1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
|
/* Congruence class declaration.
Copyright (C) 2001-2010 Roberto Bagnara <bagnara@cs.unipr.it>
Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com)
This file is part of the Parma Polyhedra Library (PPL).
The PPL is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The PPL is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA.
For the most up-to-date information see the Parma Polyhedra Library
site: http://www.cs.unipr.it/ppl/ . */
#ifndef PPL_Congruence_defs_hh
#define PPL_Congruence_defs_hh 1
#include "Congruence.types.hh"
#include "Scalar_Products.types.hh"
#include "Row.defs.hh"
#include "Grid.types.hh"
#include "Polyhedron.types.hh"
#include "Variable.defs.hh"
#include "Constraint.types.hh"
#include "Linear_Expression.types.hh"
#include "Linear_Row.types.hh"
#include "Congruence_System.defs.hh"
#include <iosfwd>
namespace Parma_Polyhedra_Library {
namespace IO_Operators {
//! Output operators.
/*! \relates Parma_Polyhedra_Library::Congruence */
std::ostream&
operator<<(std::ostream& s, const Congruence& c);
// Put this in the namespace here to declare it a friend later.
/*! \relates Parma_Polyhedra_Library::Congruence_System */
std::ostream&
operator<<(std::ostream& s, const Congruence_System& cgs);
} // namespace IO_Operators
// Put these in the namespace here to declare them friend later.
//! Returns <CODE>true</CODE> if and only if \p x and \p y are equivalent.
/*! \relates Congruence */
bool
operator==(const Congruence& x, const Congruence& y);
//! Returns <CODE>false</CODE> if and only if \p x and \p y are equivalent.
/*! \relates Congruence */
bool
operator!=(const Congruence& x, const Congruence& y);
//! Returns the congruence \f$e1 = e2 \pmod{1}\f$.
/*! \relates Congruence */
Congruence
operator%=(const Linear_Expression& e1, const Linear_Expression& e2);
//! Returns the congruence \f$e = n \pmod{1}\f$.
/*! \relates Congruence */
Congruence
operator%=(const Linear_Expression& e, Coefficient_traits::const_reference n);
//! Returns a copy of \p cg, multiplying \p k into the copy's modulus.
/*!
If \p cg represents the congruence \f$ e_1 = e_2
\pmod{m}\f$, then the result represents the
congruence \f$ e_1 = e_2 \pmod{mk}\f$.
\relates Congruence
*/
Congruence
operator/(const Congruence& cg, Coefficient_traits::const_reference k);
//! Creates a congruence from \p c, with \p m as the modulus.
/*! \relates Congruence */
Congruence
operator/(const Constraint& c, Coefficient_traits::const_reference m);
} // namespace Parma_Polyhedra_Library
namespace std {
//! Specializes <CODE>std::swap</CODE>.
/*! \relates Parma_Polyhedra_Library::Congruence */
void
swap(Parma_Polyhedra_Library::Congruence& x,
Parma_Polyhedra_Library::Congruence& y);
} // namespace std
//! A linear congruence.
/*! \ingroup PPL_CXX_interface
An object of the class Congruence is a congruence:
- \f$\cg = \sum_{i=0}^{n-1} a_i x_i + b = 0 \pmod m\f$
where \f$n\f$ is the dimension of the space,
\f$a_i\f$ is the integer coefficient of variable \f$x_i\f$,
\f$b\f$ is the integer inhomogeneous term and \f$m\f$ is the integer modulus;
if \f$m = 0\f$, then \f$\cg\f$ represents the equality congruence
\f$\sum_{i=0}^{n-1} a_i x_i + b = 0\f$
and, if \f$m \neq 0\f$, then the congruence \f$\cg\f$ is
said to be a proper congruence.
\par How to build a congruence
Congruences \f$\pmod{1}\f$ are typically built by
applying the congruence symbol `<CODE>\%=</CODE>'
to a pair of linear expressions.
Congruences with modulus \p m
are typically constructed by building a congruence \f$\pmod{1}\f$
using the given pair of linear expressions
and then adding the modulus \p m
using the modulus symbol is `<CODE>/</CODE>'.
The space dimension of a congruence is defined as the maximum
space dimension of the arguments of its constructor.
\par
In the following examples it is assumed that variables
<CODE>x</CODE>, <CODE>y</CODE> and <CODE>z</CODE>
are defined as follows:
\code
Variable x(0);
Variable y(1);
Variable z(2);
\endcode
\par Example 1
The following code builds the equality congruence
\f$3x + 5y - z = 0\f$, having space dimension \f$3\f$:
\code
Congruence eq_cg((3*x + 5*y - z %= 0) / 0);
\endcode
The following code builds the congruence
\f$4x = 2y - 13 \pmod{1}\f$, having space dimension \f$2\f$:
\code
Congruence mod1_cg(4*x %= 2*y - 13);
\endcode
The following code builds the congruence
\f$4x = 2y - 13 \pmod{2}\f$, having space dimension \f$2\f$:
\code
Congruence mod2_cg((4*x %= 2*y - 13) / 2);
\endcode
An unsatisfiable congruence on the zero-dimension space \f$\Rset^0\f$
can be specified as follows:
\code
Congruence false_cg = Congruence::zero_dim_false();
\endcode
Equivalent, but more involved ways are the following:
\code
Congruence false_cg1((Linear_Expression::zero() %= 1) / 0);
Congruence false_cg2((Linear_Expression::zero() %= 1) / 2);
\endcode
In contrast, the following code defines an unsatisfiable congruence
having space dimension \f$3\f$:
\code
Congruence false_cg3((0*z %= 1) / 0);
\endcode
\par How to inspect a congruence
Several methods are provided to examine a congruence and extract
all the encoded information: its space dimension, its modulus
and the value of its integer coefficients.
\par Example 2
The following code shows how it is possible to access the modulus
as well as each of the coefficients.
Given a congruence with linear expression \p e and modulus \p m
(in this case \f$x - 5y + 3z = 4 \pmod{5}\f$), we construct a new
congruence with the same modulus \p m but where the linear
expression is \f$2 e\f$ (\f$2x - 10y + 6z = 8 \pmod{5}\f$).
\code
Congruence cg1((x - 5*y + 3*z %= 4) / 5);
cout << "Congruence cg1: " << cg1 << endl;
const Coefficient& m = cg1.modulus();
if (m == 0)
cout << "Congruence cg1 is an equality." << endl;
else {
Linear_Expression e;
for (dimension_type i = cg1.space_dimension(); i-- > 0; )
e += 2 * cg1.coefficient(Variable(i)) * Variable(i);
e += 2 * cg1.inhomogeneous_term();
Congruence cg2((e %= 0) / m);
cout << "Congruence cg2: " << cg2 << endl;
}
\endcode
The actual output could be the following:
\code
Congruence cg1: A - 5*B + 3*C %= 4 / 5
Congruence cg2: 2*A - 10*B + 6*C %= 8 / 5
\endcode
Note that, in general, the particular output obtained can be
syntactically different from the (semantically equivalent)
congruence considered.
*/
class Parma_Polyhedra_Library::Congruence : private Row {
public:
//! Ordinary copy constructor.
Congruence(const Congruence& cg);
//! Copy-constructs (modulo 0) from equality constraint \p c.
/*!
\exception std::invalid_argument
Thrown if \p c is an inequality.
*/
explicit Congruence(const Constraint& c);
//! Destructor.
~Congruence();
//! Assignment operator.
Congruence& operator=(const Congruence& cg);
//! Returns the maximum space dimension a Congruence can handle.
static dimension_type max_space_dimension();
//! Returns the dimension of the vector space enclosing \p *this.
dimension_type space_dimension() const;
//! Returns the coefficient of \p v in \p *this.
/*!
\exception std::invalid_argument thrown if the index of \p v
is greater than or equal to the space dimension of \p *this.
*/
Coefficient_traits::const_reference coefficient(Variable v) const;
//! Returns the inhomogeneous term of \p *this.
Coefficient_traits::const_reference inhomogeneous_term() const;
//! Returns a const reference to the modulus of \p *this.
Coefficient_traits::const_reference modulus() const;
//! Multiplies \p k into the modulus of \p *this.
/*!
If called with \p *this representing the congruence \f$ e_1 = e_2
\pmod{m}\f$, then it returns with *this representing
the congruence \f$ e_1 = e_2 \pmod{mk}\f$.
*/
Congruence&
operator/=(Coefficient_traits::const_reference k);
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is a tautology
(i.e., an always true congruence).
A tautological congruence has one the following two forms:
- an equality: \f$\sum_{i=0}^{n-1} 0 x_i + 0 == 0\f$; or
- a proper congruence: \f$\sum_{i=0}^{n-1} 0 x_i + b \%= 0 / m\f$,
where \f$b = 0 \pmod{m}\f$.
*/
bool is_tautological() const;
/*! \brief
Returns <CODE>true</CODE> if and only if
\p *this is inconsistent (i.e., an always false congruence).
An inconsistent congruence has one of the following two forms:
- an equality: \f$\sum_{i=0}^{n-1} 0 x_i + b == 0\f$
where \f$b \neq 0\f$; or
- a proper congruence: \f$\sum_{i=0}^{n-1} 0 x_i + b \%= 0 / m\f$,
where \f$b \neq 0 \pmod{m}\f$.
*/
bool is_inconsistent() const;
//! Returns <CODE>true</CODE> if the modulus is greater than zero.
/*!
A congruence with a modulus of 0 is a linear equality.
*/
bool is_proper_congruence() const;
//! Returns <CODE>true</CODE> if \p *this is an equality.
/*!
A modulus of zero denotes a linear equality.
*/
bool is_equality() const;
/*! \brief
Returns <CODE>true</CODE> if \p *this is equal to \p cg in
dimension \p dim.
*/
bool is_equal_at_dimension(dimension_type dim,
const Congruence& cg) const;
//! Initializes the class.
static void initialize();
//! Finalizes the class.
static void finalize();
/*! \brief
Returns a reference to the true (zero-dimension space) congruence
\f$0 = 1 \pmod{1}\f$, also known as the <EM>integrality
congruence</EM>.
*/
static const Congruence& zero_dim_integrality();
/*! \brief
Returns a reference to the false (zero-dimension space) congruence
\f$0 = 1 \pmod{0}\f$.
*/
static const Congruence& zero_dim_false();
//! Returns the congruence \f$e1 = e2 \pmod{1}\f$.
static Congruence
create(const Linear_Expression& e1, const Linear_Expression& e2);
//! Returns the congruence \f$e = n \pmod{1}\f$.
static Congruence
create(const Linear_Expression& e, Coefficient_traits::const_reference n);
//! Returns the congruence \f$n = e \pmod{1}\f$.
static Congruence
create(Coefficient_traits::const_reference n, const Linear_Expression& e);
/*! \brief
Returns a lower bound to the total size in bytes of the memory
occupied by \p *this.
*/
memory_size_type total_memory_in_bytes() const;
//! Returns the size in bytes of the memory managed by \p *this.
memory_size_type external_memory_in_bytes() const;
PPL_OUTPUT_DECLARATIONS
/*! \brief
Loads from \p s an ASCII representation of the internal
representation of \p *this.
*/
bool ascii_load(std::istream& s);
//! Checks if all the invariants are satisfied.
bool OK() const;
protected:
//! Normalizes the signs.
/*!
The signs of the coefficients and the inhomogeneous term are
normalized, leaving the first non-zero homogeneous coefficient
positive.
*/
void sign_normalize();
//! Normalizes signs and the inhomogeneous term.
/*!
Applies sign_normalize, then reduces the inhomogeneous term to the
smallest possible positive number.
*/
void normalize();
//! Calls normalize, then divides out common factors.
/*!
Strongly normalized Congruences have equivalent semantics if and
only if their syntaxes (as output by operator<<) are equal.
*/
void strong_normalize();
private:
/*! \brief
Holds (between class initialization and finalization) a pointer to
the false (zero-dimension space) congruence \f$0 = 1 \pmod{0}\f$.
*/
static const Congruence* zero_dim_false_p;
/*! \brief
Holds (between class initialization and finalization) a pointer to
the true (zero-dimension space) congruence \f$0 = 1 \pmod{1}\f$,
also known as the <EM>integrality congruence</EM>.
*/
static const Congruence* zero_dim_integrality_p;
//! Marks this congruence as a linear equality.
void set_is_equality();
//! Negates the elements from index \p start to index \p end.
void negate(dimension_type start, dimension_type end);
//! Default constructor: private and not implemented.
Congruence();
//! Copy-constructs with specified size and capacity.
Congruence(const Congruence& cg,
dimension_type sz,
dimension_type capacity);
//! Constructs from a constraint, with specified size and capacity.
Congruence(const Constraint& c,
dimension_type sz,
dimension_type capacity);
//! Copy-constructs from \p cg, multiplying \p k into the modulus.
/*!
If \p cg represents the congruence \f$ e_1 = e_2
\pmod{m}\f$, then the result represents the
congruence \f$ e_1 = e_2 \pmod{mk}\f$.
*/
Congruence(const Congruence& cg, Coefficient_traits::const_reference k);
//! Constructs from Linear_Expression \p le, using modulus \p m.
/*!
Builds a congruence with modulus \p m, stealing the coefficients
from \p le.
\param le
The Linear_Expression holding the coefficients.
\param m
The modulus for the congruence, which must be zero or greater.
*/
Congruence(Linear_Expression& le,
Coefficient_traits::const_reference m);
//! Swaps \p *this with \p y.
void swap(Congruence& y);
/*! \brief
Throws a <CODE>std::invalid_argument</CODE> exception containing
error message \p message.
*/
void
throw_invalid_argument(const char* method, const char* message) const;
/*! \brief
Throws a <CODE>std::invalid_argument</CODE> exception containing
the appropriate error message.
*/
void
throw_dimension_incompatible(const char* method,
const char* v_name,
Variable v) const;
friend Congruence
operator/(const Congruence& cg, Coefficient_traits::const_reference k);
friend Congruence
operator/(const Constraint& c, Coefficient_traits::const_reference m);
friend bool
operator==(const Congruence& x, const Congruence& y);
friend bool
operator!=(const Congruence& x, const Congruence& y);
friend std::ostream&
Parma_Polyhedra_Library::IO_Operators
::operator<<(std::ostream& s,
const Congruence_System& cgs);
friend class Parma_Polyhedra_Library::Scalar_Products;
friend class Parma_Polyhedra_Library::Constraint;
friend class Parma_Polyhedra_Library::Congruence_System;
friend class Parma_Polyhedra_Library::Congruence_System::const_iterator;
// FIXME: The following friend declaration is at least for
// operator[] access in Grid::conversion.
friend class Parma_Polyhedra_Library::Grid;
friend class Parma_Polyhedra_Library::Linear_Expression;
friend void
std::swap(Parma_Polyhedra_Library::Congruence& x,
Parma_Polyhedra_Library::Congruence& y);
};
#include "Congruence.inlines.hh"
#endif // !defined(PPL_Congruence_defs_hh)
|