1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
|
/* Grid class implementation: inline functions.
Copyright (C) 2001-2010 Roberto Bagnara <bagnara@cs.unipr.it>
Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com)
This file is part of the Parma Polyhedra Library (PPL).
The PPL is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The PPL is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA.
For the most up-to-date information see the Parma Polyhedra Library
site: http://www.cs.unipr.it/ppl/ . */
#ifndef PPL_Grid_templates_hh
#define PPL_Grid_templates_hh 1
#include "Grid_Generator.defs.hh"
#include "Grid_Generator_System.defs.hh"
#include "Grid_Generator_System.inlines.hh"
#include <algorithm>
#include <deque>
namespace Parma_Polyhedra_Library {
template <typename Interval>
Grid::Grid(const Box<Interval>& box,
Complexity_Class)
: con_sys(),
gen_sys() {
if (box.space_dimension() > max_space_dimension())
throw_space_dimension_overflow("Grid(box, from_bounding_box)",
"the space dimension of box "
"exceeds the maximum allowed "
"space dimension");
space_dim = box.space_dimension();
if (box.is_empty()) {
// Empty grid.
set_empty();
PPL_ASSERT(OK());
return;
}
if (space_dim == 0)
set_zero_dim_univ();
else {
// Initialize the space dimension as indicated by the box.
con_sys.increase_space_dimension(space_dim);
// Add congruences and generators according to `box'.
PPL_DIRTY_TEMP_COEFFICIENT(l_n);
PPL_DIRTY_TEMP_COEFFICIENT(l_d);
PPL_DIRTY_TEMP_COEFFICIENT(u_n);
PPL_DIRTY_TEMP_COEFFICIENT(u_d);
gen_sys.insert(grid_point(0*Variable(space_dim-1)));
for (dimension_type k = space_dim; k-- > 0; ) {
// This is declared here because it may be invalidated by the call to
// gen_sys.insert() at the end of the loop.
Grid_Generator& point = gen_sys[0];
bool closed = false;
// TODO: Consider producing the system(s) in minimized form.
if (box.get_lower_bound(k, closed, l_n, l_d)) {
if (box.get_upper_bound(k, closed, u_n, u_d))
if (l_n * u_d == u_n * l_d) {
// A point interval sets dimension k of every point to a
// single value.
con_sys.insert(l_d * Variable(k) == l_n);
// Scale the point to use as divisor the lcm of the
// divisors of the existing point and the lower bound.
const Coefficient& point_divisor = point.divisor();
gcd_assign(u_n, l_d, point_divisor);
// `u_n' now holds the gcd.
exact_div_assign(u_n, point_divisor, u_n);
if (l_d < 0)
neg_assign(u_n);
// l_d * u_n == abs(l_d * (point_divisor / gcd(l_d, point_divisor)))
point.scale_to_divisor(l_d * u_n);
// Set dimension k of the point to the lower bound.
if (l_d < 0)
neg_assign(u_n);
// point[k + 1] = l_n * point_divisor / gcd(l_d, point_divisor)
point[k + 1] = l_n * u_n;
continue;
}
}
// A universe interval allows any value in dimension k.
gen_sys.insert(grid_line(Variable(k)));
}
set_congruences_up_to_date();
set_generators_up_to_date();
gen_sys.unset_pending_rows();
gen_sys.set_sorted(false);
}
PPL_ASSERT(OK());
}
template <typename Partial_Function>
void
Grid::map_space_dimensions(const Partial_Function& pfunc) {
if (space_dim == 0)
return;
if (pfunc.has_empty_codomain()) {
// All dimensions vanish: the grid becomes zero_dimensional.
if (marked_empty()
|| (!generators_are_up_to_date() && !update_generators())) {
// Removing all dimensions from the empty grid.
space_dim = 0;
set_empty();
}
else
// Removing all dimensions from a non-empty grid.
set_zero_dim_univ();
PPL_ASSERT(OK());
return;
}
dimension_type new_space_dimension = pfunc.max_in_codomain() + 1;
if (new_space_dimension == space_dim) {
// The partial function `pfunc' is indeed total and thus specifies
// a permutation, that is, a renaming of the dimensions. For
// maximum efficiency, we will simply permute the columns of the
// constraint system and/or the generator system.
// We first compute suitable permutation cycles for the columns of
// the `con_sys' and `gen_sys' matrices. We will represent them
// with a linear array, using 0 as a terminator for each cycle
// (notice that the columns with index 0 of `con_sys' and
// `gen_sys' represent the inhomogeneous terms, and thus are
// unaffected by the permutation of dimensions).
// Cycles of length 1 will be omitted so that, in the worst case,
// we will have `space_dim' elements organized in `space_dim/2'
// cycles, which means we will have at most `space_dim/2'
// terminators.
std::vector<dimension_type> cycles;
cycles.reserve(space_dim + space_dim/2);
// Used to mark elements as soon as they are inserted in a cycle.
std::deque<bool> visited(space_dim);
for (dimension_type i = space_dim; i-- > 0; ) {
if (!visited[i]) {
dimension_type j = i;
do {
visited[j] = true;
// The following initialization is only to make the compiler happy.
dimension_type k = 0;
if (!pfunc.maps(j, k))
throw_invalid_argument("map_space_dimensions(pfunc)",
" pfunc is inconsistent");
if (k == j)
// Cycle of length 1: skip it.
goto skip;
cycles.push_back(j+1);
// Go along the cycle.
j = k;
} while (!visited[j]);
// End of cycle: mark it.
cycles.push_back(0);
skip:
;
}
}
// If `cycles' is empty then `pfunc' is the identity.
if (cycles.empty())
return;
// Permute all that is up-to-date.
if (congruences_are_up_to_date()) {
con_sys.permute_columns(cycles);
clear_congruences_minimized();
}
if (generators_are_up_to_date()) {
gen_sys.permute_columns(cycles);
clear_generators_minimized();
}
PPL_ASSERT(OK());
return;
}
// If control gets here, then `pfunc' is not a permutation and some
// dimensions must be projected away.
const Grid_Generator_System& old_gensys = grid_generators();
if (old_gensys.has_no_rows()) {
// The grid is empty.
Grid new_grid(new_space_dimension, EMPTY);
std::swap(*this, new_grid);
PPL_ASSERT(OK());
return;
}
// Make a local copy of the partial function.
std::vector<dimension_type> pfunc_maps(space_dim, not_a_dimension());
for (dimension_type j = space_dim; j-- > 0; ) {
dimension_type pfunc_j;
if (pfunc.maps(j, pfunc_j))
pfunc_maps[j] = pfunc_j;
}
Grid_Generator_System new_gensys;
// Set sortedness, for the assertion met via gs::insert.
new_gensys.set_sorted(false);
// Get the divisor of the first point.
Grid_Generator_System::const_iterator i;
Grid_Generator_System::const_iterator old_gensys_end = old_gensys.end();
for (i = old_gensys.begin(); i != old_gensys_end; ++i)
if (i->is_point())
break;
PPL_ASSERT(i != old_gensys_end);
const Coefficient& system_divisor = i->divisor();
for (i = old_gensys.begin(); i != old_gensys_end; ++i) {
const Grid_Generator& old_g = *i;
Linear_Expression e(0 * Variable(new_space_dimension-1));
bool all_zeroes = true;
for (dimension_type j = space_dim; j-- > 0; ) {
if (old_g.coefficient(Variable(j)) != 0
&& pfunc_maps[j] != not_a_dimension()) {
e += Variable(pfunc_maps[j]) * old_g.coefficient(Variable(j));
all_zeroes = false;
}
}
switch (old_g.type()) {
case Grid_Generator::LINE:
if (!all_zeroes)
new_gensys.insert(grid_line(e));
break;
case Grid_Generator::PARAMETER:
if (!all_zeroes)
new_gensys.insert(parameter(e, system_divisor));
break;
case Grid_Generator::POINT:
new_gensys.insert(grid_point(e, old_g.divisor()));
break;
default:
PPL_ASSERT(0);
}
}
Grid new_grid(new_gensys);
std::swap(*this, new_grid);
PPL_ASSERT(OK(true));
}
// Needed for converting the congruence or grid_generator system
// to "strong minimal form".
template <typename M, typename R>
void
Grid::reduce_reduced(M& sys,
const dimension_type dim,
const dimension_type pivot_index,
const dimension_type start,
const dimension_type end,
const Dimension_Kinds& dim_kinds,
const bool generators) {
R& pivot = sys[pivot_index];
const Coefficient& pivot_dim = pivot[dim];
if (pivot_dim == 0)
return;
PPL_DIRTY_TEMP_COEFFICIENT(pivot_dim_half);
pivot_dim_half = (pivot_dim + 1) / 2;
Dimension_Kind row_kind = dim_kinds[dim];
Dimension_Kind line_or_equality, virtual_kind;
int jump;
if (generators) {
line_or_equality = LINE;
virtual_kind = GEN_VIRTUAL;
jump = -1;
}
else {
line_or_equality = EQUALITY;
virtual_kind = CON_VIRTUAL;
jump = 1;
}
PPL_DIRTY_TEMP_COEFFICIENT(num_rows_to_subtract);
PPL_DIRTY_TEMP_COEFFICIENT(row_dim_remainder);
for (dimension_type row_index = pivot_index, kinds_index = dim + jump;
row_index-- > 0;
kinds_index += jump) {
// Move over any virtual rows.
while (dim_kinds[kinds_index] == virtual_kind)
kinds_index += jump;
// row_kind CONGRUENCE is included as PARAMETER
if (row_kind == line_or_equality
|| (row_kind == PARAMETER
&& dim_kinds[kinds_index] == PARAMETER)) {
R& row = sys[row_index];
const Coefficient& row_dim = row[dim];
// num_rows_to_subtract may be positive or negative.
num_rows_to_subtract = row_dim / pivot_dim;
// Ensure that after subtracting num_rows_to_subtract * r_dim
// from row_dim, -pivot_dim_half < row_dim <= pivot_dim_half.
// E.g., if pivot[dim] = 9, then after this reduction
// -5 < row_dim <= 5.
row_dim_remainder = row_dim % pivot_dim;
if (row_dim_remainder < 0) {
if (row_dim_remainder <= -pivot_dim_half)
--num_rows_to_subtract;
}
else if (row_dim_remainder > 0 && row_dim_remainder > pivot_dim_half)
++num_rows_to_subtract;
// Subtract num_rows_to_subtract copies of pivot from row i. Only the
// entries from dim need to be subtracted, as the preceding
// entries are all zero.
// If num_rows_to_subtract is negative, these copies of pivot are
// added to row i.
if (num_rows_to_subtract != 0)
for (dimension_type col = start; col <= end; ++col)
sub_mul_assign(row[col], num_rows_to_subtract, pivot[col]);
}
}
}
} // namespace Parma_Polyhedra_Library
#endif // !defined(PPL_Grid_templates_hh)
|