summaryrefslogtreecommitdiff
path: root/src/Grid_public.cc
blob: 47b84374b2850c1879c9b9291ea85822268c1239 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
/* Grid class implementation (non-inline public functions).
   Copyright (C) 2001-2010 Roberto Bagnara <bagnara@cs.unipr.it>
   Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com)

This file is part of the Parma Polyhedra Library (PPL).

The PPL is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

The PPL is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA.

For the most up-to-date information see the Parma Polyhedra Library
site: http://www.cs.unipr.it/ppl/ . */

#include <ppl-config.h>

#include "Grid.defs.hh"
#include "Topology.hh"
#include "Scalar_Products.defs.hh"
#include "Polyhedron.defs.hh"
#include "assert.hh"
#include <iostream>

namespace PPL = Parma_Polyhedra_Library;

// TODO: In the Grid constructors adapt and use the given system if it
//       is modifiable, instead of using a copy.

PPL::Grid::Grid(const Grid& y, Complexity_Class)
  : con_sys(),
    gen_sys(),
    status(y.status),
    space_dim(y.space_dim),
    dim_kinds(y.dim_kinds) {
  if (space_dim == 0) {
    con_sys = y.con_sys;
    gen_sys = y.gen_sys;
  }
  else {
    if (y.congruences_are_up_to_date())
      con_sys = y.con_sys;
    else
      con_sys.increase_space_dimension(space_dim);
    if (y.generators_are_up_to_date())
      gen_sys = y.gen_sys;
    else
      gen_sys = Grid_Generator_System(y.space_dim);
  }
}

PPL::Grid::Grid(const Constraint_System& cs)
  : con_sys(cs.space_dimension() > max_space_dimension()
	    ? throw_space_dimension_overflow("Grid(cs)",
					     "the space dimension of cs "
					     "exceeds the maximum allowed "
					     "space dimension"), 0
	    : cs.space_dimension()),
    gen_sys(cs.space_dimension()) {
  space_dim = cs.space_dimension();

  if (space_dim == 0) {
    // See if an inconsistent constraint has been passed.
    for (Constraint_System::const_iterator i = cs.begin(),
         cs_end = cs.end(); i != cs_end; ++i)
      if (i->is_inconsistent()) {
	// Inconsistent constraint found: the grid is empty.
	status.set_empty();
	// Insert the zero dim false congruence system into `con_sys'.
	// `gen_sys' is already in empty form.
	con_sys.insert(Congruence::zero_dim_false());
	PPL_ASSERT(OK());
	return;
      }
    set_zero_dim_univ();
    PPL_ASSERT(OK());
    return;
  }

  Congruence_System cgs;
  cgs.insert(0*Variable(space_dim - 1) %= 1);
  for (Constraint_System::const_iterator i = cs.begin(),
	 cs_end = cs.end(); i != cs_end; ++i)
    if (i->is_equality())
      cgs.insert(*i);
    else
      throw_invalid_constraints("Grid(cs)", "cs");
  construct(cgs);
}

PPL::Grid::Grid(Constraint_System& cs, Recycle_Input)
 : con_sys(cs.space_dimension() > max_space_dimension()
	   ? throw_space_dimension_overflow("Grid(cs, recycle)",
					    "the space dimension of cs "
					    "exceeds the maximum allowed "
					    "space dimension"), 0
	   : cs.space_dimension()),
   gen_sys(cs.space_dimension()) {
  space_dim = cs.space_dimension();

  if (space_dim == 0) {
    // See if an inconsistent constraint has been passed.
    for (Constraint_System::const_iterator i = cs.begin(),
         cs_end = cs.end(); i != cs_end; ++i)
      if (i->is_inconsistent()) {
	// Inconsistent constraint found: the grid is empty.
	status.set_empty();
	// Insert the zero dim false congruence system into `con_sys'.
	// `gen_sys' is already in empty form.
	con_sys.insert(Congruence::zero_dim_false());
	PPL_ASSERT(OK());
	return;
      }
    set_zero_dim_univ();
    PPL_ASSERT(OK());
    return;
  }

  Congruence_System cgs;
  cgs.insert(0*Variable(space_dim - 1) %= 1);
  for (Constraint_System::const_iterator i = cs.begin(),
	 cs_end = cs.end(); i != cs_end; ++i)
    if (i->is_equality())
      cgs.insert(*i);
    else
      throw_invalid_constraint("Grid(cs)", "cs");
  construct(cgs);
}

PPL::Grid::Grid(const Polyhedron& ph,
                Complexity_Class complexity)
  : con_sys(ph.space_dimension() > max_space_dimension()
	    ? throw_space_dimension_overflow("Grid(ph)",
					     "the space dimension of ph "
					     "exceeds the maximum allowed "
					     "space dimension"), 0
	    : ph.space_dimension()),
    gen_sys(ph.space_dimension()) {
  space_dim = ph.space_dimension();

  // A zero-dim polyhedron causes no complexity problems.
  if (space_dim == 0) {
    if (ph.is_empty())
      set_empty();
    else
      set_zero_dim_univ();
    return;
  }

  // A polyhedron known to be empty causes no complexity problems.
  if (ph.marked_empty()) {
    set_empty();
    return;
  }

  bool use_constraints = ph.constraints_are_minimized()
    || !ph.generators_are_up_to_date();

  // Minimize the constraint description if it is needed and
  // the complexity allows it.
  if (use_constraints && complexity == ANY_COMPLEXITY)
    if (!ph.minimize()) {
      set_empty();
      return;
    }

  if (use_constraints) {
    // Only the equality constraints need be used.
    PPL_ASSERT(ph.constraints_are_up_to_date());
    const Constraint_System& cs = ph.constraints();
    Congruence_System cgs;
    cgs.insert(0*Variable(space_dim - 1) %= 1);
    for (Constraint_System::const_iterator i = cs.begin(),
           cs_end = cs.end(); i != cs_end; ++i)
      if (i->is_equality())
        cgs.insert(*i);
    construct(cgs);
  }
  else {
    // First find a point or closure point and convert it to a
    // grid point and add to the (initially empty) set of grid generators.
    PPL_ASSERT(ph.generators_are_up_to_date());
    const Generator_System& gs = ph.generators();
    Grid_Generator_System ggs(space_dim);
    Linear_Expression point_expr;
    PPL_DIRTY_TEMP_COEFFICIENT(point_divisor);
    for (Generator_System::const_iterator g = gs.begin(),
           gs_end = gs.end(); g != gs_end; ++g) {
      if (g->is_point() || g->is_closure_point()) {
        for (dimension_type i = space_dim; i-- > 0; ) {
          const Variable v(i);
          point_expr += g->coefficient(v) * v;
          point_divisor = g->divisor();
        }
        ggs.insert(grid_point(point_expr, point_divisor));
        break;
      }
    }
    // Add grid lines for all the other generators.
    // If the polyhedron's generator is a (closure) point, the grid line must
    // have the direction given by a line that joins the grid point already
    // inserted and the new point.
    PPL_DIRTY_TEMP_COEFFICIENT(coeff);
    PPL_DIRTY_TEMP_COEFFICIENT(g_divisor);
    for (Generator_System::const_iterator g = gs.begin(),
           gs_end = gs.end(); g != gs_end; ++g) {
      Linear_Expression e;
      if (g->is_point() || g->is_closure_point()) {
        g_divisor = g->divisor();
        for (dimension_type i = space_dim; i-- > 0; ) {
          const Variable v(i);
          coeff = point_expr.coefficient(v) * g_divisor;
          coeff -= g->coefficient(v) * point_divisor;
          e += coeff * v;
        }
        if (e.all_homogeneous_terms_are_zero())
          continue;
      }
      else
        for (dimension_type i = space_dim; i-- > 0; ) {
          const Variable v(i);
          e += g->coefficient(v) * v;
        }
      ggs.insert(grid_line(e));
    }
    construct(ggs);
  }
  PPL_ASSERT(OK());
}

PPL::Grid&
PPL::Grid::operator=(const Grid& y) {
  space_dim = y.space_dim;
  dim_kinds = y.dim_kinds;
  if (y.marked_empty())
    set_empty();
  else if (space_dim == 0)
    set_zero_dim_univ();
  else {
    status = y.status;
    if (y.congruences_are_up_to_date())
      con_sys = y.con_sys;
    if (y.generators_are_up_to_date())
      gen_sys = y.gen_sys;
  }
  return *this;
}

PPL::dimension_type
PPL::Grid::affine_dimension() const {
  if (space_dim == 0 || is_empty())
    return 0;

  if (generators_are_up_to_date()) {
    if (generators_are_minimized())
      return gen_sys.num_rows() - 1;
    if (!(congruences_are_up_to_date() && congruences_are_minimized()))
      return minimized_grid_generators().num_rows() - 1;
  }
  else
    minimized_congruences();
  PPL_ASSERT(congruences_are_minimized());
  dimension_type d = space_dim;
  for (dimension_type i = con_sys.num_rows(); i-- > 0; )
    if (con_sys[i].is_equality())
      --d;
  return d;
}

const PPL::Congruence_System&
PPL::Grid::congruences() const {
  if (marked_empty())
    return con_sys;

  if (space_dim == 0) {
    // Zero-dimensional universe.
    PPL_ASSERT(con_sys.num_rows() == 0 && con_sys.num_columns() == 2);
    return con_sys;
  }

  if (!congruences_are_up_to_date())
    update_congruences();

  return con_sys;
}

const PPL::Congruence_System&
PPL::Grid::minimized_congruences() const {
  if (congruences_are_up_to_date() && !congruences_are_minimized()) {
    // Minimize the congruences.
    Grid& gr = const_cast<Grid&>(*this);
    if (gr.simplify(gr.con_sys, gr.dim_kinds))
      gr.set_empty();
    else
      gr.set_congruences_minimized();
  }
  return congruences();
}

const PPL::Grid_Generator_System&
PPL::Grid::grid_generators() const {
  if (space_dim == 0) {
    PPL_ASSERT(gen_sys.space_dimension() == 0
	   && gen_sys.num_rows() == (marked_empty() ? 0 : 1));
    return gen_sys;
  }

  if (marked_empty()) {
    PPL_ASSERT(gen_sys.has_no_rows());
    return gen_sys;
  }

  if (!generators_are_up_to_date() && !update_generators()) {
    // Updating found the grid empty.
    const_cast<Grid&>(*this).set_empty();
    return gen_sys;
  }

  return gen_sys;
}

const PPL::Grid_Generator_System&
PPL::Grid::minimized_grid_generators() const {
  if (space_dim == 0) {
    PPL_ASSERT(gen_sys.space_dimension() == 0
	   && gen_sys.num_rows() == (marked_empty() ? 0 : 1));
    return gen_sys;
  }

  if (marked_empty()) {
    PPL_ASSERT(gen_sys.has_no_rows());
    return gen_sys;
  }

  if (generators_are_up_to_date()) {
    if (!generators_are_minimized()) {
      // Minimize the generators.
      Grid& gr = const_cast<Grid&>(*this);
      gr.simplify(gr.gen_sys, gr.dim_kinds);
      gr.set_generators_minimized();
    }
  }
  else if (!update_generators()) {
    // Updating found the grid empty.
    const_cast<Grid&>(*this).set_empty();
    return gen_sys;
  }

  return gen_sys;
}

PPL::Poly_Con_Relation
PPL::Grid::relation_with(const Congruence& cg) const {
  // Dimension-compatibility check.
  if (space_dim < cg.space_dimension())
    throw_dimension_incompatible("relation_with(cg)", "cg", cg);

  if (marked_empty())
    return Poly_Con_Relation::saturates()
      && Poly_Con_Relation::is_included()
      && Poly_Con_Relation::is_disjoint();

  if (space_dim == 0) {
    if (cg.is_inconsistent())
      return Poly_Con_Relation::is_disjoint();
    else if (cg.is_equality())
      return Poly_Con_Relation::saturates()
	&& Poly_Con_Relation::is_included();
    else if (cg.inhomogeneous_term() % cg.modulus() == 0)
      return Poly_Con_Relation::saturates()
	&& Poly_Con_Relation::is_included();
  }

  if (!generators_are_up_to_date() && !update_generators())
    // Updating found the grid empty.
    return Poly_Con_Relation::saturates()
      && Poly_Con_Relation::is_included()
      && Poly_Con_Relation::is_disjoint();

  // Return one of the relations
  // 'strictly_intersects'   a strict subset of the grid points satisfy cg
  // 'is_included'	     every grid point satisfies cg
  // 'is_disjoint'	     cg and the grid occupy separate spaces.

  // There is always a point.

  // Scalar product of the congruence and the first point that
  // satisfies the congruence.
  PPL_DIRTY_TEMP_COEFFICIENT(point_sp);
  point_sp = 0;

  const Coefficient& modulus = cg.modulus();

  PPL_DIRTY_TEMP_COEFFICIENT(div);
  div = modulus;

  PPL_DIRTY_TEMP_COEFFICIENT(sp);

  bool known_to_intersect = false;

  for (Grid_Generator_System::const_iterator g = gen_sys.begin(),
         gen_sys_end = gen_sys.end(); g != gen_sys_end; ++g) {
    Scalar_Products::assign(sp, cg, *g);

    switch (g->type()) {

    case Grid_Generator::POINT:
      if (cg.is_proper_congruence())
	sp %= div;
      if (sp == 0)
	// The point satisfies the congruence.
	if (point_sp == 0)
	  // Any previous points satisfied the congruence.
	  known_to_intersect = true;
	else
	  return Poly_Con_Relation::strictly_intersects();
      else
	if (point_sp == 0) {
	  if (known_to_intersect)
	    return Poly_Con_Relation::strictly_intersects();
	  // Assign `sp' to `point_sp' as `sp' is the scalar product
	  // of cg and a point g and is non-zero.
	  point_sp = sp;
	}
	else {
	  // A previously considered point p failed to satisfy cg such that
	  // `point_sp' = `scalar_prod(p, cg)'
	  // so, if we consider the parameter g-p instead of g, we have
	  // scalar_prod(g-p, cg) = scalar_prod(g, cg) - scalar_prod(p, cg)
	  //                      = sp - point_sp
	  sp -= point_sp;

	  if (sp != 0) {
	    // Find the GCD between sp and the previous GCD.
	    gcd_assign(div, div, sp);
	    if (point_sp % div == 0)
	      // There is a point in the grid satisfying cg.
	      return Poly_Con_Relation::strictly_intersects();
	  }
	}
      break;

    case Grid_Generator::PARAMETER:
      if (cg.is_proper_congruence())
	sp %= (div * g->divisor());
      if (sp == 0)
	// Parameter g satisfies the cg so the relation depends
	// entirely on the other generators.
	break;

      if (known_to_intersect)
	// At least one point satisfies cg.  However, the sum of such
	// a point and the parameter g fails to satisfy cg (due to g).
	return Poly_Con_Relation::strictly_intersects();

      // Find the GCD between sp and the previous GCD.
      gcd_assign(div, div, sp);
      if (point_sp != 0)
	// At least one of any previously encountered points fails to
	// satisfy cg.
	if (point_sp % div == 0)
	  //////	if (point_sp == div)
	  // There is also a grid point that satisfies cg.
	  return Poly_Con_Relation::strictly_intersects();

      break;

    case Grid_Generator::LINE:
      if (sp == 0)
	// Line g satisfies the cg so the relation depends entirely on
	// the other generators.
	break;

      // Line g intersects the congruence.
      //
      // There is a point p in the grid.  Suppose <p*cg> = p_sp.  Then
      // (-p_sp/sp)*g + p is a point that satisfies cg: <((-p_sp/sp)*g
      // + p).cg> = -(p_sp/sp)*sp + p_sp) = 0.  If p does not satisfy
      // `cg' and hence is not in the grid defined by `cg', the grid
      // `*this' strictly intersects the `cg' grid.  On the other
      // hand, if `p' is in the grid defined by `cg' so that p_sp = 0,
      // then <p+g.cg> = p_sp + sp != 0; thus `p+g' is a point in
      // *this that does not satisfy `cg' and hence `p+g' is a point
      // in *this not in the grid defined by `cg'; therefore `*this'
      // strictly intersects the `cg' grid.

      return Poly_Con_Relation::strictly_intersects();
    }
  }

  if (point_sp == 0) {
    if (cg.is_equality())
      // Every generator satisfied the cg.
      return Poly_Con_Relation::is_included()
        && Poly_Con_Relation::saturates();
    else
      // Every generator satisfied the cg.
      return Poly_Con_Relation::is_included();
  }

  PPL_ASSERT(!known_to_intersect);
  return Poly_Con_Relation::is_disjoint();
}

PPL::Poly_Gen_Relation
PPL::Grid::relation_with(const Grid_Generator& g) const {
  // Dimension-compatibility check.
  if (space_dim < g.space_dimension())
    throw_dimension_incompatible("relation_with(g)", "g", g);

  // The empty grid cannot subsume a generator.
  if (marked_empty())
    return Poly_Gen_Relation::nothing();

  // A universe grid in a zero-dimensional space subsumes all the
  // generators of a zero-dimensional space.
  if (space_dim == 0)
    return Poly_Gen_Relation::subsumes();

  if (!congruences_are_up_to_date())
    update_congruences();

  return
    con_sys.satisfies_all_congruences(g)
    ? Poly_Gen_Relation::subsumes()
    : Poly_Gen_Relation::nothing();
}

PPL::Poly_Gen_Relation
PPL::Grid::relation_with(const Generator& g) const {
  dimension_type g_space_dim = g.space_dimension();

  // Dimension-compatibility check.
  if (space_dim < g_space_dim)
    throw_dimension_incompatible("relation_with(g)", "g", g);

  // The empty grid cannot subsume a generator.
  if (marked_empty())
    return Poly_Gen_Relation::nothing();

  // A universe grid in a zero-dimensional space subsumes all the
  // generators of a zero-dimensional space.
  if (space_dim == 0)
    return Poly_Gen_Relation::subsumes();

  if (!congruences_are_up_to_date())
    update_congruences();

  Linear_Expression expr;
  for (dimension_type i = g_space_dim; i-- > 0; ) {
    const Variable v(i);
    expr += g.coefficient(v) * v;
  }
  Grid_Generator gg(grid_point());
  if (g.is_point() || g.is_closure_point())
    // Points and closure points are converted to grid points.
    gg = grid_point(expr, g.divisor());
  else
    // The generator is a ray or line.
    // In both cases, we convert it to a grid line
    gg = grid_line(expr);

  return
    con_sys.satisfies_all_congruences(gg)
    ? Poly_Gen_Relation::subsumes()
    : Poly_Gen_Relation::nothing();
}

PPL::Poly_Con_Relation
PPL::Grid::relation_with(const Constraint& c) const {
  // Dimension-compatibility check.
  if (space_dim < c.space_dimension())
    throw_dimension_incompatible("relation_with(c)", "c", c);

  if (c.is_equality()) {
    Congruence cg(c);
    return relation_with(cg);
  }

  if (marked_empty())
    return Poly_Con_Relation::saturates()
      &&  Poly_Con_Relation::is_included()
      && Poly_Con_Relation::is_disjoint();

  if (space_dim == 0) {
    if (c.is_inconsistent())
      if (c.is_strict_inequality() && c.inhomogeneous_term() == 0)
	// The constraint 0 > 0 implicitly defines the hyperplane 0 = 0;
	// thus, the zero-dimensional point also saturates it.
	return Poly_Con_Relation::saturates()
	  && Poly_Con_Relation::is_disjoint();
      else
	return Poly_Con_Relation::is_disjoint();
    else if (c.inhomogeneous_term() == 0)
      return Poly_Con_Relation::saturates()
	&& Poly_Con_Relation::is_included();
    else
      // The zero-dimensional point saturates
      // neither the positivity constraint 1 >= 0,
      // nor the strict positivity constraint 1 > 0.
      return Poly_Con_Relation::is_included();
  }

  if (!generators_are_up_to_date() && !update_generators())
    // Updating found the grid empty.
    return Poly_Con_Relation::saturates()
      && Poly_Con_Relation::is_included()
      && Poly_Con_Relation::is_disjoint();

  // Return one of the relations
  // 'strictly_intersects'   a strict subset of the grid points satisfy c
  // 'is_included'	     every grid point satisfies c
  // 'is_disjoint'	     c and the grid occupy separate spaces.

  // There is always a point.

  bool point_is_included = false;
  bool point_saturates = false;
  const Grid_Generator* first_point = NULL;

  for (Grid_Generator_System::const_iterator g = gen_sys.begin(),
         gen_sys_end = gen_sys.end(); g != gen_sys_end; ++g)
    switch (g->type()) {

    case Grid_Generator::POINT:
      {
	Grid_Generator& gen = const_cast<Grid_Generator&>(*g);
	if (first_point == NULL) {
	  first_point = &gen;
	  const int sign = Scalar_Products::sign(c, gen);
	  Constraint::Type type = c.type();
	  if ((type == Constraint::NONSTRICT_INEQUALITY && sign == 0)) {
	    point_saturates = true;
	  }
	  else if (sign > 0)
	    point_is_included = true;
	  break;
	}
	// Else convert g to a parameter, and continue into the
	// parameter case.
	gen.set_is_parameter();
	const Grid_Generator& first = *first_point;
	for (dimension_type i = gen.size() - 1; i-- > 0; )
	  gen[i] -= first[i];
      }

    case Grid_Generator::PARAMETER:
    case Grid_Generator::LINE:
      Grid_Generator& gen = const_cast<Grid_Generator&>(*g);
      if (gen.is_line_or_parameter())
	for (dimension_type i = c.space_dimension(); i-- > 0; ) {
	  Variable v(i);
	  if (c.coefficient(v) != 0 && gen.coefficient(v) != 0)
	    return Poly_Con_Relation::strictly_intersects();
	}
      break;
    }

  if (point_saturates)
    // Any parameters and lines are also included.
    return Poly_Con_Relation::saturates()
      && Poly_Con_Relation::is_included();
  if (point_is_included)
    // Any parameters and lines are also included.
    return Poly_Con_Relation::is_included();
  return Poly_Con_Relation::is_disjoint();
}

bool
PPL::Grid::is_empty() const {
  if (marked_empty())
    return true;
  // Try a fast-fail test: if generators are up-to-date then the
  // generator system (since it is well formed) contains a point.
  if (generators_are_up_to_date())
    return false;
  if (space_dim == 0)
    return false;
  if (congruences_are_minimized())
    // If the grid was empty it would be marked empty.
    return false;
  // Minimize the congruences to check if the grid is empty.
  Grid& gr = const_cast<Grid&>(*this);
  if (gr.simplify(gr.con_sys, gr.dim_kinds)) {
    gr.set_empty();
    return true;
  }
  gr.set_congruences_minimized();
  return false;
}

bool
PPL::Grid::is_universe() const {
  if (marked_empty())
    return false;

  if (space_dim == 0)
    return true;

  if (congruences_are_up_to_date()) {
    if (congruences_are_minimized())
      // The minimized universe congruence system has only one row,
      // the integrality congruence.
      return con_sys.num_rows() == 1 && con_sys[0].is_tautological();
  }
  else {
    update_congruences();
    return con_sys.num_rows() == 1 && con_sys[0].is_tautological();
  }

  // Test con_sys's inclusion in a universe generator system.

  // The zero dimension cases are handled above.
  Variable var(space_dim - 1);
  for (dimension_type i = space_dim; i-- > 0; )
    if (!con_sys.satisfies_all_congruences(grid_line(Variable(i) + var)))
      return false;
  PPL_ASSERT(con_sys.satisfies_all_congruences(grid_point(0*var)));
  return true;
}

bool
PPL::Grid::is_bounded() const {
  // A zero-dimensional or empty grid is bounded.
  if (space_dim == 0
      || marked_empty()
      || (!generators_are_up_to_date() && !update_generators()))
    return true;

  // TODO: Consider using con_sys when gen_sys is out of date.

  if (gen_sys.num_rows() > 1) {
    // Check if all generators are the same point.
    const Grid_Generator& first_point = gen_sys[0];
    if (first_point.is_line_or_parameter())
      return false;
    for (dimension_type row = gen_sys.num_rows(); row-- > 0; ) {
      const Grid_Generator& gen = gen_sys[row];
      if (gen.is_line_or_parameter() || gen != first_point)
	return false;
    }
  }
  return true;
}

bool
PPL::Grid::is_discrete() const {
  // A zero-dimensional or empty grid is discrete.
  if (space_dim == 0
      || marked_empty()
      || (!generators_are_up_to_date() && !update_generators()))
    return true;

  // Search for lines in the generator system.
  for (dimension_type row = gen_sys.num_rows(); row-- > 1; )
    if (gen_sys[row].is_line())
      return false;

  // The system of generators is composed only by
  // points and parameters: the grid is discrete.
  return true;
}

bool
PPL::Grid::is_topologically_closed() const {
  return true;
}

bool
PPL::Grid::contains_integer_point() const {
  // Empty grids have no points.
  if (marked_empty())
    return false;

  // A zero-dimensional, universe grid has, by convention, an
  // integer point.
  if (space_dim == 0)
    return true;

  // A grid has an integer point if its intersection with the integer
  // grid is non-empty.
  Congruence_System cgs;
  for (dimension_type var_index = space_dim; var_index-- > 0; )
    cgs.insert(Variable(var_index) %= 0);

  Grid gr = *this;
  gr.add_recycled_congruences(cgs);
  return !gr.is_empty();
}

bool
PPL::Grid::constrains(const Variable var) const {
  // `var' should be one of the dimensions of the grid.
  const dimension_type var_space_dim = var.space_dimension();
  if (space_dim < var_space_dim)
    throw_dimension_incompatible("constrains(v)", "v", var);

  // An empty grid constrains all variables.
  if (marked_empty())
    return true;

  if (generators_are_up_to_date()) {
    // Since generators are up-to-date, the generator system (since it is
    // well formed) contains a point.  Hence the grid is not empty.
    if (congruences_are_up_to_date())
      // Here a variable is constrained if and only if it is
      // syntactically constrained.
      goto syntactic_check;

    if (generators_are_minimized()) {
      // Try a quick, incomplete check for the universe grid:
      // a universe grid constrains no variable.
      // Count the number of lines (they are linearly independent).
      dimension_type num_lines = 0;
      for (dimension_type i = gen_sys.num_rows(); i-- > 0; )
	if (gen_sys[i].is_line())
	  ++num_lines;

      if (num_lines == space_dim)
	return false;
    }

    // Scan generators: perhaps we will find line(var).
    const dimension_type var_id = var.id();
    for (dimension_type i = gen_sys.num_rows(); i-- > 0; ) {
      const Grid_Generator& g_i = gen_sys[i];
      if (g_i.is_line()) {
	if (sgn(g_i.coefficient(var)) != 0) {
	  for (dimension_type j = 0; j < space_dim; ++j)
	    if (g_i.coefficient(Variable(j)) != 0 && j != var_id)
	      goto next;
          return true;
	}
      }
    next:
      ;
    }

    // We are still here: at least we know that the grid is not empty.
    update_congruences();
    goto syntactic_check;
  }

  // We must minimize to detect emptiness and obtain constraints.
  if (!minimize())
    return true;

 syntactic_check:
  for (dimension_type i = con_sys.num_rows(); i-- > 0; )
    if (con_sys[i].coefficient(var) != 0)
      return true;
  return false;
}

bool
PPL::Grid::OK(bool check_not_empty) const {
#ifndef NDEBUG
  using std::endl;
  using std::cerr;
#endif

  // Check whether the status information is legal.
  if (!status.OK())
    goto fail;

  if (marked_empty()) {
    if (check_not_empty) {
      // The caller does not want the grid to be empty.
#ifndef NDEBUG
      cerr << "Empty grid!" << endl;
#endif
      goto fail;
    }

    if (con_sys.space_dimension() != space_dim) {
#ifndef NDEBUG
      cerr << "The grid is in a space of dimension " << space_dim
	   << " while the system of congruences is in a space of dimension "
	   << con_sys.space_dimension()
	   << endl;
#endif
      goto fail;
    }
    return true;
  }

  // A zero-dimensional universe grid is legal only if the system of
  // congruences `con_sys' is empty, and the generator system contains
  // one point.
  if (space_dim == 0) {
    if (con_sys.has_no_rows())
      if (gen_sys.num_rows() == 1 && gen_sys[0].is_point())
	return true;
#ifndef NDEBUG
    cerr << "Zero-dimensional grid should have an empty congruence" << endl
	 << "system and a generator system of a single point." << endl;
#endif
    goto fail;
  }

  // A grid is defined by a system of congruences or a system of
  // generators.  At least one of them must be up to date.
  if (!congruences_are_up_to_date() && !generators_are_up_to_date()) {
#ifndef NDEBUG
    cerr << "Grid not empty, not zero-dimensional" << endl
	 << "and with neither congruences nor generators up-to-date!"
	 << endl;
#endif
    goto fail;
  }

  {
    // The expected number of columns in the congruence and generator
    // systems, if they are not empty.
    const dimension_type num_columns = space_dim + 1;

    // Here we check if the size of the matrices is consistent.
    // Let us suppose that all the matrices are up-to-date; this means:
    // `con_sys' : number of congruences x poly_num_columns
    // `gen_sys' : number of generators  x poly_num_columns
    if (congruences_are_up_to_date())
      if (con_sys.num_columns() != num_columns + 1 /* moduli */) {
#ifndef NDEBUG
	cerr << "Incompatible size! (con_sys and space_dim)"
	     << endl;
#endif
	goto fail;
      }

    if (generators_are_up_to_date()) {
      if (gen_sys.space_dimension() + 1 != num_columns) {
#ifndef NDEBUG
	cerr << "Incompatible size! (gen_sys and space_dim)"
	     << endl;
#endif
	goto fail;
      }

      // Check if the system of generators is well-formed.
      if (!gen_sys.OK())
	goto fail;

      // Check each generator in the system.
      for (dimension_type i = gen_sys.num_rows(); i-- > 0; ) {
	const Grid_Generator& g = gen_sys[i];

	if (g.size() < 1) {
#ifndef NDEBUG
	  cerr << "Parameter should have coefficients." << endl;
#endif
	  goto fail;
	}
      }

      // A non-empty system of generators describing a grid is valid
      // if and only if it contains a point.
      if (!gen_sys.has_no_rows() && !gen_sys.has_points()) {
#ifndef NDEBUG
	cerr << "Non-empty generator system declared up-to-date "
	     << "has no points!"
	     << endl;
#endif
	goto fail;
      }

      if (generators_are_minimized()) {
	Grid_Generator_System gs = gen_sys;

	if (dim_kinds.size() != num_columns) {
#ifndef NDEBUG
	  cerr << "Size of dim_kinds should equal the number of columns."
	       << endl;
#endif
	  goto fail;
	}

	if (!upper_triangular(gs, dim_kinds)) {
#ifndef NDEBUG
	  cerr << "Reduced generators should be upper triangular."
	       << endl;
#endif
	  goto fail;
	}

	// Check that dim_kinds corresponds to the row kinds in gen_sys.
	for (dimension_type dim = space_dim,
	       row = gen_sys.num_rows(); dim > 0; --dim) {
	  if (dim_kinds[dim] == GEN_VIRTUAL)
	    goto ok;
	  if (gen_sys[--row].is_parameter_or_point()
	      && dim_kinds[dim] == PARAMETER)
	    goto ok;
	  PPL_ASSERT(gen_sys[row].is_line());
	  if (dim_kinds[dim] == LINE)
	    goto ok;
#ifndef NDEBUG
	  cerr << "Kinds in dim_kinds should match those in gen_sys."
	       << endl;
#endif
	  goto fail;
	ok:
	  PPL_ASSERT(row <= dim);
	}

	// A reduced generator system must be the same as a temporary
	// reduced copy.
	Dimension_Kinds dk = dim_kinds;
	// `gs' is minimized and marked_empty returned false, so `gs'
	// should contain rows.
	PPL_ASSERT(!gs.has_no_rows());
	simplify(gs, dk);
	// gs contained rows before being reduced, so it should
	// contain at least a single point afterward.
	PPL_ASSERT(!gs.has_no_rows());
	for (dimension_type row = gen_sys.num_rows(); row-- > 0; ) {
	  Grid_Generator& g = gs[row];
	  const Grid_Generator& g_copy = gen_sys[row];
	  if (g.is_equal_to(g_copy))
	    continue;
#ifndef NDEBUG
	  cerr << "Generators are declared minimized,"
	    " but they change under reduction.\n"
	       << "Here is the generator system:\n";
	  gen_sys.ascii_dump(cerr);
	  cerr << "and here is the minimized form of the temporary copy:\n";
	  gs.ascii_dump(cerr);
#endif
	  goto fail;
	}
      }

    } // if (congruences_are_up_to_date())
  }

  if (congruences_are_up_to_date()) {
    // Check if the system of congruences is well-formed.
    if (!con_sys.OK())
      goto fail;

    Grid tmp_gr = *this;
    Congruence_System cs_copy = tmp_gr.con_sys;

    // Clear the generators in tmp_gr.
    Grid_Generator_System gs(space_dim);
    std::swap(tmp_gr.gen_sys, gs);
    tmp_gr.clear_generators_up_to_date();

    if (!tmp_gr.update_generators()) {
      if (check_not_empty) {
	// Want to know the satisfiability of the congruences.
#ifndef NDEBUG
	cerr << "Unsatisfiable system of congruences!"
	     << endl;
#endif
	goto fail;
      }
      // The grid is empty, all checks are done.
      return true;
    }

    if (congruences_are_minimized()) {
      // A reduced congruence system must be lower triangular.
      if (!lower_triangular(con_sys, dim_kinds)) {
#ifndef NDEBUG
	cerr << "Reduced congruences should be lower triangular." << endl;
#endif
	goto fail;
      }

      // If the congruences are minimized, all the elements in the
      // congruence system must be the same as those in the temporary,
      // minimized system `cs_copy'.
      if (!con_sys.is_equal_to(cs_copy)) {
#ifndef NDEBUG
	cerr << "Congruences are declared minimized, but they change under reduction!"
	     << endl
	     << "Here is the minimized form of the congruence system:"
	     << endl;
	cs_copy.ascii_dump(cerr);
	cerr << endl;
#endif
	goto fail;
      }

      if (dim_kinds.size() != con_sys.num_columns() - 1 /* modulus */) {
#ifndef NDEBUG
	cerr << "Size of dim_kinds should equal the number of columns."
	     << endl;
#endif
	goto fail;
      }

      // Check that dim_kinds corresponds to the row kinds in con_sys.
      for (dimension_type dim = space_dim, row = 0; dim > 0; --dim) {
	if (dim_kinds[dim] == CON_VIRTUAL)
	    continue;
	if (con_sys[row++].is_proper_congruence()
	    && dim_kinds[dim] == PROPER_CONGRUENCE)
	  continue;
	PPL_ASSERT(con_sys[row-1].is_equality());
	if (dim_kinds[dim] == EQUALITY)
	  continue;
#ifndef NDEBUG
	cerr << "Kinds in dim_kinds should match those in con_sys." << endl;
#endif
	goto fail;
      }
    }
  }

  return true;

 fail:
#ifndef NDEBUG
  cerr << "Here is the grid under check:" << endl;
  ascii_dump(cerr);
#endif
  return false;
}

void
PPL::Grid::add_constraints(const Constraint_System& cs) {
  // The dimension of `cs' must be at most `space_dim'.
  if (space_dim < cs.space_dimension())
    throw_dimension_incompatible("add_constraints(cs)", "cs", cs);
  if (marked_empty())
    return;

  for (Constraint_System::const_iterator i = cs.begin(),
         cs_end = cs.end(); i != cs_end; ++i) {
    add_constraint_no_check(*i);
    if (marked_empty())
      return;
  }
}

void
PPL::Grid::add_grid_generator(const Grid_Generator& g) {
  // The dimension of `g' must be at most space_dim.
  const dimension_type g_space_dim = g.space_dimension();
  if (space_dim < g_space_dim)
    throw_dimension_incompatible("add_grid_generator(g)", "g", g);

  // Deal with zero-dimension case first.
  if (space_dim == 0) {
    // Points and parameters are the only zero-dimension generators
    // that can be created.
    if (marked_empty()) {
      if (g.is_parameter())
	throw_invalid_generator("add_grid_generator(g)", "g");
      set_zero_dim_univ();
    }
    PPL_ASSERT(OK());
    return;
  }

  if (marked_empty()
      || (!generators_are_up_to_date() && !update_generators())) {
    // Here the grid is empty: the specification says we can only
    // insert a point.
    if (g.is_line_or_parameter())
      throw_invalid_generator("add_grid_generator(g)", "g");
    gen_sys.insert(g);
    clear_empty();
  }
  else {
    PPL_ASSERT(generators_are_up_to_date());
    gen_sys.insert(g);
    if (g.is_parameter_or_point())
      normalize_divisors(gen_sys);
  }

  // With the added generator, congruences are out of date.
  clear_congruences_up_to_date();

  clear_generators_minimized();
  set_generators_up_to_date();
  PPL_ASSERT(OK());
}

void
PPL::Grid::add_recycled_congruences(Congruence_System& cgs) {
  // Dimension-compatibility check.
  const dimension_type cgs_space_dim = cgs.space_dimension();
  if (space_dim < cgs_space_dim)
    throw_dimension_incompatible("add_recycled_congruences(cgs)", "cgs", cgs);

  if (cgs.has_no_rows())
    return;

  if (marked_empty())
    return;

  if (space_dim == 0) {
    // In a 0-dimensional space the congruences are trivial (e.g., 0
    // == 0 or 1 %= 0) or false (e.g., 1 == 0).  In a system of
    // congruences `begin()' and `end()' are equal if and only if the
    // system contains only trivial congruences.
    if (cgs.begin() != cgs.end())
      // There is a congruence, it must be false, the grid becomes empty.
      set_empty();
    return;
  }

  // The congruences are required.
  if (!congruences_are_up_to_date())
    update_congruences();

  // Swap (instead of copying) the coefficients of `cgs' (which is
  // writable).
  con_sys.recycling_insert(cgs);

  // Congruences may not be minimized and generators are out of date.
  clear_congruences_minimized();
  clear_generators_up_to_date();
  // Note: the congruence system may have become unsatisfiable, thus
  // we do not check for satisfiability.
  PPL_ASSERT(OK());
}

void
PPL::Grid::add_recycled_grid_generators(Grid_Generator_System& gs) {
  // Dimension-compatibility check.
  const dimension_type gs_space_dim = gs.space_dimension();
  if (space_dim < gs_space_dim)
    throw_dimension_incompatible("add_recycled_grid_generators(gs)", "gs", gs);

  // Adding no generators leaves the grid the same.
  if (gs.has_no_rows())
    return;

  // Adding valid generators to a zero-dimensional grid transforms it
  // to the zero-dimensional universe grid.
  if (space_dim == 0) {
    if (marked_empty())
      set_zero_dim_univ();
    else {
      PPL_ASSERT(gs.has_points());
    }
    PPL_ASSERT(OK(true));
    return;
  }

  if (!marked_empty()) {
    // The grid contains at least one point.

    if (!generators_are_up_to_date())
      update_generators();
    normalize_divisors(gs, gen_sys);

    gen_sys.recycling_insert(gs);

    // Congruences are out of date and generators are not minimized.
    clear_congruences_up_to_date();
    clear_generators_minimized();

    PPL_ASSERT(OK(true));
    return;
  }

  // The grid is empty.

  // `gs' must contain at least one point.
  if (!gs.has_points())
    throw_invalid_generators("add_recycled_grid_generators(gs)", "gs");

  // Adjust `gs' to the right dimension.
  gs.insert(parameter(0*Variable(space_dim-1)));

  std::swap(gen_sys, gs);

  normalize_divisors(gen_sys);

  // The grid is no longer empty and generators are up-to-date.
  set_generators_up_to_date();
  clear_empty();

  PPL_ASSERT(OK());
}

void
PPL::Grid::add_grid_generators(const Grid_Generator_System& gs) {
  // TODO: this is just an executable specification.
  Grid_Generator_System gs_copy = gs;
  add_recycled_grid_generators(gs_copy);
}

void
PPL::Grid::refine_with_constraint(const Constraint& c) {
  // The dimension of `c' must be at most `space_dim'.
  if (space_dim < c.space_dimension())
    throw_dimension_incompatible("refine_with_constraint(c)", "c", c);
  if (marked_empty())
    return;
  refine_no_check(c);
}

void
PPL::Grid::refine_with_constraints(const Constraint_System& cs) {
  // The dimension of `cs' must be at most `space_dim'.
  if (space_dim < cs.space_dimension())
    throw_dimension_incompatible("refine_with_constraints(cs)", "cs", cs);

  for (Constraint_System::const_iterator i = cs.begin(),
	 cs_end = cs.end(); !marked_empty() && i != cs_end; ++i)
    refine_no_check(*i);
}

void
PPL::Grid::unconstrain(const Variable var) {
  // Dimension-compatibility check.
  if (space_dim < var.space_dimension())
    throw_dimension_incompatible("unconstrain(var)", var.space_dimension());

  // Do something only if the grid is non-empty.
  if (marked_empty()
      || (!generators_are_up_to_date() && !update_generators()))
    // Empty: do nothing.
    return;

  PPL_ASSERT(generators_are_up_to_date());
  Grid_Generator l = grid_line(var);
  gen_sys.recycling_insert(l);
  // With the added generator, congruences are out of date.
  clear_congruences_up_to_date();
  clear_generators_minimized();
  PPL_ASSERT(OK());
}

void
PPL::Grid::unconstrain(const Variables_Set& vars) {
  // The cylindrification wrt no dimensions is a no-op.
  // This case also captures the only legal cylindrification
  // of a grid in a 0-dim space.
  if (vars.empty())
    return;

  // Dimension-compatibility check.
  const dimension_type min_space_dim = vars.space_dimension();
  if (space_dim < min_space_dim)
    throw_dimension_incompatible("unconstrain(vs)", min_space_dim);

  // Do something only if the grid is non-empty.
  if (marked_empty()
      || (!generators_are_up_to_date() && !update_generators()))
    // Empty: do nothing.
    return;

  PPL_ASSERT(generators_are_up_to_date());
  // Since `gen_sys' is not empty, the space dimension of the inserted
  // generators are automatically adjusted.
  for (Variables_Set::const_iterator vsi = vars.begin(),
         vsi_end = vars.end(); vsi != vsi_end; ++vsi) {
    Grid_Generator l = grid_line(Variable(*vsi));
    gen_sys.recycling_insert(l);
  }
  // Constraints are no longer up-to-date.
  clear_generators_minimized();
  clear_congruences_up_to_date();
  PPL_ASSERT(OK());
}

void
PPL::Grid::intersection_assign(const Grid& y) {
  Grid& x = *this;
  // Dimension-compatibility check.
  if (x.space_dim != y.space_dim)
    throw_dimension_incompatible("intersection_assign(y)", "y", y);

  // If one of the two grids is empty, the intersection is empty.
  if (x.marked_empty())
    return;
  if (y.marked_empty()) {
    x.set_empty();
    return;
  }

  // If both grids are zero-dimensional, then at this point they are
  // necessarily universe, so the intersection is also universe.
  if (x.space_dim == 0)
    return;

  // The congruences must be up-to-date.
  if (!x.congruences_are_up_to_date())
    x.update_congruences();
  if (!y.congruences_are_up_to_date())
    y.update_congruences();

  if (!y.con_sys.has_no_rows()) {
    x.con_sys.insert(y.con_sys);
    // Grid_Generators may be out of date and congruences may have changed
    // from minimal form.
    x.clear_generators_up_to_date();
    x.clear_congruences_minimized();
  }

  PPL_ASSERT(x.OK() && y.OK());
}

void
PPL::Grid::upper_bound_assign(const Grid& y) {
  Grid& x = *this;
  // Dimension-compatibility check.
  if (x.space_dim != y.space_dim)
    throw_dimension_incompatible("upper_bound_assign(y)", "y", y);

  // The join of a grid `gr' with an empty grid is `gr'.
  if (y.marked_empty())
    return;
  if (x.marked_empty()) {
    x = y;
    return;
  }

  // If both grids are zero-dimensional, then they are necessarily
  // universe grids, and so is their join.
  if (x.space_dim == 0)
    return;

  // The generators must be up-to-date.
  if (!x.generators_are_up_to_date() && !x.update_generators()) {
    // Discovered `x' empty when updating generators.
    x = y;
    return;
  }
  if (!y.generators_are_up_to_date() && !y.update_generators())
    // Discovered `y' empty when updating generators.
    return;

  // Match the divisors of the x and y generator systems.
  Grid_Generator_System gs(y.gen_sys);
  normalize_divisors(x.gen_sys, gs);
  x.gen_sys.recycling_insert(gs);
  // Congruences may be out of date and generators may have lost
  // minimal form.
  x.clear_congruences_up_to_date();
  x.clear_generators_minimized();

  // At this point both `x' and `y' are not empty.
  PPL_ASSERT(x.OK(true) && y.OK(true));
}

bool
PPL::Grid::upper_bound_assign_if_exact(const Grid& y) {
  Grid& x = *this;

  // Dimension-compatibility check.
  if (x.space_dim != y.space_dim)
    throw_dimension_incompatible("upper_bound_assign_if_exact(y)", "y", y);

  if (x.marked_empty()
      || y.marked_empty()
      || x.space_dim == 0
      || x.is_included_in(y)
      || y.is_included_in(x)) {
    upper_bound_assign(y);
    return true;
  }

  // The above test 'x.is_included_in(y)' will ensure the generators of x
  // are up to date.
  PPL_ASSERT(generators_are_up_to_date());

  Grid x_copy = x;
  x_copy.upper_bound_assign(y);
  x_copy.difference_assign(y);
  if (x_copy.is_included_in(x)) {
    upper_bound_assign(y);
    return true;
  }

  return false;
}

void
PPL::Grid::difference_assign(const Grid& y) {
  Grid& x = *this;
  // Dimension-compatibility check.
  if (x.space_dim != y.space_dim)
    throw_dimension_incompatible("difference_assign(y)", "y", y);

  if (y.marked_empty() || x.marked_empty())
    return;

  // If both grids are zero-dimensional, then they are necessarily
  // universe grids, so the result is empty.
  if (x.space_dim == 0) {
    x.set_empty();
    return;
  }

  if (y.contains(x)) {
    x.set_empty();
    return;
  }

  Grid new_grid(x.space_dim, EMPTY);

  const Congruence_System& y_cgs = y.congruences();
  for (Congruence_System::const_iterator i = y_cgs.begin(),
	 y_cgs_end = y_cgs.end(); i != y_cgs_end; ++i) {
    const Congruence& cg = *i;

    // The 2-complement cg2 of cg = ((e %= 0) / m) is the congruence
    // defining the sets of points exactly half-way between successive
    // hyperplanes e = km and e = (k+1)m, for any integer k; that is,
    // the hyperplanes defined by 2e = (2k + 1)m, for any integer k.
    // Thus `cg2' is the congruence ((2e %= m) / 2m).

    // As the grid difference must be a grid, only add the
    // 2-complement congruence to x if the resulting grid includes all
    // the points in x that did not satisfy `cg'.

    // The 2-complement of cg can be included in the result only if x
    // holds points other than those in cg.
    if (x.relation_with(cg).implies(Poly_Con_Relation::is_included()))
      continue;

    if (cg.is_proper_congruence()) {
      const Linear_Expression e = Linear_Expression(cg);
      // Congruence cg is ((e %= 0) / m).
      const Coefficient& m = cg.modulus();
      // If x is included in the grid defined by the congruences cg
      // and its 2-complement (i.e. the grid defined by the congruence
      // (2e %= 0) / m) then add the 2-complement to the potential
      // result.
      if (x.relation_with((2*e %= 0) / m)
	  .implies(Poly_Con_Relation::is_included())) {
	Grid z = x;
	z.add_congruence_no_check((2*e %= m) / (2*m));
	new_grid.upper_bound_assign(z);
	continue;
      }
    }
    return;
  }

  *this = new_grid;

  PPL_ASSERT(OK());
}

namespace {

struct Ruled_Out_Pair {
  PPL::dimension_type congruence_index;
  PPL::dimension_type num_ruled_out;
};

struct Ruled_Out_Less_Than {
  bool operator()(const Ruled_Out_Pair& x,
                  const Ruled_Out_Pair& y) const {
    return x.num_ruled_out > y.num_ruled_out;
  }
};

} // namespace

bool
PPL::Grid::simplify_using_context_assign(const Grid& y) {
  Grid& x = *this;
  // Dimension-compatibility check.
  if (x.space_dim != y.space_dim)
    throw_dimension_incompatible("simplify_using_context_assign(y)", "y", y);

  // Filter away the zero-dimensional case.
  if (x.space_dim == 0) {
    if (y.is_empty()) {
      set_zero_dim_univ();
      PPL_ASSERT(OK());
      return false;
    }
    else
      return !x.is_empty();
  }

  // If `y' is empty, the biggest enlargement for `x' is the universe.
  if (!y.minimize()) {
    Grid gr(x.space_dim, UNIVERSE);
    swap(gr);
    return false;
  }

  // If `x' is empty, the intersection is empty.
  if (!x.minimize()) {
    // Search for a congruence of `y' that is not a tautology.
    PPL_ASSERT(y.congruences_are_up_to_date());
    Grid gr(x.space_dim, UNIVERSE);
    for (dimension_type i = y.con_sys.num_rows(); i-- > 0; ) {
      const Congruence& y_con_sys_i = y.con_sys[i];
      if (!y_con_sys_i.is_tautological()) {
        // Found: we obtain a congruence `c' contradicting the one we
        // found, and assign to `x' the grid `gr' with `c' as
        // the only congruence.
        const Linear_Expression le(y_con_sys_i);
        if (y_con_sys_i.is_equality()) {
          gr.refine_no_check(le == 1);
          break;
	}
        else {
	  const Coefficient& y_modulus_i = y_con_sys_i.modulus();
	  if (y_modulus_i > 1)
	    gr.refine_no_check(le == 1);
	  else {
	    Linear_Expression le2;
	    for (dimension_type j = le.space_dimension(); j-- > 0; )
	      le2 += 2 * le.coefficient(Variable(j)) * Variable(j);
	    le2 += 2 * le.inhomogeneous_term();
	    gr.refine_no_check(le2 == y_modulus_i);
	  }
	  break;
        }
      }
    }
    swap(gr);
    PPL_ASSERT(OK());
    return false;
  }

  PPL_ASSERT(x.congruences_are_minimized()
         && y.generators_are_minimized());

  const Congruence_System& x_cs = x.con_sys;
  const dimension_type x_cs_num_rows = x_cs.num_rows();
  const Grid_Generator_System& y_gs = y.gen_sys;

  // Record into `redundant_by_y' the info about which congruences of
  // `x' are redundant in the context `y'.  Count the number of
  // redundancies found.
  std::vector<bool> redundant_by_y(x_cs_num_rows, false);
  dimension_type num_redundant_by_y = 0;
  for (dimension_type i = 0; i < x_cs_num_rows; ++i)
    if (y.relation_with(x_cs[i])
	.implies(Poly_Con_Relation::is_included())) {
      redundant_by_y[i] = true;
      ++num_redundant_by_y;
    }

  if (num_redundant_by_y < x_cs_num_rows) {

    // Some congruences were not identified as redundant.

    Congruence_System result_cs;
    const Congruence_System& y_cs = y.con_sys;
    const dimension_type y_cs_num_rows = y_cs.num_rows();
    // Compute into `z' the intersection of `x' and `y'.
    const bool x_first = (x_cs_num_rows > y_cs_num_rows);
    Grid z(x_first ? x : y);
    if (x_first)
      z.add_congruences(y_cs);
    else {
      // Only copy (and then recycle) the non-redundant congruences.
      Congruence_System tmp_cs;
      for (dimension_type i = 0; i < x_cs_num_rows; ++i) {
        if (!redundant_by_y[i])
          tmp_cs.insert(x_cs[i]);
      }
      z.add_recycled_congruences(tmp_cs);
    }

    // Congruences are added to `w' until it equals `z'.
    // We do not care about minimization or maximization, since
    // we are only interested in satisfiability.
    Grid w;
    w.add_space_dimensions_and_embed(x.space_dim);
    // First add the congruences for `y'.
    w.add_congruences(y_cs);

    // We apply the following heuristics here: congruences of `x' that
    // are not made redundant by `y' are added to `w' depending on
    // the number of generators of `y' they rule out (the more generators)
    // (they rule out, the sooner they are added).  Of course, as soon
    // as `w' becomes empty, we stop adding.
    std::vector<Ruled_Out_Pair>
      ruled_out_vec(x_cs_num_rows - num_redundant_by_y);

    PPL_DIRTY_TEMP_COEFFICIENT(sp);
    PPL_DIRTY_TEMP_COEFFICIENT(div);

    for (dimension_type i = 0, j = 0; i < x_cs_num_rows; ++i) {
      if (!redundant_by_y[i]) {
	const Congruence& c = x_cs[i];
	const Coefficient& modulus = c.modulus();
	div = modulus;

	dimension_type num_ruled_out_generators = 0;
	for (Grid_Generator_System::const_iterator k = y_gs.begin(),
	       y_gs_end = y_gs.end(); k != y_gs_end; ++k) {
	  const Grid_Generator& g = *k;
	  // If the generator is not to be ruled out,
	  // it must saturate the congruence.
	  Scalar_Products::assign(sp, c, g);
	  // If `c' is a proper congruence the scalar product must be
	  // reduced modulo a (possibly scaled) modulus.
	  if (c.is_proper_congruence()) {
	    // If `g' is a parameter the congruence modulus must be scaled
	    // up by the divisor of the generator.
	    if (g.is_parameter())
	      sp %= (div * g.divisor());
	    else
	      if (g.is_point())
		sp %= div;
	  }
	  if (sp == 0)
	    continue;
	  ++num_ruled_out_generators;
	}
	ruled_out_vec[j].congruence_index = i;
	ruled_out_vec[j].num_ruled_out = num_ruled_out_generators;
	++j;
      }
    }
    std::sort(ruled_out_vec.begin(), ruled_out_vec.end(),
	      Ruled_Out_Less_Than());

    bool empty_intersection = (!z.minimize());

    // Add the congruences in the "ruled out" order to `w'
    // until the result is the intersection.
    for (std::vector<Ruled_Out_Pair>::const_iterator
	   j = ruled_out_vec.begin(), rov_end = ruled_out_vec.end();
	 j != rov_end;
	 ++j) {
      const Congruence& c = x_cs[j->congruence_index];
      result_cs.insert(c);
      w.add_congruence(c);
      if ((empty_intersection && w.is_empty())
	  || (!empty_intersection && w.is_included_in(z))) {
	Grid result_gr(x.space_dim, UNIVERSE);
	result_gr.add_congruences(result_cs);
	x.swap(result_gr);
	PPL_ASSERT(x.OK());
	return !empty_intersection;
      }
    }
      // Cannot exit from here.
    PPL_ASSERT(false);
  }

  // All the congruences are redundant so that the simplified grid
  // is the universe.
  Grid result_gr(x.space_dim, UNIVERSE);
  x.swap(result_gr);
  PPL_ASSERT(x.OK());
  return true;
}

void
PPL::Grid::affine_image(const Variable var,
			const Linear_Expression& expr,
			Coefficient_traits::const_reference denominator) {
  // The denominator cannot be zero.
  if (denominator == 0)
    throw_invalid_argument("affine_image(v, e, d)", "d == 0");

  // Dimension-compatibility checks.
  // The dimension of `expr' must be at most the dimension of `*this'.
  const dimension_type expr_space_dim = expr.space_dimension();
  if (space_dim < expr_space_dim)
    throw_dimension_incompatible("affine_image(v, e, d)", "e", expr);
  // `var' must be one of the dimensions of the grid.
  const dimension_type var_space_dim = var.space_dimension();
  if (space_dim < var_space_dim)
    throw_dimension_incompatible("affine_image(v, e, d)", "v", var);

  if (marked_empty())
    return;

  if (var_space_dim <= expr_space_dim && expr[var_space_dim] != 0) {
    // The transformation is invertible.
    if (generators_are_up_to_date()) {
      // Grid_Generator_System::affine_image() requires the third argument
      // to be a positive Coefficient.
      if (denominator > 0)
	gen_sys.affine_image(var_space_dim, expr, denominator);
      else
	gen_sys.affine_image(var_space_dim, -expr, -denominator);
      clear_generators_minimized();
      // Strong normalization in gs::affine_image may have modified
      // divisors.
      normalize_divisors(gen_sys);
    }
    if (congruences_are_up_to_date()) {
      // To build the inverse transformation,
      // after copying and negating `expr',
      // we exchange the roles of `expr[var_space_dim]' and `denominator'.
      Linear_Expression inverse;
      if (expr[var_space_dim] > 0) {
	inverse = -expr;
	inverse[var_space_dim] = denominator;
	con_sys.affine_preimage(var_space_dim, inverse, expr[var_space_dim]);
      }
      else {
	// The new denominator is negative: we negate everything once
	// more, as Congruence_System::affine_preimage() requires the
	// third argument to be positive.
	inverse = expr;
	inverse[var_space_dim] = denominator;
	neg_assign(inverse[var_space_dim]);
	con_sys.affine_preimage(var_space_dim, inverse, -expr[var_space_dim]);
      }
      clear_congruences_minimized();
    }
  }
  else {
    // The transformation is not invertible.
    // We need an up-to-date system of generators.
    if (!generators_are_up_to_date())
      minimize();
    if (!marked_empty()) {
      // Grid_Generator_System::affine_image() requires the third argument
      // to be a positive Coefficient.
      if (denominator > 0)
	gen_sys.affine_image(var_space_dim, expr, denominator);
      else
	gen_sys.affine_image(var_space_dim, -expr, -denominator);

      clear_congruences_up_to_date();
      clear_generators_minimized();
      // Strong normalization in gs::affine_image may have modified
      // divisors.
      normalize_divisors(gen_sys);
    }
  }
  PPL_ASSERT(OK());
}

void
PPL::Grid::
affine_preimage(const Variable var,
		const Linear_Expression& expr,
		Coefficient_traits::const_reference denominator) {
  // The denominator cannot be zero.
  if (denominator == 0)
    throw_invalid_argument("affine_preimage(v, e, d)", "d == 0");

  // Dimension-compatibility checks.
  // The dimension of `expr' should not be greater than the dimension
  // of `*this'.
  const dimension_type expr_space_dim = expr.space_dimension();
  if (space_dim < expr_space_dim)
    throw_dimension_incompatible("affine_preimage(v, e, d)", "e", expr);
  // `var' should be one of the dimensions of the grid.
  const dimension_type var_space_dim = var.space_dimension();
  if (space_dim < var_space_dim)
    throw_dimension_incompatible("affine_preimage(v, e, d)", "v", var);

  if (marked_empty())
    return;

  if (var_space_dim <= expr_space_dim && expr[var_space_dim] != 0) {
    // The transformation is invertible.
    if (congruences_are_up_to_date()) {
      // Congruence_System::affine_preimage() requires the third argument
      // to be a positive Coefficient.
      if (denominator > 0)
	con_sys.affine_preimage(var_space_dim, expr, denominator);
      else
	con_sys.affine_preimage(var_space_dim, -expr, -denominator);
      clear_congruences_minimized();
    }
    if (generators_are_up_to_date()) {
      // To build the inverse transformation,
      // after copying and negating `expr',
      // we exchange the roles of `expr[var_space_dim]' and `denominator'.
      Linear_Expression inverse;
      if (expr[var_space_dim] > 0) {
	inverse = -expr;
	inverse[var_space_dim] = denominator;
	gen_sys.affine_image(var_space_dim, inverse, expr[var_space_dim]);
      }
      else {
	// The new denominator is negative: we negate everything once
	// more, as Grid_Generator_System::affine_image() requires the
	// third argument to be positive.
	inverse = expr;
	inverse[var_space_dim] = denominator;
	neg_assign(inverse[var_space_dim]);
	gen_sys.affine_image(var_space_dim, inverse, -expr[var_space_dim]);
      }
      clear_generators_minimized();
    }
  }
  else {
    // The transformation is not invertible.
    // We need an up-to-date system of congruences.
    if (!congruences_are_up_to_date())
      minimize();
    // Congruence_System::affine_preimage() requires the third argument
    // to be a positive Coefficient.
    if (denominator > 0)
      con_sys.affine_preimage(var_space_dim, expr, denominator);
    else
      con_sys.affine_preimage(var_space_dim, -expr, -denominator);

    clear_generators_up_to_date();
    clear_congruences_minimized();
  }
  PPL_ASSERT(OK());
}

void
PPL::Grid::
generalized_affine_image(const Variable var,
			 const Relation_Symbol relsym,
			 const Linear_Expression& expr,
			 Coefficient_traits::const_reference denominator,
			 Coefficient_traits::const_reference modulus) {

  // The denominator cannot be zero.
  if (denominator == 0)
    throw_invalid_argument("generalized_affine_image(v, r, e, d, m)",
                           "d == 0");

  // Dimension-compatibility checks.
  // The dimension of `expr' should not be greater than the dimension
  // of `*this'.
  const dimension_type expr_space_dim = expr.space_dimension();
  if (space_dim < expr_space_dim)
    throw_dimension_incompatible("generalized_affine_image(v, r, e, d, m)",
				 "e", expr);
  // `var' should be one of the dimensions of the grid.
  const dimension_type var_space_dim = var.space_dimension();
  if (space_dim < var_space_dim)
    throw_dimension_incompatible("generalized_affine_image(v, r, e, d, m)",
				 "v", var);

  // Any image of an empty grid is empty.
  if (marked_empty())
    return;

  // If relsym is not EQUAL, then we return a safe approximation
  // by adding a line in the direction of var.
  if (relsym != EQUAL) {

    if (modulus != 0)
      throw_invalid_argument("generalized_affine_image(v, r, e, d, m)",
                             "r != EQUAL && m != 0");

    if (!generators_are_up_to_date())
      minimize();

    // Any image of an empty grid is empty.
    if (marked_empty())
      return;

    add_grid_generator(grid_line(var));

    PPL_ASSERT(OK());
    return;
  }

  PPL_ASSERT(relsym == EQUAL);

  affine_image(var, expr, denominator);

  if (modulus == 0)
    return;

  // Modulate dimension `var' according to `modulus'.

  if (!generators_are_up_to_date())
    minimize();

  // Test if minimization, possibly in affine_image, found an empty
  // grid.
  if (marked_empty())
    return;

  if (modulus < 0)
    gen_sys.insert(parameter(-modulus * var));
  else
    gen_sys.insert(parameter(modulus * var));

  normalize_divisors(gen_sys);

  clear_generators_minimized();
  clear_congruences_up_to_date();

  PPL_ASSERT(OK());
}

void
PPL::Grid::
generalized_affine_preimage(const Variable var,
			    const Relation_Symbol relsym,
			    const Linear_Expression& expr,
			    Coefficient_traits::const_reference denominator,
			    Coefficient_traits::const_reference modulus) {
  // The denominator cannot be zero.
  if (denominator == 0)
    throw_invalid_argument("generalized_affine_preimage(v, e, d, m)",
			   "d == 0");

  // The dimension of `expr' should be at most the dimension of
  // `*this'.
  const dimension_type expr_space_dim = expr.space_dimension();
  if (space_dim < expr_space_dim)
    throw_dimension_incompatible("generalized_affine_preimage(v, e, d, m)",
				 "e", expr);
  // `var' should be one of the dimensions of the grid.
  const dimension_type var_space_dim = var.space_dimension();
  if (space_dim < var_space_dim)
    throw_dimension_incompatible("generalized_affine_preimage(v, e, d, m)",
				 "v", var);

  // If relsym is not EQUAL, then we return a safe approximation
  // by adding a line in the direction of var.
  if (relsym != EQUAL) {

    if (modulus != 0)
      throw_invalid_argument("generalized_affine_preimage(v, r, e, d, m)",
                             "r != EQUAL && m != 0");

    if (!generators_are_up_to_date())
      minimize();

    // Any image of an empty grid is empty.
    if (marked_empty())
      return;

    add_grid_generator(grid_line(var));

    PPL_ASSERT(OK());
    return;
  }

  PPL_ASSERT(relsym == EQUAL);
  // Any image of an empty grid is empty.
  if (marked_empty())
    return;

  // Check whether the affine relation is an affine function.
  if (modulus == 0) {
    affine_preimage(var, expr, denominator);
    return;
  }

  // Check whether the preimage of this affine relation can be easily
  // computed as the image of its inverse relation.
  const Coefficient& var_coefficient = expr.coefficient(var);
  if (var_space_dim <= expr_space_dim && var_coefficient != 0) {
    Linear_Expression inverse_expr
      = expr - (denominator + var_coefficient) * var;
    PPL_DIRTY_TEMP_COEFFICIENT(inverse_denominator);
    neg_assign(inverse_denominator, var_coefficient);
    if (modulus < 0)
      generalized_affine_image(var, EQUAL, inverse_expr, inverse_denominator,
			       - modulus);
    else
      generalized_affine_image(var, EQUAL, inverse_expr, inverse_denominator,
			       modulus);
    return;
  }

  // Here `var_coefficient == 0', so that the preimage cannot be
  // easily computed by inverting the affine relation.  Add the
  // congruence induced by the affine relation.
  {
    Congruence cg((denominator*var %= expr) / denominator);
    if (modulus < 0)
      cg /= -modulus;
    else
      cg /= modulus;
    add_congruence_no_check(cg);
  }

  // If the resulting grid is empty, its preimage is empty too.
  // Note: DO check for emptiness here, as we will later add a line.
  if (is_empty())
    return;
  add_grid_generator(grid_line(var));
  PPL_ASSERT(OK());
}

void
PPL::Grid::
generalized_affine_image(const Linear_Expression& lhs,
			 const Relation_Symbol relsym,
			 const Linear_Expression& rhs,
			 Coefficient_traits::const_reference modulus) {
  // Dimension-compatibility checks.
  // The dimension of `lhs' should be at most the dimension of
  // `*this'.
  dimension_type lhs_space_dim = lhs.space_dimension();
  if (space_dim < lhs_space_dim)
    throw_dimension_incompatible("generalized_affine_image(e1, r, e2)",
				 "e1", lhs);
  // The dimension of `rhs' should be at most the dimension of
  // `*this'.
  const dimension_type rhs_space_dim = rhs.space_dimension();
  if (space_dim < rhs_space_dim)
    throw_dimension_incompatible("generalized_affine_image(e1, r, e2)",
				 "e2", rhs);

  // Any image of an empty grid is empty.
  if (marked_empty())
    return;

  // If relsym is not EQUAL, then we return a safe approximation
  // by adding a line in the direction of var.
  if (relsym != EQUAL) {

    if (modulus != 0)
      throw_invalid_argument("generalized_affine_image(e1, r, e2, m)",
                             "r != EQUAL && m != 0");

    if (!generators_are_up_to_date())
      minimize();

    // Any image of an empty grid is empty.
    if (marked_empty())
      return;

    for (dimension_type i = space_dim; i-- > 0; )
      if (lhs.coefficient(Variable(i)) != 0)
	add_grid_generator(grid_line(Variable(i)));

    PPL_ASSERT(OK());
    return;
  }

  PPL_ASSERT(relsym == EQUAL);

  PPL_DIRTY_TEMP_COEFFICIENT(tmp_modulus);
  tmp_modulus = modulus;
  if (tmp_modulus < 0)
    neg_assign(tmp_modulus);

  // Compute the actual space dimension of `lhs',
  // i.e., the highest dimension having a non-zero coefficient in `lhs'.
  do {
    if (lhs_space_dim == 0) {
      // All variables have zero coefficients, so `lhs' is a constant.
      add_congruence_no_check((lhs %= rhs) / tmp_modulus);
      return;
    }
  }
  while (lhs.coefficient(Variable(--lhs_space_dim)) == 0);

  // Gather in `new_lines' the collections of all the lines having the
  // direction of variables occurring in `lhs'.  While at it, check
  // whether there exists a variable occurring in both `lhs' and
  // `rhs'.
  Grid_Generator_System new_lines;
  bool lhs_vars_intersect_rhs_vars = false;
  for (dimension_type i = lhs_space_dim + 1; i-- > 0; )
    if (lhs.coefficient(Variable(i)) != 0) {
      new_lines.insert(grid_line(Variable(i)));
      if (rhs.coefficient(Variable(i)) != 0)
	lhs_vars_intersect_rhs_vars = true;
    }

  if (lhs_vars_intersect_rhs_vars) {
    // Some variables in `lhs' also occur in `rhs'.
    // To ease the computation, add an additional dimension.
    const Variable new_var = Variable(space_dim);
    add_space_dimensions_and_embed(1);

    // Constrain the new dimension to be equal to the right hand side.
    // TODO: Use add_congruence() when it has been updated.
    Congruence_System new_cgs1(new_var == rhs);
    add_recycled_congruences(new_cgs1);
    if (!is_empty()) {
      // The grid still contains points.

      // Existentially quantify all the variables occurring in the left
      // hand side expression.

      // Adjust `new_lines' to the right dimension.
      new_lines.insert(parameter(0*Variable(space_dim-1)));
      // Add the lines to `gen_sys' (first make sure they are up-to-date).
      update_generators();
      gen_sys.recycling_insert(new_lines);
      normalize_divisors(gen_sys);
      // Update the flags.
      clear_congruences_up_to_date();
      clear_generators_minimized();

      // Constrain the new dimension so that it is congruent to the left
      // hand side expression modulo `modulus'.
      // TODO: Use add_congruence() when it has been updated.
      Congruence_System new_cgs2((lhs %= new_var) / tmp_modulus);
      add_recycled_congruences(new_cgs2);
    }

    // Remove the temporarily added dimension.
    remove_higher_space_dimensions(space_dim-1);
  }
  else {
    // `lhs' and `rhs' variables are disjoint:
    // there is no need to add a further dimension.

    // Only add the lines and congruence if there are points.
    if (is_empty())
      return;

    // Existentially quantify all the variables occurring in the left hand
    // side expression.
    add_recycled_grid_generators(new_lines);

    // Constrain the left hand side expression so that it is congruent to
    // the right hand side expression modulo `modulus'.
    add_congruence_no_check((lhs %= rhs) / tmp_modulus);
  }

  PPL_ASSERT(OK());
}

void
PPL::Grid::
generalized_affine_preimage(const Linear_Expression& lhs,
			    const Relation_Symbol relsym,
			    const Linear_Expression& rhs,
			    Coefficient_traits::const_reference modulus) {

  // The dimension of `lhs' must be at most the dimension of `*this'.
  dimension_type lhs_space_dim = lhs.space_dimension();
  if (space_dim < lhs_space_dim)
    throw_dimension_incompatible("generalized_affine_preimage(e1, e2, m)",
				 "lhs", lhs);
  // The dimension of `rhs' must be at most the dimension of `*this'.
  const dimension_type rhs_space_dim = rhs.space_dimension();
  if (space_dim < rhs_space_dim)
    throw_dimension_incompatible("generalized_affine_preimage(e1, e2, m)",
				 "e2", rhs);

  // Any preimage of an empty grid is empty.
  if (marked_empty())
    return;

  // If relsym is not EQUAL, then we return a safe approximation
  // by adding a line in the direction of var.
  if (relsym != EQUAL) {

    if (modulus != 0)
      throw_invalid_argument("generalized_affine_preimage(e1, r, e2, m)",
                             "r != EQUAL && m != 0");

    if (!generators_are_up_to_date())
      minimize();

    // Any image of an empty grid is empty.
    if (marked_empty())
      return;

    for (dimension_type i = lhs_space_dim + 1; i-- > 0; )
      if (lhs.coefficient(Variable(i)) != 0)
	add_grid_generator(grid_line(Variable(i)));

    PPL_ASSERT(OK());
    return;
  }

  PPL_ASSERT(relsym == EQUAL);

  PPL_DIRTY_TEMP_COEFFICIENT(tmp_modulus);
  tmp_modulus = modulus;
  if (tmp_modulus < 0)
    neg_assign(tmp_modulus);

  // Compute the actual space dimension of `lhs',
  // i.e., the highest dimension having a non-zero coefficient in `lhs'.
  do {
    if (lhs_space_dim == 0) {
      // All variables have zero coefficients, so `lhs' is a constant.
      // In this case, preimage and image happen to be the same.
      add_congruence_no_check((lhs %= rhs) / tmp_modulus);
      return;
    }
  }
  while (lhs.coefficient(Variable(--lhs_space_dim)) == 0);

  // Gather in `new_lines' the collections of all the lines having
  // the direction of variables occurring in `lhs'.
  // While at it, check whether or not there exists a variable
  // occurring in both `lhs' and `rhs'.
  Grid_Generator_System new_lines;
  bool lhs_vars_intersect_rhs_vars = false;
  for (dimension_type i = lhs_space_dim + 1; i-- > 0; )
    if (lhs.coefficient(Variable(i)) != 0) {
      new_lines.insert(grid_line(Variable(i)));
      if (rhs.coefficient(Variable(i)) != 0)
	lhs_vars_intersect_rhs_vars = true;
    }

  if (lhs_vars_intersect_rhs_vars) {
    // Some variables in `lhs' also occur in `rhs'.
    // To ease the computation, add an additional dimension.
    const Variable new_var = Variable(space_dim);
    add_space_dimensions_and_embed(1);

    // Constrain the new dimension to be equal to `lhs'
    // TODO: Use add_congruence() when it has been updated.
    Congruence_System new_cgs1(new_var == lhs);
    add_recycled_congruences(new_cgs1);
    if (!is_empty()) {
      // The grid still contains points.

      // Existentially quantify all the variables occurring in the left
      // hand side

      // Adjust `new_lines' to the right dimension.
      new_lines.insert(parameter(0*Variable(space_dim-1)));
      // Add the lines to `gen_sys' (first make sure they are up-to-date).
      update_generators();
      gen_sys.recycling_insert(new_lines);
      normalize_divisors(gen_sys);
      // Update the flags.
      clear_congruences_up_to_date();
      clear_generators_minimized();

      // Constrain the new dimension so that it is related to
      // the right hand side modulo `modulus'.
      // TODO: Use add_congruence() when it has been updated.
      Congruence_System new_cgs2((rhs %= new_var) / tmp_modulus);
      add_recycled_congruences(new_cgs2);
    }

    // Remove the temporarily added dimension.
    remove_higher_space_dimensions(space_dim-1);
  }
  else {
    // `lhs' and `rhs' variables are disjoint:
    // there is no need to add a further dimension.

    // Constrain the left hand side expression so that it is congruent to
    // the right hand side expression modulo `mod'.
    add_congruence_no_check((lhs %= rhs) / tmp_modulus);

    // Any image of an empty grid is empty.
    if (is_empty())
      return;

    // Existentially quantify all the variables occurring in `lhs'.
    add_recycled_grid_generators(new_lines);
  }
  PPL_ASSERT(OK());
}

void
PPL::Grid::
bounded_affine_image(const Variable var,
		     const Linear_Expression& lb_expr,
		     const Linear_Expression& ub_expr,
		     Coefficient_traits::const_reference denominator) {

  // The denominator cannot be zero.
  if (denominator == 0)
    throw_invalid_argument("bounded_affine_image(v, lb, ub, d)", "d == 0");

  // Dimension-compatibility checks.
  // `var' should be one of the dimensions of the grid.
  const dimension_type var_space_dim = var.space_dimension();
  if (space_dim < var_space_dim)
    throw_dimension_incompatible("bounded_affine_image(v, lb, ub, d)",
				 "v", var);
  // The dimension of `lb_expr' and `ub_expr' should not be
  // greater than the dimension of `*this'.
  const dimension_type lb_space_dim = lb_expr.space_dimension();
  if (space_dim < lb_space_dim)
    throw_dimension_incompatible("bounded_affine_image(v, lb, ub)",
				 "lb", lb_expr);
  const dimension_type ub_space_dim = ub_expr.space_dimension();
  if (space_dim < ub_space_dim)
    throw_dimension_incompatible("bounded_affine_image(v, lb, ub)",
				 "ub", ub_expr);

  // Any image of an empty grid is empty.
  if (marked_empty())
    return;

  // In all other cases, generalized_affine_preimage() must
  // just add a line in the direction of var.
  generalized_affine_image(var,
			   LESS_OR_EQUAL,
			   ub_expr,
			   denominator);

  PPL_ASSERT(OK());
}


void
PPL::Grid::
bounded_affine_preimage(const Variable var,
			const Linear_Expression& lb_expr,
			const Linear_Expression& ub_expr,
			Coefficient_traits::const_reference denominator) {

  // The denominator cannot be zero.
  if (denominator == 0)
    throw_invalid_argument("bounded_affine_preimage(v, lb, ub, d)", "d == 0");

  // Dimension-compatibility checks.
  // `var' should be one of the dimensions of the grid.
  const dimension_type var_space_dim = var.space_dimension();
  if (space_dim < var_space_dim)
    throw_dimension_incompatible("bounded_affine_preimage(v, lb, ub, d)",
				 "v", var);
  // The dimension of `lb_expr' and `ub_expr' should not be
  // greater than the dimension of `*this'.
  const dimension_type lb_space_dim = lb_expr.space_dimension();
  if (space_dim < lb_space_dim)
    throw_dimension_incompatible("bounded_affine_preimage(v, lb, ub)",
				 "lb", lb_expr);
  const dimension_type ub_space_dim = ub_expr.space_dimension();
  if (space_dim < ub_space_dim)
    throw_dimension_incompatible("bounded_affine_preimage(v, lb, ub)",
				 "ub", ub_expr);

  // Any preimage of an empty grid is empty.
  if (marked_empty())
    return;

  // In all other cases, generalized_affine_preimage() must
  // just add a line in the direction of var.
  generalized_affine_preimage(var,
			      LESS_OR_EQUAL,
			      ub_expr,
			      denominator);

  PPL_ASSERT(OK());
}

void
PPL::Grid::time_elapse_assign(const Grid& y) {
  Grid& x = *this;
  // Check dimension-compatibility.
  if (x.space_dim != y.space_dim)
    throw_dimension_incompatible("time_elapse_assign(y)", "y", y);

  // Deal with the zero-dimensional case.
  if (x.space_dim == 0) {
    if (y.marked_empty())
      x.set_empty();
    return;
  }

  // If either one of `x' or `y' is empty, the result is empty too.
  if (x.marked_empty())
    return;
  if (y.marked_empty()
      || (!x.generators_are_up_to_date() && !x.update_generators())
      || (!y.generators_are_up_to_date() && !y.update_generators())) {
    x.set_empty();
    return;
  }

  // At this point both generator systems are up-to-date.
  Grid_Generator_System gs = y.gen_sys;
  dimension_type gs_num_rows = gs.num_rows();

  normalize_divisors(gs, gen_sys);

  for (dimension_type i = gs_num_rows; i-- > 0; ) {
    Grid_Generator& g = gs[i];
    if (g.is_point())
      // Transform the point into a parameter.
      g.set_is_parameter();
  }

  if (gs_num_rows == 0)
    // `y' was the grid containing a single point at the origin, so
    // the result is `x'.
    return;

  // Append `gs' to the generators of `x'.

  gen_sys.recycling_insert(gs);

  x.clear_congruences_up_to_date();
  x.clear_generators_minimized();

  PPL_ASSERT(x.OK(true) && y.OK(true));
}

bool
PPL::Grid::frequency(const Linear_Expression& expr,
                     Coefficient& freq_n, Coefficient& freq_d,
                     Coefficient& val_n, Coefficient& val_d) const {
  // The dimension of `expr' must be at most the dimension of *this.
  if (space_dim < expr.space_dimension())
    throw_dimension_incompatible("frequency(e, ...)", "e", expr);

  // Space dimension = 0: if empty, then return false;
  // otherwise the frequency is 1 and the value is 0
  if (space_dim == 0) {
    if (is_empty())
      return false;
    freq_n = 0;
    freq_d = 1;
    val_n = 0;
    val_d = 1;
    return true;
  }
  if (!generators_are_minimized() && !minimize())
    // Minimizing found `this' empty.
    return false;

  return frequency_no_check(expr, freq_n, freq_d, val_n, val_d);
}

/*! \relates Parma_Polyhedra_Library::Grid */
bool
PPL::operator==(const Grid& x, const Grid& y) {
  if (x.space_dim != y.space_dim)
    return false;

  if (x.marked_empty())
    return y.is_empty();
  if (y.marked_empty())
    return x.is_empty();
  if (x.space_dim == 0)
    return true;

  switch (x.quick_equivalence_test(y)) {
  case Grid::TVB_TRUE:
    return true;

  case Grid::TVB_FALSE:
    return false;

  default:
    if (x.is_included_in(y)) {
      if (x.marked_empty())
	return y.is_empty();
      return y.is_included_in(x);
    }
    return false;
  }
}

bool
PPL::Grid::contains(const Grid& y) const {
  const Grid& x = *this;

  // Dimension-compatibility check.
  if (x.space_dim != y.space_dim)
    throw_dimension_incompatible("contains(y)", "y", y);

  if (y.marked_empty())
    return true;
  if (x.marked_empty())
    return y.is_empty();
  if (y.space_dim == 0)
    return true;
  if (x.quick_equivalence_test(y) == Grid::TVB_TRUE)
    return true;
  return y.is_included_in(x);
}

bool
PPL::Grid::is_disjoint_from(const Grid& y) const {
  // Dimension-compatibility check.
  if (space_dim != y.space_dim)
    throw_dimension_incompatible("is_disjoint_from(y)", "y", y);
  Grid z = *this;
  z.intersection_assign(y);
  return z.is_empty();
}

void
PPL::Grid::ascii_dump(std::ostream& s) const {
  using std::endl;

  s << "space_dim "
    << space_dim
    << endl;
  status.ascii_dump(s);
  s << "con_sys ("
    << (congruences_are_up_to_date() ? "" : "not_")
    << "up-to-date)"
    << endl;
  con_sys.ascii_dump(s);
  s << "gen_sys ("
    << (generators_are_up_to_date() ? "" : "not_")
    << "up-to-date)"
    << endl;
  gen_sys.ascii_dump(s);
  s << "dimension_kinds";
  if ((generators_are_up_to_date() && generators_are_minimized())
      || (congruences_are_up_to_date() && congruences_are_minimized()))
    for (Dimension_Kinds::const_iterator i = dim_kinds.begin();
	 i != dim_kinds.end();
	 ++i)
      s << " " << *i;
  s << endl;
}

PPL_OUTPUT_DEFINITIONS(Grid)

bool
PPL::Grid::ascii_load(std::istream& s) {
  std::string str;

  if (!(s >> str) || str != "space_dim")
    return false;

  if (!(s >> space_dim))
    return false;

  if (!status.ascii_load(s))
    return false;

  if (!(s >> str) || str != "con_sys")
    return false;

  if (s >> str) {
    if (str == "(up-to-date)")
      set_congruences_up_to_date();
    else if (str != "(not_up-to-date)")
      return false;
  }
  else
    return false;

  if (!con_sys.ascii_load(s))
    return false;

  if (!(s >> str) || str != "gen_sys")
    return false;

  if (s >> str) {
    if (str == "(up-to-date)")
      set_generators_up_to_date();
    else if (str != "(not_up-to-date)")
      return false;
  }
  else
    return false;

  if (!gen_sys.ascii_load(s))
    return false;

  if (!(s >> str) || str != "dimension_kinds")
    return false;

  if (!marked_empty()
      && ((generators_are_up_to_date() && generators_are_minimized())
	  || (congruences_are_up_to_date() && congruences_are_minimized()))) {
    dim_kinds.resize(space_dim + 1);
    for (Dimension_Kinds::size_type dim = 0; dim <= space_dim; ++dim) {
      short unsigned int dim_kind;
      if (!(s >> dim_kind))
	return false;
      switch(dim_kind) {
      case 0: dim_kinds[dim] = PARAMETER; break;
      case 1: dim_kinds[dim] = LINE; break;
      case 2: dim_kinds[dim] = GEN_VIRTUAL; break;
      default: return false;
      }
    }
  }

  // Check invariants.
  PPL_ASSERT(OK());
  return true;
}

PPL::memory_size_type
PPL::Grid::external_memory_in_bytes() const {
  return
    con_sys.external_memory_in_bytes()
    + gen_sys.external_memory_in_bytes();
}

void
PPL::Grid::wrap_assign(const Variables_Set& vars,
                       Bounded_Integer_Type_Width w,
                       Bounded_Integer_Type_Representation r,
                       Bounded_Integer_Type_Overflow o,
                       const Constraint_System* pcs,
                       unsigned /* complexity_threshold */,
                       bool /* wrap_individually */) {

  // Dimension-compatibility check of `*pcs', if any.
  if (pcs != 0) {
   const dimension_type pcs_space_dim  = pcs->space_dimension();
   if (pcs->space_dimension() > space_dim)
     throw_dimension_incompatible("wrap_assign(vs, ...)", pcs_space_dim);
  }

  // Wrapping no variable is a no-op.
  if (vars.empty())
    return;

  // Dimension-compatibility check of `vars'.
  const dimension_type min_space_dim = vars.space_dimension();
  if (space_dim < min_space_dim)
    throw_dimension_incompatible("wrap_assign(vs, ...)", min_space_dim);

  // Wrapping an empty grid is a no-op.
  if (marked_empty())
    return;
  if (!generators_are_minimized() && !minimize())
    // Minimizing found `this' empty.
    return;

  // Set the wrap frequency for variables of width `w'.
  // This is independent of the signedness `s'.
  PPL_DIRTY_TEMP_COEFFICIENT(wrap_frequency);
  mul_2exp_assign(wrap_frequency, Coefficient_one(), w);
  // Set `min_value' and `max_value' to the minimum and maximum values
  // a variable of width `w' and signedness `s' can take.
  PPL_DIRTY_TEMP_COEFFICIENT(min_value);
  PPL_DIRTY_TEMP_COEFFICIENT(max_value);
  if (r == UNSIGNED) {
    min_value = 0;
    mul_2exp_assign(max_value, Coefficient_one(), w);
    --max_value;
  }
  else {
    PPL_ASSERT(r == SIGNED_2_COMPLEMENT);
    mul_2exp_assign(max_value, Coefficient_one(), w-1);
    neg_assign(min_value, max_value);
    --max_value;
  }

  // Generators are up-to-date and minimized.
  const Grid gr = *this;

  // Overflow is impossible or wraps.
  if (o == OVERFLOW_IMPOSSIBLE || o == OVERFLOW_WRAPS) {
    PPL_DIRTY_TEMP_COEFFICIENT(f_n);
    PPL_DIRTY_TEMP_COEFFICIENT(f_d);
    PPL_DIRTY_TEMP_COEFFICIENT(v_n);
    PPL_DIRTY_TEMP_COEFFICIENT(v_d);
    for (Variables_Set::const_iterator i = vars.begin(),
           vars_end = vars.end(); i != vars.end(); ++i) {
      const Variable x = Variable(*i);
      // Find the frequency and a value for `x' in `gr'.
      if (!gr.frequency_no_check(x, f_n, f_d, v_n, v_d))
        continue;
      if (f_n == 0) {

        // `x' is a constant in `gr'.
        if (v_d != 1) {
          // The value for `x' is not integral (`frequency_no_check()'
          // ensures that `v_n' and `v_d' have no common divisors).
          set_empty();
          return;
        }

        // `x' is a constant and has an integral value.
        if ((v_n > max_value) || (v_n < min_value)) {
          // The value is outside the range of the bounded integer type.
          if (o == OVERFLOW_IMPOSSIBLE) {
            // Then `x' has no possible value and hence set empty.
            set_empty();
            return;
          }
          PPL_ASSERT(o == OVERFLOW_WRAPS);
          // The value v_n for `x' is wrapped modulo the 'wrap_frequency'.
          v_n %= wrap_frequency;
          // `v_n' is the value closest to 0 and may be negative.
          if (r == UNSIGNED && v_n < 0)
            v_n += wrap_frequency;
          unconstrain(x);
          add_constraint(x == v_n);
        }
        continue;
      }

      // `x' is not a constant in `gr'.
      PPL_ASSERT(f_n != 0);

      if (f_d % v_d != 0) {
        // Then `x' has no integral value and hence `gr' is set empty.
        set_empty();
        return;
      }
      if (f_d != 1) {
        // `x' has non-integral values, so add the integrality
        // congruence for `x'.
        add_congruence((x %= 0) / 1);
      }
      if (o == OVERFLOW_WRAPS && f_n != wrap_frequency)
        // We know that `x' is not a constant, so, if overflow wraps,
        // `x' may wrap to a value modulo the `wrap_frequency'.
        add_grid_generator(parameter(wrap_frequency * x));
      else if ((o == OVERFLOW_IMPOSSIBLE && 2*f_n >= wrap_frequency)
               || (f_n == wrap_frequency)) {
        // In these cases, `x' can only take a unique (ie constant)
        // value.
        if (r == UNSIGNED && v_n < 0) {
          // `v_n' is the value closest to 0 and may be negative.
          v_n += f_n;
        }
        unconstrain(x);
        add_constraint(x == v_n);
      }
      else {
        // If overflow is impossible but the grid frequency is less than
        // half the wrap frequency, then there is more than one possible
        // value for `x' in the range of the bounded integer type,
        // so the grid is unchanged.
        PPL_ASSERT(o == OVERFLOW_IMPOSSIBLE && 2*f_n < wrap_frequency);
      }
    }
    return;
  }

  PPL_ASSERT(o == OVERFLOW_UNDEFINED);
  // If overflow is undefined, then all we know is that the variable
  // may take any integer within the range of the bounded integer type.
  const Grid_Generator& point = gr.gen_sys[0];
  const Coefficient& div = point.divisor();
  max_value *= div;
  min_value *= div;
  for (Variables_Set::const_iterator i = vars.begin(),
         vars_end = vars.end(); i != vars.end(); ++i) {
    const Variable x = Variable(*i);
    if (!gr.bounds_no_check(x)) {
      // `x' is not a constant in `gr'.
      // We know that `x' is not a constant, so `x' may wrap to any
      // value `x + z' where z is an integer.
      if (point.coefficient(x) % div != 0) {
        // We know that `x' can take non-integral values, so enforce
        // integrality.
        unconstrain(x);
        add_congruence(x %= 0);
      }
      else
        // `x' has at least one integral value.
        // `x' may also take other non-integral values,
        // but checking could be costly so we ignore this.
        add_grid_generator(parameter(x));
    }
    else {
      // `x' is a constant `v' in `gr'.
      const Coefficient& coeff_x = point.coefficient(x);
      // `x' should be integral.
      if (coeff_x % div != 0) {
        set_empty();
        return;
      }
      // If the value `v' for `x' is not within the range for the
      // bounded integer type, then `x' may wrap to any value `v + z'
      // where `z' is an integer; otherwise `x' is unchanged.
      if (coeff_x > max_value || coeff_x < min_value) {
        add_grid_generator(parameter(x));
      }
    }
  }
}

void
PPL::Grid::drop_some_non_integer_points(Complexity_Class) {
  if (marked_empty() || space_dim == 0)
    return;

  // By adding integral congruences for each dimension to the
  // congruence system, defining \p *this, the grid will keep only
  // those points that have integral coordinates. All points in \p
  // *this with non-integral coordinates are removed.
  for (dimension_type i = space_dim; i-- > 0; )
    add_congruence(Variable(i) %= 0);

  PPL_ASSERT(OK());
}

void
PPL::Grid::drop_some_non_integer_points(const Variables_Set& vars,
                                        Complexity_Class) {
  // Dimension-compatibility check.
  const dimension_type min_space_dim = vars.space_dimension();
  if (space_dimension() < min_space_dim)
    throw_dimension_incompatible("drop_some_non_integer_points(vs, cmpl)",
                                 min_space_dim);

  if (marked_empty() || min_space_dim == 0)
    return;

  // By adding the integral congruences for each dimension in vars to
  // the congruence system defining \p *this, the grid will keep only
  // those points that have integer coordinates for all the dimensions
  // in vars. All points in \p *this with non-integral coordinates for
  // the dimensions in vars are removed.
  for (Variables_Set::const_iterator i = vars.begin(),
         vars_end = vars.end(); i != vars.end(); ++i)
    add_congruence(Variable(*i) %= 0);

  PPL_ASSERT(OK());
}

/*! \relates Parma_Polyhedra_Library::Grid */
std::ostream&
PPL::IO_Operators::operator<<(std::ostream& s, const Grid& gr) {
  if (gr.is_empty())
    s << "false";
  else if (gr.is_universe())
    s << "true";
  else
    s << gr.minimized_congruences();
  return s;
}