1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
|
/* Grid class implementation
(non-inline widening-related member functions).
Copyright (C) 2001-2010 Roberto Bagnara <bagnara@cs.unipr.it>
Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com)
This file is part of the Parma Polyhedra Library (PPL).
The PPL is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The PPL is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA.
For the most up-to-date information see the Parma Polyhedra Library
site: http://www.cs.unipr.it/ppl/ . */
#include <ppl-config.h>
#include "Grid.defs.hh"
#include "assert.hh"
#include <iostream>
namespace PPL = Parma_Polyhedra_Library;
void
PPL::Grid::select_wider_congruences(const Grid& y,
Congruence_System& cgs_selected) const {
// Private method: the caller must ensure the following conditions
// (beside the inclusion `y <= x').
PPL_ASSERT(space_dim == y.space_dim);
PPL_ASSERT(!marked_empty());
PPL_ASSERT(!y.marked_empty());
PPL_ASSERT(congruences_are_minimized());
PPL_ASSERT(y.congruences_are_minimized());
// Note: row counters start at 0, to preserve the original order in
// the selected congruences.
for (dimension_type dim = con_sys.space_dimension(), x_row = 0, y_row = 0;
dim > 0; --dim) {
PPL_ASSERT(dim_kinds[dim] == CON_VIRTUAL
|| dim_kinds[dim] == y.dim_kinds[dim]);
switch (dim_kinds[dim]) {
case PROPER_CONGRUENCE:
{
const Congruence& cg = con_sys[x_row];
const Congruence& y_cg = y.con_sys[y_row];
if (cg.is_equal_at_dimension(dim, y_cg))
// The leading diagonal entries are equal.
cgs_selected.insert(cg);
++x_row;
++y_row;
}
break;
case EQUALITY:
cgs_selected.insert(con_sys[x_row]);
++x_row;
++y_row;
break;
case CON_VIRTUAL:
y.dim_kinds[dim] == CON_VIRTUAL || ++y_row;
break;
}
}
}
void
PPL::Grid::congruence_widening_assign(const Grid& const_y, unsigned* tp) {
Grid& x = *this;
Grid& y = const_cast<Grid&>(const_y);
// Dimension-compatibility check.
if (x.space_dim != y.space_dim)
throw_dimension_incompatible("widening_assign(y)", "y", y);
// Stable behavior is only guaranteed if y is contained in or equal
// to x.
#ifndef NDEBUG
{
// Assume y is contained in or equal to x.
const Grid x_copy = x;
const Grid y_copy = y;
PPL_ASSERT(x_copy.contains(y_copy));
}
#endif
// Leave `x' the same if `x' or `y' is zero-dimensional or empty.
if (x.space_dim == 0 || x.marked_empty() || y.marked_empty())
return;
// Ensure that the `x' congruences are in minimal form.
if (x.congruences_are_up_to_date()) {
if (!x.congruences_are_minimized()) {
if (simplify(x.con_sys, x.dim_kinds)) {
// `x' is empty.
x.set_empty();
return;
}
x.set_congruences_minimized();
}
}
else
x.update_congruences();
// Ensure that the `y' congruences are in minimal form.
if (y.congruences_are_up_to_date()) {
if (!y.congruences_are_minimized()) {
if (simplify(y.con_sys, y.dim_kinds)) {
// `y' is empty.
y.set_empty();
return;
}
y.set_congruences_minimized();
}
}
else
y.update_congruences();
if (con_sys.num_equalities() < y.con_sys.num_equalities())
return;
// Copy into `cgs' the congruences of `x' that are common to `y',
// according to the grid widening.
Congruence_System cgs;
x.select_wider_congruences(y, cgs);
if (cgs.num_rows() == con_sys.num_rows())
// All congruences were selected, thus the result is `x'.
return;
// A strict subset of the congruences was selected.
Grid result(x.space_dim);
result.add_recycled_congruences(cgs);
// Check whether we are using the widening-with-tokens technique
// and there are still tokens available.
if (tp && *tp > 0) {
// There are tokens available. If `result' is not a subset of
// `x', then it is less precise and we use one of the available
// tokens.
if (!x.contains(result))
--(*tp);
}
else
// No tokens.
std::swap(x, result);
PPL_ASSERT(x.OK(true));
}
void
PPL::Grid::limited_congruence_extrapolation_assign(const Grid& y,
const Congruence_System& cgs,
unsigned* tp) {
Grid& x = *this;
// Check dimension compatibility.
if (x.space_dim != y.space_dim)
throw_dimension_incompatible("limited_extrapolation_assign(y, cgs)",
"y", y);
// `cgs' must be dimension-compatible with the two grids.
const dimension_type cgs_space_dim = cgs.space_dimension();
if (x.space_dim < cgs_space_dim)
throw_dimension_incompatible("limited_extrapolation_assign(y, cgs)",
"cgs", cgs);
const dimension_type cgs_num_rows = cgs.num_rows();
// If `cgs' is empty (of rows), fall back to ordinary widening.
if (cgs_num_rows == 0) {
x.widening_assign(y, tp);
return;
}
#ifndef NDEBUG
{
// Assume that y is contained in or equal to x.
const Grid x_copy = x;
const Grid y_copy = y;
PPL_ASSERT(x_copy.contains(y_copy));
}
#endif
if (y.marked_empty())
return;
if (x.marked_empty())
return;
// The limited widening between two grids in a zero-dimensional
// space is also a grid in a zero-dimensional space.
if (x.space_dim == 0)
return;
// Update the generators of `x': these are used to select, from the
// congruences in `cgs', those that must be added to the widened
// grid.
if (!x.generators_are_up_to_date() && !x.update_generators())
// `x' is empty.
return;
if (tp == NULL || *tp == 0) {
// Widening may change the grid, so add the congruences.
Congruence_System new_cgs;
// The congruences to be added need only be satisfied by all the
// generators of `x', as `y <= x'. Iterate upwards here, to keep
// the relative ordering of congruences (just for aesthetics).
for (dimension_type i = 0; i < cgs_num_rows; ++i) {
const Congruence& cg = cgs[i];
if (x.relation_with(cg) == Poly_Con_Relation::is_included())
new_cgs.insert(cg);
}
x.congruence_widening_assign(y, tp);
x.add_recycled_congruences(new_cgs);
}
else
// There are tokens, so widening will leave the grid the same.
x.congruence_widening_assign(y, tp);
PPL_ASSERT(OK());
}
void
PPL::Grid::select_wider_generators(const Grid& y,
Grid_Generator_System& ggs_selected) const {
// Private method: the caller must ensure the following conditions
// (beside the inclusion `y <= x').
PPL_ASSERT(space_dim == y.space_dim);
PPL_ASSERT(!marked_empty());
PPL_ASSERT(!y.marked_empty());
PPL_ASSERT(generators_are_minimized());
PPL_ASSERT(y.generators_are_minimized());
// Note: row counters start at 0, to preserve the original order in
// the selected generators.
for (dimension_type dim = 0, x_row = 0, y_row = 0;
dim <= gen_sys.space_dimension(); ++dim) {
PPL_ASSERT(dim_kinds[dim] == LINE
|| y.dim_kinds[dim] == GEN_VIRTUAL
|| dim_kinds[dim] == y.dim_kinds[dim]);
switch (dim_kinds[dim]) {
case PARAMETER:
{
const Grid_Generator& gg = gen_sys[x_row];
const Grid_Generator& y_gg = y.gen_sys[y_row];
if (gg.is_equal_at_dimension(dim, y_gg))
// The leading diagonal entry is equal.
ggs_selected.insert(gg);
else {
Linear_Expression e;
for (dimension_type i = gg.space_dimension(); i-- > 0; )
e += gg.coefficient(Variable(i)) * Variable(i);
ggs_selected.insert(grid_line(e));
}
++x_row;
++y_row;
}
break;
case LINE:
ggs_selected.insert(gen_sys[x_row]);
++x_row;
++y_row;
break;
case GEN_VIRTUAL:
y.dim_kinds[dim] == GEN_VIRTUAL || ++y_row;
break;
}
}
}
void
PPL::Grid::generator_widening_assign(const Grid& const_y, unsigned* tp) {
Grid& x = *this;
Grid& y = const_cast<Grid&>(const_y);
// Dimension-compatibility check.
if (x.space_dim != y.space_dim)
throw_dimension_incompatible("generator_widening_assign(y)", "y", y);
// Stable behavior is only guaranteed if y is contained in or equal
// to x.
#ifndef NDEBUG
{
// Assume y is contained in or equal to x.
const Grid x_copy = x;
const Grid y_copy = y;
PPL_ASSERT(x_copy.contains(y_copy));
}
#endif
// Leave `x' the same if `x' or `y' is zero-dimensional or empty.
if (x.space_dim == 0 || x.marked_empty() || y.marked_empty())
return;
// Ensure that the `x' generators are in minimal form.
if (x.generators_are_up_to_date()) {
if (!x.generators_are_minimized()) {
simplify(x.gen_sys, x.dim_kinds);
PPL_ASSERT(!x.gen_sys.has_no_rows());
x.set_generators_minimized();
}
}
else
x.update_generators();
if (x.marked_empty())
return;
// Ensure that the `y' generators are in minimal form.
if (y.generators_are_up_to_date()) {
if (!y.generators_are_minimized()) {
simplify(y.gen_sys, y.dim_kinds);
PPL_ASSERT(!y.gen_sys.has_no_rows());
y.set_generators_minimized();
}
}
else
y.update_generators();
if (gen_sys.num_rows() > y.gen_sys.num_rows())
return;
if (gen_sys.num_lines() > y.gen_sys.num_lines())
return;
// Copy into `ggs' the generators of `x' that are common to `y',
// according to the grid widening.
Grid_Generator_System ggs;
x.select_wider_generators(y, ggs);
if (ggs.num_parameters() == gen_sys.num_parameters())
// All parameters are kept as parameters, thus the result is `x'.
return;
// A strict subset of the parameters was selected.
Grid result(x.space_dim, EMPTY);
result.add_recycled_grid_generators(ggs);
// Check whether we are using the widening-with-tokens technique
// and there are still tokens available.
if (tp && *tp > 0) {
// There are tokens available. If `result' is not a subset of
// `x', then it is less precise and we use one of the available
// tokens.
if (!x.contains(result))
--(*tp);
}
else
// No tokens.
std::swap(x, result);
PPL_ASSERT(x.OK(true));
}
void
PPL::Grid::limited_generator_extrapolation_assign(const Grid& y,
const Congruence_System& cgs,
unsigned* tp) {
Grid& x = *this;
// Check dimension compatibility.
if (x.space_dim != y.space_dim)
throw_dimension_incompatible("limited_extrapolation_assign(y, cgs)",
"y", y);
// `cgs' must be dimension-compatible with the two grids.
const dimension_type cgs_space_dim = cgs.space_dimension();
if (x.space_dim < cgs_space_dim)
throw_dimension_incompatible("limited_extrapolation_assign(y, cgs)",
"cgs", cgs);
const dimension_type cgs_num_rows = cgs.num_rows();
// If `cgs' is empty (of rows), fall back to ordinary widening.
if (cgs_num_rows == 0) {
x.generator_widening_assign(y, tp);
return;
}
#ifndef NDEBUG
{
// Assume that y is contained in or equal to x.
const Grid x_copy = x;
const Grid y_copy = y;
PPL_ASSERT(x_copy.contains(y_copy));
}
#endif
if (y.marked_empty())
return;
if (x.marked_empty())
return;
// The limited widening between two grids in a zero-dimensional
// space is also a grid in a zero-dimensional space.
if (x.space_dim == 0)
return;
// Update the generators of `x': these are used to select, from the
// congruences in `cgs', those that must be added to the widened
// grid.
if (!x.generators_are_up_to_date() && !x.update_generators())
// `x' is empty.
return;
if (tp == NULL || *tp == 0) {
// Widening may change the grid, so add the congruences.
Congruence_System new_cgs;
// The congruences to be added need only be satisfied by all the
// generators of `x', as `y <= x'. Iterate upwards here, to keep
// the relative ordering of congruences (just for aesthetics).
for (dimension_type i = 0; i < cgs_num_rows; ++i) {
const Congruence& cg = cgs[i];
if (x.relation_with(cg) == Poly_Con_Relation::is_included())
new_cgs.insert(cg);
}
x.generator_widening_assign(y, tp);
x.add_recycled_congruences(new_cgs);
}
else
// There are tokens, so widening will leave the grid the same.
x.generator_widening_assign(y, tp);
PPL_ASSERT(OK());
}
void
PPL::Grid::widening_assign(const Grid& const_y, unsigned* tp) {
Grid& x = *this;
Grid& y = const_cast<Grid&>(const_y);
// Dimension-compatibility check.
if (x.space_dim != y.space_dim)
throw_dimension_incompatible("widening_assign(y)", "y", y);
// Stable behavior is only guaranteed if y is contained in or equal
// to x.
#ifndef NDEBUG
{
// Assume y is contained in or equal to x.
const Grid x_copy = x;
const Grid y_copy = y;
PPL_ASSERT(x_copy.contains(y_copy));
}
#endif
// If the `x' congruences are up to date and `y' congruences are up
// to date use the congruence widening.
if (x.congruences_are_up_to_date() && y.congruences_are_up_to_date()) {
x.congruence_widening_assign(y, tp);
return;
}
// If the `x' generators are up to date and `y' generators are up to
// date use the generator widening.
if (x.generators_are_up_to_date() && y.generators_are_up_to_date()) {
x.generator_widening_assign(y, tp);
return;
}
x.congruence_widening_assign(y, tp);
}
void
PPL::Grid::limited_extrapolation_assign(const Grid& y,
const Congruence_System& cgs,
unsigned* tp) {
Grid& x = *this;
// Check dimension compatibility.
if (x.space_dim != y.space_dim)
throw_dimension_incompatible("limited_extrapolation_assign(y, cgs)",
"y", y);
// `cgs' must be dimension-compatible with the two grids.
const dimension_type cgs_space_dim = cgs.space_dimension();
if (x.space_dim < cgs_space_dim)
throw_dimension_incompatible("limited_extrapolation_assign(y, cgs)",
"cgs", cgs);
const dimension_type cgs_num_rows = cgs.num_rows();
// If `cgs' is empty (of rows), fall back to ordinary widening.
if (cgs_num_rows == 0) {
x.widening_assign(y, tp);
return;
}
#ifndef NDEBUG
{
// Assume that y is contained in or equal to x.
const Grid x_copy = x;
const Grid y_copy = y;
PPL_ASSERT(x_copy.contains(y_copy));
}
#endif
if (y.marked_empty())
return;
if (x.marked_empty())
return;
// The limited widening between two grids in a zero-dimensional
// space is also a grid in a zero-dimensional space.
if (x.space_dim == 0)
return;
// Update the generators of `x': these are used to select, from the
// congruences in `cgs', those that must be added to the widened
// grid.
if (!x.generators_are_up_to_date() && !x.update_generators())
// `x' is empty.
return;
if (tp == NULL || *tp == 0) {
// Widening may change the grid, so add the congruences.
Congruence_System new_cgs;
// The congruences to be added need only be satisfied by all the
// generators of `x', as `y <= x'. Iterate upwards here, to keep
// the relative ordering of congruences (just for aesthetics).
for (dimension_type i = 0; i < cgs_num_rows; ++i) {
const Congruence& cg = cgs[i];
if (x.relation_with(cg) == Poly_Con_Relation::is_included())
new_cgs.insert(cg);
}
x.widening_assign(y, tp);
x.add_recycled_congruences(new_cgs);
}
else
// There are tokens, so widening will leave the grid the same.
x.widening_assign(y, tp);
PPL_ASSERT(OK());
}
|