1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
|
/* Grid class implementation
(non-inline private or protected functions).
Copyright (C) 2001-2010 Roberto Bagnara <bagnara@cs.unipr.it>
Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com)
This file is part of the Parma Polyhedra Library (PPL).
The PPL is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The PPL is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA.
For the most up-to-date information see the Parma Polyhedra Library
site: http://www.cs.unipr.it/ppl/ . */
#include <ppl-config.h>
#include "Grid.defs.hh"
#include "Grid_Generator.defs.hh"
#include "Scalar_Products.defs.hh"
#include "assert.hh"
#include <string>
#include <iostream>
#include <sstream>
#include <stdexcept>
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
/*! \ingroup PPL_defines
\brief
Controls the laziness level of the implementation.
Temporarily used in a few of the function implementations to
switch to an even more lazy algorithm. To be removed as soon as
we collect enough information to decide which is the better
implementation alternative.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
#define BE_LAZY 1
namespace PPL = Parma_Polyhedra_Library;
void
PPL::Grid::construct(dimension_type num_dimensions,
const Degenerate_Element kind) {
space_dim = num_dimensions;
if (kind == EMPTY) {
// Set emptiness directly instead of with set_empty, as gen_sys is
// already correctly initialized.
status.set_empty();
// Extend the zero dim false congruence system to the appropriate
// dimension and then store it in `con_sys'.
Congruence_System cgs(Congruence::zero_dim_false());
cgs.increase_space_dimension(space_dim);
const_cast<Congruence_System&>(con_sys).swap(cgs);
PPL_ASSERT(OK());
return;
}
if (num_dimensions > 0) {
con_sys.increase_space_dimension(num_dimensions);
// Initialize both systems to universe representations.
set_congruences_minimized();
set_generators_minimized();
dim_kinds.resize(num_dimensions + 1);
// Extend the zero dim integrality congruence system to the
// appropriate dimension and then store it in `con_sys'.
Congruence_System cgs(Congruence::zero_dim_integrality());
cgs.increase_space_dimension(space_dim);
cgs[0][0] = 1; // Recover minimal form after cgs(zdi) normalization.
con_sys.swap(cgs);
dim_kinds[0] = PROPER_CONGRUENCE /* a.k.a. PARAMETER */;
// Trivially true point.
gen_sys.insert(grid_point(0*(Variable(0))));
// A line for each dimension.
dimension_type dim = 0;
while (dim < num_dimensions) {
gen_sys.insert(grid_line(Variable(dim)));
dim_kinds[++dim] = CON_VIRTUAL /* a.k.a. LINE */;
}
}
else
set_zero_dim_univ();
}
void
PPL::Grid::construct(Congruence_System& cgs) {
// Protecting against space dimension overflow is up to the caller.
PPL_ASSERT(cgs.space_dimension() <= max_space_dimension());
// Preparing con_sys and gen_sys is up to the caller.
PPL_ASSERT(cgs.space_dimension() == con_sys.space_dimension());
PPL_ASSERT(cgs.space_dimension() == gen_sys.space_dimension());
PPL_ASSERT(con_sys.has_no_rows());
PPL_ASSERT(gen_sys.has_no_rows());
// Set the space dimension.
space_dim = cgs.space_dimension();
if (space_dim > 0) {
// Stealing the rows from `cgs'.
std::swap(con_sys, cgs);
con_sys.normalize_moduli();
set_congruences_up_to_date();
}
else {
// Here `space_dim == 0'.
if (cgs.num_columns() > 1)
// See if an inconsistent congruence has been passed.
for (dimension_type i = cgs.num_rows(); i-- > 0; )
if (cgs[i].is_inconsistent()) {
// Inconsistent congruence found: the grid is empty.
status.set_empty();
// Insert the zero dim false congruence system into `con_sys'.
// `gen_sys' is already in empty form.
con_sys.insert(Congruence::zero_dim_false());
PPL_ASSERT(OK());
return;
}
set_zero_dim_univ();
}
PPL_ASSERT(OK());
}
void
PPL::Grid::construct(Grid_Generator_System& ggs) {
// Protecting against space dimension overflow is up to the caller.
PPL_ASSERT(ggs.space_dimension() <= max_space_dimension());
// Preparing con_sys and gen_sys is up to the caller.
PPL_ASSERT(ggs.space_dimension() == con_sys.space_dimension());
PPL_ASSERT(ggs.space_dimension() == gen_sys.space_dimension());
PPL_ASSERT(con_sys.has_no_rows());
PPL_ASSERT(gen_sys.has_no_rows());
// Set the space dimension.
space_dim = ggs.space_dimension();
// An empty set of generators defines the empty grid.
if (ggs.has_no_rows()) {
status.set_empty();
// Insert the zero dim false congruence system into `con_sys'.
// `gen_sys' is already in empty form.
con_sys.insert(Congruence::zero_dim_false());
return;
}
// Non-empty valid generator systems have a supporting point, at least.
if (!ggs.has_points())
throw_invalid_generators("Grid(ggs)", "ggs");
if (space_dim == 0)
set_zero_dim_univ();
else {
// Steal the rows from `ggs'.
std::swap(gen_sys, ggs);
normalize_divisors(gen_sys);
// Generators are now up-to-date.
set_generators_up_to_date();
}
PPL_ASSERT(OK());
}
PPL::Grid::Three_Valued_Boolean
PPL::Grid::quick_equivalence_test(const Grid& y) const {
// Private method: the caller must ensure the following.
PPL_ASSERT(space_dim == y.space_dim);
PPL_ASSERT(!marked_empty() && !y.marked_empty() && space_dim > 0);
const Grid& x = *this;
bool css_normalized = false;
if (x.congruences_are_minimized() && y.congruences_are_minimized()) {
// Equivalent minimized congruence systems have:
// - the same number of congruences; ...
if (x.con_sys.num_rows() != y.con_sys.num_rows())
return Grid::TVB_FALSE;
// - the same number of equalities; ...
dimension_type x_num_equalities = x.con_sys.num_equalities();
if (x_num_equalities != y.con_sys.num_equalities())
return Grid::TVB_FALSE;
// - and if there are no equalities, the same congruences.
// Delay this test: try cheaper tests on generators first.
css_normalized = (x_num_equalities == 0);
}
if (x.generators_are_minimized() && y.generators_are_minimized()) {
// Equivalent minimized generator systems have:
// - the same number of generators; ...
if (x.gen_sys.num_rows() != y.gen_sys.num_rows())
return Grid::TVB_FALSE;
// - the same number of lines; ...
const dimension_type x_num_lines = x.gen_sys.num_lines();
if (x_num_lines != y.gen_sys.num_lines())
return Grid::TVB_FALSE;
// - and if there are no lines, the same generators.
if (x_num_lines == 0) {
// Check for syntactic identity.
if (x.gen_sys == y.gen_sys)
return Grid::TVB_TRUE;
else
return Grid::TVB_FALSE;
}
}
// TODO: Consider minimizing the systems and re-performing these
// checks.
if (css_normalized) {
if (x.con_sys == y.con_sys)
return Grid::TVB_TRUE;
else
return Grid::TVB_FALSE;
}
return Grid::TVB_DONT_KNOW;
}
bool
PPL::Grid::is_included_in(const Grid& y) const {
// Private method: the caller must ensure the following.
PPL_ASSERT(space_dim == y.space_dim);
PPL_ASSERT(!marked_empty() && !y.marked_empty() && space_dim > 0);
const Grid& x = *this;
#if BE_LAZY
if (!x.generators_are_up_to_date() && !x.update_generators())
// Updating found `x' empty.
return true;
if (!y.congruences_are_up_to_date())
y.update_congruences();
#else
if (!x.generators_are_minimized() && !x.minimize())
// Minimizing found `x' empty.
return true;
if (!y.congruences_are_minimized())
y.minimize();
#endif
PPL_ASSERT(x.OK());
PPL_ASSERT(y.OK());
const Grid_Generator_System& gs = x.gen_sys;
const Congruence_System& cgs = y.con_sys;
dimension_type num_rows = gs.num_rows();
for (dimension_type i = num_rows; i-- > 0; )
if (!cgs.satisfies_all_congruences(gs[i]))
return false;
// Inclusion holds.
return true;
}
bool
PPL::Grid::bounds(const Linear_Expression& expr,
const char* method_call) const {
// The dimension of `expr' must be at most the dimension of *this.
if (space_dim < expr.space_dimension())
throw_dimension_incompatible(method_call, "e", expr);
// A zero-dimensional or empty grid bounds everything.
if (space_dim == 0
|| marked_empty()
|| (!generators_are_up_to_date() && !update_generators()))
return true;
if (!generators_are_minimized() && !minimize())
// Minimizing found `this' empty.
return true;
return bounds_no_check(expr);
}
bool
PPL::Grid::bounds_no_check(const Linear_Expression& expr) const {
// The dimension of `expr' must be at most the dimension of *this.
PPL_ASSERT(space_dim > 0 && space_dim >= expr.space_dimension());
PPL_ASSERT(generators_are_minimized() && !marked_empty());
// The generators are up to date and minimized.
for (dimension_type i = gen_sys.num_rows(); i-- > 0; ) {
const Grid_Generator& g = gen_sys[i];
// Only lines and parameters in `*this' can cause `expr' to be
// unbounded.
if (g.is_line_or_parameter()) {
const int sp_sign = Scalar_Products::homogeneous_sign(expr, g);
if (sp_sign != 0)
// `*this' does not bound `expr'.
return false;
}
}
return true;
}
bool
PPL::Grid::frequency_no_check(const Linear_Expression& expr,
Coefficient& freq_n, Coefficient& freq_d,
Coefficient& val_n, Coefficient& val_d) const {
// The dimension of `expr' must be at most the dimension of *this.
PPL_ASSERT(space_dim >= expr.space_dimension());
PPL_ASSERT(generators_are_minimized() && !marked_empty());
// The generators are up to date and minimized and the grid is non-empty.
// If the grid is bounded for the expression `expr',
// then `expr' has a constant value and the frequency is 0.
if (bounds_no_check(expr)) {
freq_n = 0;
freq_d = 1;
// Find the value of the constant expression.
const Grid_Generator& point = gen_sys[0];
val_d = point.divisor();
Scalar_Products::homogeneous_assign(val_n, expr, point);
val_n += expr.inhomogeneous_term() * val_d;
// Reduce `val_n' and `val_d'.
PPL_DIRTY_TEMP_COEFFICIENT(gcd);
gcd_assign(gcd, val_n, val_d);
exact_div_assign(val_n, val_n, gcd);
exact_div_assign(val_d, val_d, gcd);
return true;
}
// The frequency is the gcd of the scalar products of the parameters
// in `gen_sys'.
dimension_type num_rows = gen_sys.num_rows();
PPL_DIRTY_TEMP_COEFFICIENT(sp);
freq_n = 0;
// As the generators are minimized, `gen_sys[0]' is a point
// and considered later.
for (dimension_type row = 1; row < num_rows; ++row) {
const Grid_Generator& gen = gen_sys[row];
Scalar_Products::homogeneous_assign(sp, expr, gen);
if (gen.is_line()) {
if (sgn(sp) != 0)
return false;
continue;
}
// `gen' must be a parameter.
PPL_ASSERT(gen.is_parameter());
if (sgn(sp) != 0)
gcd_assign(freq_n, freq_n, sp);
}
const Grid_Generator& point = gen_sys[0];
PPL_ASSERT(point.is_point());
// The denominator of the frequency and of the value is
// the divisor for the generators.
freq_d = point.divisor();
val_d = freq_d;
// As point is a grid generator, homogeneous_assign() must be used.
Scalar_Products::homogeneous_assign(val_n, expr, point);
val_n += expr.inhomogeneous_term() * val_d;
// Reduce `val_n' by the frequency `freq_n'.
val_n %= freq_n;
PPL_DIRTY_TEMP_COEFFICIENT(gcd);
// Reduce `freq_n' and `freq_d'.
gcd_assign(gcd, freq_n, freq_d);
exact_div_assign(freq_n, freq_n, gcd);
exact_div_assign(freq_d, freq_d, gcd);
// Reduce `val_n' and `val_d'.
gcd_assign(gcd, val_n, val_d);
exact_div_assign(val_n, val_n, gcd);
exact_div_assign(val_d, val_d, gcd);
return true;
}
bool
PPL::Grid::max_min(const Linear_Expression& expr,
const char* method_call,
Coefficient& ext_n, Coefficient& ext_d, bool& included,
Generator* point) const {
if (bounds(expr, method_call)) {
if (marked_empty())
return false;
if (space_dim == 0) {
ext_n = 0;
ext_d = 1;
included = true;
if (point)
*point = Generator::point();
return true;
}
// Grid::bounds above ensures the generators are up to date.
if (!generators_are_minimized()) {
// Minimize the generator system.
Grid& gr = const_cast<Grid&>(*this);
gr.simplify(gr.gen_sys, gr.dim_kinds);
gr.set_generators_minimized();
}
const Grid_Generator& gen = gen_sys[0];
Scalar_Products::homogeneous_assign(ext_n, expr, gen);
ext_n += expr.inhomogeneous_term();
ext_d = gen.divisor();
// Reduce ext_n and ext_d.
PPL_DIRTY_TEMP_COEFFICIENT(gcd);
gcd_assign(gcd, ext_n, ext_d);
exact_div_assign(ext_n, ext_n, gcd);
exact_div_assign(ext_d, ext_d, gcd);
included = true;
if (point) {
Linear_Expression e;
for (dimension_type i = space_dim; i-- > 0; )
e += gen.coefficient(Variable(i)) * Variable(i);
*point = Generator::point(e, gen.divisor());
}
return true;
}
return false;
}
void
PPL::Grid::set_zero_dim_univ() {
status.set_zero_dim_univ();
space_dim = 0;
con_sys.clear();
gen_sys.clear();
gen_sys.insert(grid_point());
}
void
PPL::Grid::set_empty() {
status.set_empty();
// Replace gen_sys with an empty system of the right dimension.
Grid_Generator_System gs(space_dim);
gen_sys.swap(gs);
// Extend the zero dim false congruence system to the appropriate
// dimension and then swap it with `con_sys'.
Congruence_System cgs(Congruence::zero_dim_false());
cgs.increase_space_dimension(space_dim);
const_cast<Congruence_System&>(con_sys).swap(cgs);
}
void
PPL::Grid::update_congruences() const {
// The caller must ensure that the generators are up to date.
PPL_ASSERT(space_dim > 0);
PPL_ASSERT(!marked_empty());
PPL_ASSERT(!gen_sys.has_no_rows());
PPL_ASSERT(gen_sys.space_dimension() > 0);
Grid& gr = const_cast<Grid&>(*this);
if (!generators_are_minimized())
gr.simplify(gr.gen_sys, gr.dim_kinds);
// `gen_sys' contained rows before being reduced, so it should
// contain at least a single point afterward.
PPL_ASSERT(!gen_sys.has_no_rows());
// Populate `con_sys' with congruences characterizing the grid
// described by `gen_sys'.
gr.conversion(gr.gen_sys, gr.con_sys, gr.dim_kinds);
// Both systems are minimized.
gr.set_congruences_minimized();
gr.set_generators_minimized();
}
bool
PPL::Grid::update_generators() const {
PPL_ASSERT(space_dim > 0);
PPL_ASSERT(!marked_empty());
PPL_ASSERT(congruences_are_up_to_date());
Grid& x = const_cast<Grid&>(*this);
if (!congruences_are_minimized())
// Either the system of congruences is consistent, or the grid is
// empty.
if (simplify(x.con_sys, x.dim_kinds)) {
x.set_empty();
return false;
}
// Populate gen_sys with generators characterizing the grid
// described by con_sys.
conversion(x.con_sys, x.gen_sys, x.dim_kinds);
// Both systems are minimized.
x.set_congruences_minimized();
x.set_generators_minimized();
return true;
}
bool
PPL::Grid::minimize() const {
// 0-dimension and empty grids are already minimized.
if (marked_empty())
return false;
if (space_dim == 0)
return true;
// Are both systems already minimized?
if (congruences_are_minimized() && generators_are_minimized())
return true;
// Invoke update_generators, update_congruences or simplify,
// depending on the state of the systems.
if (congruences_are_up_to_date()) {
if (generators_are_up_to_date()) {
Grid& gr = const_cast<Grid&>(*this);
// Only one of the systems can be minimized here.
if (congruences_are_minimized()) {
// Minimize the generator system.
gr.simplify(gr.gen_sys, gr.dim_kinds);
gr.set_generators_minimized();
}
else {
#ifndef NDEBUG
// Both systems are up to date, and the empty case is handled
// above, so the grid should contain points.
bool empty = simplify(gr.con_sys, gr.dim_kinds);
PPL_ASSERT(!empty);
#else
simplify(gr.con_sys, gr.dim_kinds);
#endif
gr.set_congruences_minimized();
if (!generators_are_minimized()) {
// Minimize the generator system.
gr.simplify(gr.gen_sys, gr.dim_kinds);
gr.set_generators_minimized();
}
}
}
else {
// Updating the generators may reveal that `*this' is empty.
const bool ret = update_generators();
PPL_ASSERT(OK());
return ret;
}
}
else {
PPL_ASSERT(generators_are_up_to_date());
update_congruences();
}
PPL_ASSERT(OK());
return true;
}
void
PPL::Grid::normalize_divisors(Grid_Generator_System& sys,
Grid_Generator_System& gen_sys) {
#ifndef NDEBUG
const dimension_type num_rows = gen_sys.num_rows();
#endif
PPL_ASSERT(num_rows > 0);
// Find the first point in gen_sys.
dimension_type row = 0;
while (gen_sys[row].is_line_or_parameter()) {
++row;
// gen_sys should have at least one point.
PPL_ASSERT(row < num_rows);
}
Grid_Generator& first_point = gen_sys[row];
const Coefficient& gen_sys_divisor = first_point.divisor();
#ifndef NDEBUG
// Check that the divisors in gen_sys are equal.
for (dimension_type i = row + 1; i < num_rows; ++i) {
Grid_Generator& g = gen_sys[i];
if (g.is_parameter_or_point())
PPL_ASSERT(gen_sys_divisor == g.divisor());
}
#endif // !defined(NDEBUG)
PPL_DIRTY_TEMP_COEFFICIENT(divisor);
divisor = gen_sys_divisor;
// Adjust sys to include the gen_sys divisor.
normalize_divisors(sys, divisor);
if (divisor != gen_sys_divisor)
// Adjust gen_sys to use the new divisor.
//
// The points and parameters in gen_sys share a common divisor
// value, so the new divisor will be the LCM of this common
// divisor and `divisor', hence the third argument.
normalize_divisors(gen_sys, divisor, &first_point);
}
void
PPL::Grid::normalize_divisors(Grid_Generator_System& sys,
Coefficient& divisor,
const Grid_Generator* first_point) {
PPL_ASSERT(divisor >= 0);
if (sys.space_dimension() > 0 && divisor > 0) {
dimension_type row = 0;
dimension_type num_rows = sys.num_rows();
if (first_point)
lcm_assign(divisor, divisor, (*first_point).divisor());
else {
PPL_ASSERT(num_rows > 0);
// Move to the first point or parameter.
while (sys[row].is_line())
if (++row == num_rows)
// All rows are lines.
return;
// Calculate the LCM of the given divisor and the divisor of
// every point or parameter.
while (row < num_rows) {
const Grid_Generator& g = sys[row];
if (g.is_parameter_or_point())
lcm_assign(divisor, divisor, g.divisor());
++row;
}
}
// Represent every point and every parameter using the newly
// calculated divisor.
for (row = num_rows; row-- > 0; )
sys[row].scale_to_divisor(divisor);
}
}
void
PPL::Grid::add_congruence_no_check(const Congruence& cg) {
PPL_ASSERT(!marked_empty());
PPL_ASSERT(space_dim >= cg.space_dimension());
// Dealing with a zero-dimensional space grid first.
if (space_dim == 0) {
if (cg.is_inconsistent())
set_empty();
return;
}
if (!congruences_are_up_to_date())
update_congruences();
con_sys.insert(cg);
clear_congruences_minimized();
set_congruences_up_to_date();
clear_generators_up_to_date();
// Note: the congruence system may have become unsatisfiable, thus
// we do not check for satisfiability.
PPL_ASSERT(OK());
}
void
PPL::Grid::add_constraint_no_check(const Constraint& c) {
PPL_ASSERT(!marked_empty());
PPL_ASSERT(space_dim >= c.space_dimension());
if (c.is_inequality()) {
// Only trivial inequalities can be handled.
if (c.is_inconsistent()) {
set_empty();
return;
}
if (c.is_tautological())
return;
// Non-trivial inequality constraints are not allowed.
throw_invalid_constraint("add_constraint(c)", "c");
}
PPL_ASSERT(c.is_equality());
Congruence cg(c);
add_congruence_no_check(cg);
}
void
PPL::Grid::refine_no_check(const Constraint& c) {
PPL_ASSERT(!marked_empty());
PPL_ASSERT(space_dim >= c.space_dimension());
if (c.is_equality()) {
Congruence cg(c);
add_congruence_no_check(cg);
}
else if (c.is_inconsistent())
set_empty();
}
void
PPL::Grid::throw_runtime_error(const char* method) const {
std::ostringstream s;
s << "PPL::Grid::" << method << "." << std::endl;
throw std::runtime_error(s.str());
}
void
PPL::Grid::throw_invalid_argument(const char* method,
const char* reason) const {
std::ostringstream s;
s << "PPL::Grid::" << method << ":" << std::endl
<< reason << ".";
throw std::invalid_argument(s.str());
}
void
PPL::Grid::throw_dimension_incompatible(const char* method,
const char* other_name,
dimension_type other_dim) const {
std::ostringstream s;
s << "PPL::Grid::" << method << ":\n"
<< "this->space_dimension() == " << space_dimension() << ", "
<< other_name << ".space_dimension() == " << other_dim << ".";
throw std::invalid_argument(s.str());
}
void
PPL::Grid::throw_dimension_incompatible(const char* method,
const char* gr_name,
const Grid& gr) const {
throw_dimension_incompatible(method, gr_name, gr.space_dimension());
}
void
PPL::Grid::throw_dimension_incompatible(const char* method,
const char* e_name,
const Linear_Expression& e) const {
throw_dimension_incompatible(method, e_name, e.space_dimension());
}
void
PPL::Grid::throw_dimension_incompatible(const char* method,
const char* cg_name,
const Congruence& cg) const {
throw_dimension_incompatible(method, cg_name, cg.space_dimension());
}
void
PPL::Grid::throw_dimension_incompatible(const char* method,
const char* c_name,
const Constraint& c) const {
throw_dimension_incompatible(method, c_name, c.space_dimension());
}
void
PPL::Grid::throw_dimension_incompatible(const char* method,
const char* g_name,
const Grid_Generator& g) const {
throw_dimension_incompatible(method, g_name, g.space_dimension());
}
void
PPL::Grid::throw_dimension_incompatible(const char* method,
const char* g_name,
const Generator& g) const {
throw_dimension_incompatible(method, g_name, g.space_dimension());
}
void
PPL::Grid::throw_dimension_incompatible(const char* method,
const char* cgs_name,
const Congruence_System& cgs) const {
throw_dimension_incompatible(method, cgs_name, cgs.space_dimension());
}
void
PPL::Grid::throw_dimension_incompatible(const char* method,
const char* cs_name,
const Constraint_System& cs) const {
throw_dimension_incompatible(method, cs_name, cs.space_dimension());
}
void
PPL::Grid::throw_dimension_incompatible(const char* method,
const char* gs_name,
const Grid_Generator_System& gs) const {
throw_dimension_incompatible(method, gs_name, gs.space_dimension());
}
void
PPL::Grid::throw_dimension_incompatible(const char* method,
const char* var_name,
const Variable var) const {
std::ostringstream s;
s << "PPL::Grid::" << method << ":" << std::endl
<< "this->space_dimension() == " << space_dimension() << ", "
<< var_name << ".space_dimension() == " << var.space_dimension() << ".";
throw std::invalid_argument(s.str());
}
void
PPL::Grid::
throw_dimension_incompatible(const char* method,
dimension_type required_space_dim) const {
std::ostringstream s;
s << "PPL::Grid::" << method << ":" << std::endl
<< "this->space_dimension() == " << space_dimension()
<< ", required space dimension == " << required_space_dim << ".";
throw std::invalid_argument(s.str());
}
void
PPL::Grid::throw_space_dimension_overflow(const char* method,
const char* reason) {
std::ostringstream s;
s << "PPL::Grid::" << method << ":" << std::endl
<< reason << ".";
throw std::length_error(s.str());
}
void
PPL::Grid::throw_invalid_constraint(const char* method,
const char* c_name) const {
std::ostringstream s;
s << "PPL::Grid::" << method << ":" << std::endl
<< c_name << " is not an equality constraint.";
throw std::invalid_argument(s.str());
}
void
PPL::Grid::throw_invalid_constraints(const char* method,
const char* cs_name) const {
std::ostringstream s;
s << "PPL::Grid::" << method << ":" << std::endl
<< "the constraint system " << cs_name
<< " contains inequalities.";
throw std::invalid_argument(s.str());
}
void
PPL::Grid::throw_invalid_generator(const char* method,
const char* g_name) const {
std::ostringstream s;
s << "PPL::Grid::" << method << ":" << std::endl
<< "*this is an empty grid and "
<< g_name << " is not a point.";
throw std::invalid_argument(s.str());
}
void
PPL::Grid::throw_invalid_generators(const char* method,
const char* gs_name) const {
std::ostringstream s;
s << "PPL::Grid::" << method << ":" << std::endl
<< "*this is an empty grid and" << std::endl
<< "the non-empty generator system " << gs_name << " contains no points.";
throw std::invalid_argument(s.str());
}
|