[k];
std::swap(rows_k[i], rows_k[j]);
}
}
void
PPL::Matrix::remove_trailing_columns(const dimension_type n) {
PPL_ASSERT(n > 0);
PPL_ASSERT(n <= row_size);
row_size -= n;
for (dimension_type i = num_rows(); i-- > 0; )
rows[i].shrink(row_size);
}
void
PPL::Matrix::permute_columns(const std::vector<dimension_type>& cycles) {
PPL_DIRTY_TEMP_COEFFICIENT(tmp);
const dimension_type n = cycles.size();
PPL_ASSERT(cycles[n - 1] == 0);
for (dimension_type k = num_rows(); k-- > 0; ) {
Row& rows_k = rows[k];
for (dimension_type i = 0, j = 0; i < n; i = ++j) {
// Make `j' be the index of the next cycle terminator.
while (cycles[j] != 0)
++j;
// Cycles of length less than 2 are not allowed.
PPL_ASSERT(j - i >= 2);
if (j - i == 2)
// For cycles of length 2 no temporary is needed, just a swap.
std::swap(rows_k[cycles[i]], rows_k[cycles[i+1]]);
else {
// Longer cycles need a temporary.
std::swap(rows_k[cycles[j-1]], tmp);
for (dimension_type l = j-1; l > i; --l)
std::swap(rows_k[cycles[l-1]], rows_k[cycles[l]]);
std::swap(tmp, rows_k[cycles[i]]);
}
}
}
}
/*! \relates Parma_Polyhedra_Library::Matrix */
bool
PPL::operator==(const Matrix& x, const Matrix& y) {
if (x.num_columns() != y.num_columns())
return false;
const dimension_type x_num_rows = x.num_rows();
const dimension_type y_num_rows = y.num_rows();
if (x_num_rows != y_num_rows)
return false;
for (dimension_type i = x_num_rows; i-- > 0; )
if (x[i] != y[i])
return false;
return true;
}
PPL::memory_size_type
PPL::Matrix::external_memory_in_bytes() const {
memory_size_type n = rows.capacity() * sizeof(Row);
for (dimension_type i = num_rows(); i-- > 0; )
n += rows[i].external_memory_in_bytes(row_capacity);
return n;
}
bool
PPL::Matrix::OK() const {
if (row_size > row_capacity) {
#ifndef NDEBUG
std::cerr << "Matrix completely broken: "
<< "row_capacity is " << row_capacity
<< ", row_size is " << row_size
<< std::endl;
#endif
return false;
}
const Matrix& x = *this;
for (dimension_type i = 0, n_rows = num_rows(); i < n_rows; ++i)
if (!x[i].OK(row_size, row_capacity))
return false;
// All checks passed.
return true;
}
|