1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
|
/* Generator class declaration.
Copyright (C) 2001-2010 Roberto Bagnara <bagnara@cs.unipr.it>
Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com)
This file is part of the Parma Polyhedra Library (PPL).
The PPL is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The PPL is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA.
For the most up-to-date information see the Parma Polyhedra Library
site: http://www.cs.unipr.it/ppl/ . */
#ifndef PPL_Generator_defs_hh
#define PPL_Generator_defs_hh 1
#include "Generator.types.hh"
#include "Scalar_Products.types.hh"
#include "Row.defs.hh"
#include "Variable.defs.hh"
#include "Constraint_System.types.hh"
#include "Generator_System.defs.hh"
#include "Congruence_System.types.hh"
#include "Linear_Expression.defs.hh"
#include "Polyhedron.types.hh"
#include "Grid_Generator.types.hh"
#include "Grid_Generator_System.types.hh"
#include "Checked_Number.defs.hh"
#include "distances.defs.hh"
#include <iosfwd>
namespace Parma_Polyhedra_Library {
// Put them in the namespace here to declare them friend later.
namespace IO_Operators {
//! Output operator.
/*! \relates Parma_Polyhedra_Library::Generator */
std::ostream& operator<<(std::ostream& s, const Generator& g);
} // namespace IO_Operators
} // namespace Parma_Polyhedra_Library
namespace std {
//! Specializes <CODE>std::swap</CODE>.
/*! \relates Parma_Polyhedra_Library::Generator */
void swap(Parma_Polyhedra_Library::Generator& x,
Parma_Polyhedra_Library::Generator& y);
} // namespace std
//! A line, ray, point or closure point.
/*! \ingroup PPL_CXX_interface
An object of the class Generator is one of the following:
- a line \f$\vect{l} = (a_0, \ldots, a_{n-1})^\transpose\f$;
- a ray \f$\vect{r} = (a_0, \ldots, a_{n-1})^\transpose\f$;
- a point
\f$\vect{p} = (\frac{a_0}{d}, \ldots, \frac{a_{n-1}}{d})^\transpose\f$;
- a closure point
\f$\vect{c} = (\frac{a_0}{d}, \ldots, \frac{a_{n-1}}{d})^\transpose\f$;
where \f$n\f$ is the dimension of the space
and, for points and closure points, \f$d > 0\f$ is the divisor.
\par A note on terminology.
As observed in Section \ref representation, there are cases when,
in order to represent a polyhedron \f$\cP\f$ using the generator system
\f$\cG = (L, R, P, C)\f$, we need to include in the finite set
\f$P\f$ even points of \f$\cP\f$ that are <EM>not</EM> vertices
of \f$\cP\f$.
This situation is even more frequent when working with NNC polyhedra
and it is the reason why we prefer to use the word `point'
where other libraries use the word `vertex'.
\par How to build a generator.
Each type of generator is built by applying the corresponding
function (<CODE>line</CODE>, <CODE>ray</CODE>, <CODE>point</CODE>
or <CODE>closure_point</CODE>) to a linear expression,
representing a direction in the space;
the space dimension of the generator is defined as the space dimension
of the corresponding linear expression.
Linear expressions used to define a generator should be homogeneous
(any constant term will be simply ignored).
When defining points and closure points, an optional Coefficient argument
can be used as a common <EM>divisor</EM> for all the coefficients
occurring in the provided linear expression;
the default value for this argument is 1.
\par
In all the following examples it is assumed that variables
<CODE>x</CODE>, <CODE>y</CODE> and <CODE>z</CODE>
are defined as follows:
\code
Variable x(0);
Variable y(1);
Variable z(2);
\endcode
\par Example 1
The following code builds a line with direction \f$x-y-z\f$
and having space dimension \f$3\f$:
\code
Generator l = line(x - y - z);
\endcode
As mentioned above, the constant term of the linear expression
is not relevant. Thus, the following code has the same effect:
\code
Generator l = line(x - y - z + 15);
\endcode
By definition, the origin of the space is not a line, so that
the following code throws an exception:
\code
Generator l = line(0*x);
\endcode
\par Example 2
The following code builds a ray with the same direction as the
line in Example 1:
\code
Generator r = ray(x - y - z);
\endcode
As is the case for lines, when specifying a ray the constant term
of the linear expression is not relevant; also, an exception is thrown
when trying to build a ray from the origin of the space.
\par Example 3
The following code builds the point
\f$\vect{p} = (1, 0, 2)^\transpose \in \Rset^3\f$:
\code
Generator p = point(1*x + 0*y + 2*z);
\endcode
The same effect can be obtained by using the following code:
\code
Generator p = point(x + 2*z);
\endcode
Similarly, the origin \f$\vect{0} \in \Rset^3\f$ can be defined
using either one of the following lines of code:
\code
Generator origin3 = point(0*x + 0*y + 0*z);
Generator origin3_alt = point(0*z);
\endcode
Note however that the following code would have defined
a different point, namely \f$\vect{0} \in \Rset^2\f$:
\code
Generator origin2 = point(0*y);
\endcode
The following two lines of code both define the only point
having space dimension zero, namely \f$\vect{0} \in \Rset^0\f$.
In the second case we exploit the fact that the first argument
of the function <CODE>point</CODE> is optional.
\code
Generator origin0 = Generator::zero_dim_point();
Generator origin0_alt = point();
\endcode
\par Example 4
The point \f$\vect{p}\f$ specified in Example 3 above
can also be obtained with the following code,
where we provide a non-default value for the second argument
of the function <CODE>point</CODE> (the divisor):
\code
Generator p = point(2*x + 0*y + 4*z, 2);
\endcode
Obviously, the divisor can be usefully exploited to specify
points having some non-integer (but rational) coordinates.
For instance, the point
\f$\vect{q} = (-1.5, 3.2, 2.1)^\transpose \in \Rset^3\f$
can be specified by the following code:
\code
Generator q = point(-15*x + 32*y + 21*z, 10);
\endcode
If a zero divisor is provided, an exception is thrown.
\par Example 5
Closure points are specified in the same way we defined points,
but invoking their specific constructor function.
For instance, the closure point
\f$\vect{c} = (1, 0, 2)^\transpose \in \Rset^3\f$ is defined by
\code
Generator c = closure_point(1*x + 0*y + 2*z);
\endcode
For the particular case of the (only) closure point
having space dimension zero, we can use any of the following:
\code
Generator closure_origin0 = Generator::zero_dim_closure_point();
Generator closure_origin0_alt = closure_point();
\endcode
\par How to inspect a generator
Several methods are provided to examine a generator and extract
all the encoded information: its space dimension, its type and
the value of its integer coefficients.
\par Example 6
The following code shows how it is possible to access each single
coefficient of a generator.
If <CODE>g1</CODE> is a point having coordinates
\f$(a_0, \ldots, a_{n-1})^\transpose\f$,
we construct the closure point <CODE>g2</CODE> having coordinates
\f$(a_0, 2 a_1, \ldots, (i+1)a_i, \ldots, n a_{n-1})^\transpose\f$.
\code
if (g1.is_point()) {
cout << "Point g1: " << g1 << endl;
Linear_Expression e;
for (dimension_type i = g1.space_dimension(); i-- > 0; )
e += (i + 1) * g1.coefficient(Variable(i)) * Variable(i);
Generator g2 = closure_point(e, g1.divisor());
cout << "Closure point g2: " << g2 << endl;
}
else
cout << "Generator g1 is not a point." << endl;
\endcode
Therefore, for the point
\code
Generator g1 = point(2*x - y + 3*z, 2);
\endcode
we would obtain the following output:
\code
Point g1: p((2*A - B + 3*C)/2)
Closure point g2: cp((2*A - 2*B + 9*C)/2)
\endcode
When working with (closure) points, be careful not to confuse
the notion of <EM>coefficient</EM> with the notion of <EM>coordinate</EM>:
these are equivalent only when the divisor of the (closure) point is 1.
*/
class Parma_Polyhedra_Library::Generator : private Linear_Row {
public:
//! Returns the line of direction \p e.
/*!
\exception std::invalid_argument
Thrown if the homogeneous part of \p e represents the origin of
the vector space.
*/
static Generator line(const Linear_Expression& e);
//! Returns the ray of direction \p e.
/*!
\exception std::invalid_argument
Thrown if the homogeneous part of \p e represents the origin of
the vector space.
*/
static Generator ray(const Linear_Expression& e);
//! Returns the point at \p e / \p d.
/*!
Both \p e and \p d are optional arguments, with default values
Linear_Expression::zero() and Coefficient_one(), respectively.
\exception std::invalid_argument
Thrown if \p d is zero.
*/
static Generator point(const Linear_Expression& e
= Linear_Expression::zero(),
Coefficient_traits::const_reference d
= Coefficient_one());
//! Returns the closure point at \p e / \p d.
/*!
Both \p e and \p d are optional arguments, with default values
Linear_Expression::zero() and Coefficient_one(), respectively.
\exception std::invalid_argument
Thrown if \p d is zero.
*/
static Generator
closure_point(const Linear_Expression& e = Linear_Expression::zero(),
Coefficient_traits::const_reference d = Coefficient_one());
//! Ordinary copy constructor.
Generator(const Generator& g);
//! Destructor.
~Generator();
//! Assignment operator.
Generator& operator=(const Generator& g);
//! Returns the maximum space dimension a Generator can handle.
static dimension_type max_space_dimension();
//! Returns the dimension of the vector space enclosing \p *this.
dimension_type space_dimension() const;
//! The generator type.
enum Type {
/*! The generator is a line. */
LINE,
/*! The generator is a ray. */
RAY,
/*! The generator is a point. */
POINT,
/*! The generator is a closure point. */
CLOSURE_POINT
};
//! Returns the generator type of \p *this.
Type type() const;
//! Returns <CODE>true</CODE> if and only if \p *this is a line.
bool is_line() const;
//! Returns <CODE>true</CODE> if and only if \p *this is a ray.
bool is_ray() const;
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Returns <CODE>true</CODE> if and only if \p *this is a line or a ray.
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
bool is_line_or_ray() const;
//! Returns <CODE>true</CODE> if and only if \p *this is a point.
bool is_point() const;
//! Returns <CODE>true</CODE> if and only if \p *this is a closure point.
bool is_closure_point() const;
//! Returns the coefficient of \p v in \p *this.
/*!
\exception std::invalid_argument
Thrown if the index of \p v is greater than or equal to the
space dimension of \p *this.
*/
Coefficient_traits::const_reference coefficient(Variable v) const;
//! If \p *this is either a point or a closure point, returns its divisor.
/*!
\exception std::invalid_argument
Thrown if \p *this is neither a point nor a closure point.
*/
Coefficient_traits::const_reference divisor() const;
//! Initializes the class.
static void initialize();
//! Finalizes the class.
static void finalize();
//! Returns the origin of the zero-dimensional space \f$\Rset^0\f$.
static const Generator& zero_dim_point();
/*! \brief
Returns, as a closure point,
the origin of the zero-dimensional space \f$\Rset^0\f$.
*/
static const Generator& zero_dim_closure_point();
/*! \brief
Returns a lower bound to the total size in bytes of the memory
occupied by \p *this.
*/
memory_size_type total_memory_in_bytes() const;
//! Returns the size in bytes of the memory managed by \p *this.
memory_size_type external_memory_in_bytes() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this and \p y
are equivalent generators.
Generators having different space dimensions are not equivalent.
*/
bool is_equivalent_to(const Generator& y) const;
PPL_OUTPUT_DECLARATIONS
/*! \brief
Loads from \p s an ASCII representation (as produced by
ascii_dump(std::ostream&) const) and sets \p *this accordingly.
Returns <CODE>true</CODE> if successful, <CODE>false</CODE> otherwise.
*/
bool ascii_load(std::istream& s);
//! Checks if all the invariants are satisfied.
bool OK() const;
//! Swaps \p *this with \p y.
void swap(Generator& y);
private:
/*! \brief
Holds (between class initialization and finalization) a pointer to
the origin of the zero-dimensional space \f$\Rset^0\f$.
*/
static const Generator* zero_dim_point_p;
/*! \brief
Holds (between class initialization and finalization) a pointer to
the origin of the zero-dimensional space \f$\Rset^0\f$, as a closure point.
*/
static const Generator* zero_dim_closure_point_p;
/*! \brief
Builds a generator of type \p type and topology \p topology,
stealing the coefficients from \p e.
*/
Generator(Linear_Expression& e, Type type, Topology topology);
/*! \brief
Throw a <CODE>std::invalid_argument</CODE> exception
containing the appropriate error message.
*/
void
throw_dimension_incompatible(const char* method,
const char* name_var,
Variable v) const;
/*! \brief
Throw a <CODE>std::invalid_argument</CODE> exception
containing the appropriate error message.
*/
void
throw_invalid_argument(const char* method, const char* reason) const;
friend class Parma_Polyhedra_Library::Scalar_Products;
friend class Parma_Polyhedra_Library::Topology_Adjusted_Scalar_Product_Sign;
friend class Parma_Polyhedra_Library::Topology_Adjusted_Scalar_Product_Assign;
friend class Parma_Polyhedra_Library::Generator_System;
friend class Parma_Polyhedra_Library::Generator_System::const_iterator;
// FIXME: the following friend declaration should be avoided.
friend class Parma_Polyhedra_Library::Polyhedron;
friend class Parma_Polyhedra_Library::Grid_Generator;
// This is for access to Row and Linear_Row in `insert'.
friend class Parma_Polyhedra_Library::Grid_Generator_System;
friend
Parma_Polyhedra_Library
::Linear_Expression::Linear_Expression(const Generator& g);
friend std::ostream&
Parma_Polyhedra_Library::IO_Operators::operator<<(std::ostream& s,
const Generator& g);
//! Copy constructor with given space dimension.
Generator(const Generator& g, dimension_type dimension);
//! Returns <CODE>true</CODE> if and only if \p *this is not a line.
bool is_ray_or_point() const;
//! Sets the Linear_Row kind to <CODE>LINE_OR_EQUALITY</CODE>.
void set_is_line();
//! Sets the Linear_Row kind to <CODE>RAY_OR_POINT_OR_INEQUALITY</CODE>.
void set_is_ray_or_point();
/*! \brief
Returns <CODE>true</CODE> if and only if the closure point
\p *this has the same \e coordinates of the point \p p.
It is \e assumed that \p *this is a closure point, \p p is a point
and both topologies and space dimensions agree.
*/
bool is_matching_closure_point(const Generator& p) const;
//! Default constructor: private and not implemented.
Generator();
};
namespace Parma_Polyhedra_Library {
//! Shorthand for Generator Generator::line(const Linear_Expression& e).
/*! \relates Generator */
Generator line(const Linear_Expression& e);
//! Shorthand for Generator Generator::ray(const Linear_Expression& e).
/*! \relates Generator */
Generator ray(const Linear_Expression& e);
/*! \brief
Shorthand for Generator
Generator::point(const Linear_Expression& e, Coefficient_traits::const_reference d).
\relates Generator
*/
Generator
point(const Linear_Expression& e = Linear_Expression::zero(),
Coefficient_traits::const_reference d = Coefficient_one());
/*! \brief
Shorthand for Generator
Generator::closure_point(const Linear_Expression& e, Coefficient_traits::const_reference d).
\relates Generator
*/
Generator
closure_point(const Linear_Expression& e = Linear_Expression::zero(),
Coefficient_traits::const_reference d = Coefficient_one());
//! Returns <CODE>true</CODE> if and only if \p x is equivalent to \p y.
/*! \relates Generator */
bool operator==(const Generator& x, const Generator& y);
//! Returns <CODE>true</CODE> if and only if \p x is not equivalent to \p y.
/*! \relates Generator */
bool operator!=(const Generator& x, const Generator& y);
//! Computes the rectilinear (or Manhattan) distance between \p x and \p y.
/*! \relates Generator
If the rectilinear distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using variables of type
Checked_Number<To, Extended_Number_Policy>.
\note
Distances are \e only defined between generators that are points and/or
closure points; for rays or lines, \c false is returned.
*/
template <typename To>
bool rectilinear_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Generator& x,
const Generator& y,
Rounding_Dir dir);
//! Computes the rectilinear (or Manhattan) distance between \p x and \p y.
/*! \relates Generator
If the rectilinear distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using variables of type
Checked_Number<Temp, Extended_Number_Policy>.
\note
Distances are \e only defined between generators that are points and/or
closure points; for rays or lines, \c false is returned.
*/
template <typename Temp, typename To>
bool rectilinear_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Generator& x,
const Generator& y,
Rounding_Dir dir);
//! Computes the rectilinear (or Manhattan) distance between \p x and \p y.
/*! \relates Generator
If the rectilinear distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using the temporary variables
\p tmp0, \p tmp1 and \p tmp2.
\note
Distances are \e only defined between generators that are points and/or
closure points; for rays or lines, \c false is returned.
*/
template <typename Temp, typename To>
bool rectilinear_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Generator& x,
const Generator& y,
Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2);
//! Computes the euclidean distance between \p x and \p y.
/*! \relates Generator
If the euclidean distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using variables of type
Checked_Number<To, Extended_Number_Policy>.
\note
Distances are \e only defined between generators that are points and/or
closure points; for rays or lines, \c false is returned.
*/
template <typename To>
bool euclidean_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Generator& x,
const Generator& y,
Rounding_Dir dir);
//! Computes the euclidean distance between \p x and \p y.
/*! \relates Generator
If the euclidean distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using variables of type
Checked_Number<Temp, Extended_Number_Policy>.
\note
Distances are \e only defined between generators that are points and/or
closure points; for rays or lines, \c false is returned.
*/
template <typename Temp, typename To>
bool rectilinear_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Generator& x,
const Generator& y,
Rounding_Dir dir);
//! Computes the euclidean distance between \p x and \p y.
/*! \relates Generator
If the euclidean distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using the temporary variables
\p tmp0, \p tmp1 and \p tmp2.
\note
Distances are \e only defined between generators that are points and/or
closure points; for rays or lines, \c false is returned.
*/
template <typename Temp, typename To>
bool euclidean_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Generator& x,
const Generator& y,
Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2);
//! Computes the \f$L_\infty\f$ distance between \p x and \p y.
/*! \relates Generator
If the \f$L_\infty\f$ distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using variables of type
Checked_Number<To, Extended_Number_Policy>.
\note
Distances are \e only defined between generators that are points and/or
closure points; for rays or lines, \c false is returned.
*/
template <typename To>
bool l_infinity_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Generator& x,
const Generator& y,
Rounding_Dir dir);
//! Computes the \f$L_\infty\f$ distance between \p x and \p y.
/*! \relates Generator
If the \f$L_\infty\f$ distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using variables of type
Checked_Number<Temp, Extended_Number_Policy>.
\note
Distances are \e only defined between generators that are points and/or
closure points; for rays or lines, \c false is returned.
*/
template <typename Temp, typename To>
bool l_infinity_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Generator& x,
const Generator& y,
Rounding_Dir dir);
//! Computes the \f$L_\infty\f$ distance between \p x and \p y.
/*! \relates Generator
If the \f$L_\infty\f$ distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using the temporary variables
\p tmp0, \p tmp1 and \p tmp2.
\note
Distances are \e only defined between generators that are points and/or
closure points; for rays or lines, \c false is returned.
*/
template <typename Temp, typename To>
bool l_infinity_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Generator& x,
const Generator& y,
Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2);
namespace IO_Operators {
//! Output operator.
/*! \relates Parma_Polyhedra_Library::Generator */
std::ostream& operator<<(std::ostream& s, const Generator::Type& t);
} // namespace IO_Operators
} // namespace Parma_Polyhedra_Library
#include "Generator.inlines.hh"
#endif // !defined(PPL_Generator_defs_hh)
|