1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
|
/* Box class implementation: inline functions.
Copyright (C) 2001-2010 Roberto Bagnara <bagnara@cs.unipr.it>
Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com)
This file is part of the Parma Polyhedra Library (PPL).
The PPL is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The PPL is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA.
For the most up-to-date information see the Parma Polyhedra Library
site: http://www.cs.unipr.it/ppl/ . */
#ifndef PPL_Box_inlines_hh
#define PPL_Box_inlines_hh 1
#include "Boundary.defs.hh"
#include "Constraint_System.defs.hh"
#include "Constraint_System.inlines.hh"
#include "Congruence_System.defs.hh"
#include "Congruence_System.inlines.hh"
#include "distances.defs.hh"
namespace Parma_Polyhedra_Library {
template <typename ITV>
inline bool
Box<ITV>::marked_empty() const {
return status.test_empty_up_to_date() && status.test_empty();
}
template <typename ITV>
inline void
Box<ITV>::set_empty() {
status.set_empty();
status.set_empty_up_to_date();
}
template <typename ITV>
inline void
Box<ITV>::set_nonempty() {
status.reset_empty();
status.set_empty_up_to_date();
}
template <typename ITV>
inline void
Box<ITV>::set_empty_up_to_date() {
status.set_empty_up_to_date();
}
template <typename ITV>
inline void
Box<ITV>::reset_empty_up_to_date() {
return status.reset_empty_up_to_date();
}
template <typename ITV>
inline
Box<ITV>::Box(const Box& y, Complexity_Class)
: seq(y.seq), status(y.status) {
}
template <typename ITV>
inline Box<ITV>&
Box<ITV>::operator=(const Box& y) {
seq = y.seq;
status = y.status;
return *this;
}
template <typename ITV>
inline void
Box<ITV>::swap(Box& y) {
Box& x = *this;
std::swap(x.seq, y.seq);
std::swap(x.status, y.status);
}
template <typename ITV>
inline
Box<ITV>::Box(const Constraint_System& cs, Recycle_Input) {
// Recycling is useless: just delegate.
Box<ITV> tmp(cs);
this->swap(tmp);
}
template <typename ITV>
inline
Box<ITV>::Box(const Generator_System& gs, Recycle_Input) {
// Recycling is useless: just delegate.
Box<ITV> tmp(gs);
this->swap(tmp);
}
template <typename ITV>
inline
Box<ITV>::Box(const Congruence_System& cgs, Recycle_Input) {
// Recycling is useless: just delegate.
Box<ITV> tmp(cgs);
this->swap(tmp);
}
template <typename ITV>
inline memory_size_type
Box<ITV>::total_memory_in_bytes() const {
return sizeof(*this) + external_memory_in_bytes();
}
template <typename ITV>
inline dimension_type
Box<ITV>::space_dimension() const {
return seq.size();
}
template <typename ITV>
inline dimension_type
Box<ITV>::max_space_dimension() {
// One dimension is reserved to have a value of type dimension_type
// that does not represent a legal dimension.
return Sequence().max_size() - 1;
}
template <typename ITV>
inline const ITV&
Box<ITV>::operator[](const dimension_type k) const {
PPL_ASSERT(k < seq.size());
return seq[k];
}
template <typename ITV>
inline const ITV&
Box<ITV>::get_interval(const Variable var) const {
if (space_dimension() < var.space_dimension())
throw_dimension_incompatible("get_interval(v)", "v", var);
if (is_empty()) {
static ITV empty_interval(EMPTY);
return empty_interval;
}
return seq[var.id()];
}
template <typename ITV>
inline void
Box<ITV>::set_interval(const Variable var, const ITV& i) {
const dimension_type space_dim = space_dimension();
if (space_dim < var.space_dimension())
throw_dimension_incompatible("set_interval(v, i)", "v", var);
if (is_empty() && space_dim >= 2)
// If the box is empty, and has dimension >= 2, setting only one
// interval will not make it non-empty.
return;
seq[var.id()] = i;
reset_empty_up_to_date();
PPL_ASSERT(OK());
}
template <typename ITV>
inline bool
Box<ITV>::is_empty() const {
return marked_empty() || check_empty();
}
template <typename ITV>
inline bool
Box<ITV>::bounds_from_above(const Linear_Expression& expr) const {
return bounds(expr, true);
}
template <typename ITV>
inline bool
Box<ITV>::bounds_from_below(const Linear_Expression& expr) const {
return bounds(expr, false);
}
template <typename ITV>
inline bool
Box<ITV>::maximize(const Linear_Expression& expr,
Coefficient& sup_n, Coefficient& sup_d,
bool& maximum) const {
return max_min(expr, true, sup_n, sup_d, maximum);
}
template <typename ITV>
inline bool
Box<ITV>::maximize(const Linear_Expression& expr,
Coefficient& sup_n, Coefficient& sup_d, bool& maximum,
Generator& g) const {
return max_min(expr, true, sup_n, sup_d, maximum, g);
}
template <typename ITV>
inline bool
Box<ITV>::minimize(const Linear_Expression& expr,
Coefficient& inf_n, Coefficient& inf_d,
bool& minimum) const {
return max_min(expr, false, inf_n, inf_d, minimum);
}
template <typename ITV>
inline bool
Box<ITV>::minimize(const Linear_Expression& expr,
Coefficient& inf_n, Coefficient& inf_d, bool& minimum,
Generator& g) const {
return max_min(expr, false, inf_n, inf_d, minimum, g);
}
template <typename ITV>
inline bool
Box<ITV>::strictly_contains(const Box& y) const {
const Box& x = *this;
return x.contains(y) && !y.contains(x);
}
template <typename ITV>
inline void
Box<ITV>::expand_space_dimension(const Variable var,
const dimension_type m) {
const dimension_type space_dim = space_dimension();
// `var' should be one of the dimensions of the vector space.
if (var.space_dimension() > space_dim)
throw_dimension_incompatible("expand_space_dimension(v, m)", "v", var);
// The space dimension of the resulting Box should not
// overflow the maximum allowed space dimension.
if (m > max_space_dimension() - space_dim)
throw_generic("expand_dimension(v, m)",
"adding m new space dimensions exceeds "
"the maximum allowed space dimension");
// To expand the space dimension corresponding to variable `var',
// we append to the box `m' copies of the corresponding interval.
seq.insert(seq.end(), m, seq[var.id()]);
PPL_ASSERT(OK());
}
template <typename ITV>
inline bool
operator!=(const Box<ITV>& x, const Box<ITV>& y) {
return !(x == y);
}
template <typename ITV>
inline bool
Box<ITV>::get_lower_bound(const dimension_type k, bool& closed,
Coefficient& n, Coefficient& d) const {
PPL_ASSERT(k < seq.size());
const ITV& seq_k = seq[k];
if (seq_k.lower_is_boundary_infinity())
return false;
closed = !seq_k.lower_is_open();
PPL_DIRTY_TEMP0(mpq_class, lr);
assign_r(lr, seq_k.lower(), ROUND_NOT_NEEDED);
n = lr.get_num();
d = lr.get_den();
return true;
}
template <typename ITV>
inline bool
Box<ITV>::get_upper_bound(const dimension_type k, bool& closed,
Coefficient& n, Coefficient& d) const {
PPL_ASSERT(k < seq.size());
const ITV& seq_k = seq[k];
if (seq_k.upper_is_boundary_infinity())
return false;
closed = !seq_k.upper_is_open();
PPL_DIRTY_TEMP0(mpq_class, ur);
assign_r(ur, seq_k.upper(), ROUND_NOT_NEEDED);
n = ur.get_num();
d = ur.get_den();
return true;
}
template <typename ITV>
inline void
Box<ITV>::add_constraint(const Constraint& c) {
const dimension_type c_space_dim = c.space_dimension();
// Dimension-compatibility check.
if (c_space_dim > space_dimension())
throw_dimension_incompatible("add_constraint(c)", c);
add_constraint_no_check(c);
}
template <typename ITV>
inline void
Box<ITV>::add_constraints(const Constraint_System& cs) {
// Dimension-compatibility check.
if (cs.space_dimension() > space_dimension())
throw_dimension_incompatible("add_constraints(cs)", cs);
add_constraints_no_check(cs);
}
template <typename T>
inline void
Box<T>::add_recycled_constraints(Constraint_System& cs) {
add_constraints(cs);
}
template <typename ITV>
inline void
Box<ITV>::add_congruence(const Congruence& cg) {
const dimension_type cg_space_dim = cg.space_dimension();
// Dimension-compatibility check.
if (cg_space_dim > space_dimension())
throw_dimension_incompatible("add_congruence(cg)", cg);
add_congruence_no_check(cg);
}
template <typename ITV>
inline void
Box<ITV>::add_congruences(const Congruence_System& cgs) {
if (cgs.space_dimension() > space_dimension())
throw_dimension_incompatible("add_congruences(cgs)", cgs);
add_congruences_no_check(cgs);
}
template <typename T>
inline void
Box<T>::add_recycled_congruences(Congruence_System& cgs) {
add_congruences(cgs);
}
template <typename T>
inline bool
Box<T>::can_recycle_constraint_systems() {
return false;
}
template <typename T>
inline bool
Box<T>::can_recycle_congruence_systems() {
return false;
}
template <typename T>
inline void
Box<T>::widening_assign(const Box& y, unsigned* tp) {
CC76_widening_assign(y, tp);
}
template <typename ITV>
inline Congruence_System
Box<ITV>::minimized_congruences() const {
// Only equalities can be congruences and these are already minimized.
return congruences();
}
template <typename ITV>
inline I_Result
Box<ITV>::refine_interval_no_check(ITV& itv,
const Constraint::Type type,
Coefficient_traits::const_reference num,
Coefficient_traits::const_reference den) {
PPL_ASSERT(den != 0);
// The interval constraint is of the form
// `var + num / den rel 0',
// where `rel' is either the relation `==', `>=', or `>'.
// For the purpose of refining the interval, this is
// (morally) turned into `var rel -num/den'.
PPL_DIRTY_TEMP0(mpq_class, q);
assign_r(q.get_num(), num, ROUND_NOT_NEEDED);
assign_r(q.get_den(), den, ROUND_NOT_NEEDED);
q.canonicalize();
// Turn `num/den' into `-num/den'.
q = -q;
I_Result res;
switch (type) {
case Constraint::EQUALITY:
res = itv.add_constraint(i_constraint(EQUAL, q));
break;
case Constraint::NONSTRICT_INEQUALITY:
res = itv.add_constraint(i_constraint(den > 0
? GREATER_OR_EQUAL
: LESS_OR_EQUAL, q));
break;
case Constraint::STRICT_INEQUALITY:
res = itv.add_constraint(i_constraint(den > 0
? GREATER_THAN
: LESS_THAN, q));
break;
default:
// Silence an annoying GCC warning (should never reach this point).
PPL_ASSERT(false);
res = I_ANY;
}
PPL_ASSERT(itv.OK());
return res;
}
template <typename ITV>
inline void
Box<ITV>
::add_interval_constraint_no_check(const dimension_type var_id,
const Constraint::Type type,
Coefficient_traits::const_reference num,
Coefficient_traits::const_reference den) {
PPL_ASSERT(!marked_empty());
PPL_ASSERT(var_id < space_dimension());
PPL_ASSERT(den != 0);
refine_interval_no_check(seq[var_id], type, num, den);
// FIXME: do check the value returned and set `empty' and
// `empty_up_to_date' as appropriate.
// This has to be done after reimplementation of intervals.
reset_empty_up_to_date();
PPL_ASSERT(OK());
}
template <typename ITV>
inline void
Box<ITV>::refine_with_constraint(const Constraint& c) {
const dimension_type c_space_dim = c.space_dimension();
// Dimension-compatibility check.
if (c_space_dim > space_dimension())
throw_dimension_incompatible("refine_with_constraint(c)", c);
// If the box is already empty, there is nothing left to do.
if (marked_empty())
return;
refine_no_check(c);
}
template <typename ITV>
inline void
Box<ITV>::refine_with_constraints(const Constraint_System& cs) {
// Dimension-compatibility check.
if (cs.space_dimension() > space_dimension())
throw_dimension_incompatible("refine_with_constraints(cs)", cs);
// If the box is already empty, there is nothing left to do.
if (marked_empty())
return;
refine_no_check(cs);
}
template <typename ITV>
inline void
Box<ITV>::refine_with_congruence(const Congruence& cg) {
const dimension_type cg_space_dim = cg.space_dimension();
// Dimension-compatibility check.
if (cg_space_dim > space_dimension())
throw_dimension_incompatible("refine_with_congruence(cg)", cg);
// If the box is already empty, there is nothing left to do.
if (marked_empty())
return;
refine_no_check(cg);
}
template <typename ITV>
inline void
Box<ITV>::refine_with_congruences(const Congruence_System& cgs) {
// Dimension-compatibility check.
if (cgs.space_dimension() > space_dimension())
throw_dimension_incompatible("refine_with_congruences(cgs)", cgs);
// If the box is already empty, there is nothing left to do.
if (marked_empty())
return;
refine_no_check(cgs);
}
template <typename ITV>
inline void
Box<ITV>::propagate_constraint(const Constraint& c) {
const dimension_type c_space_dim = c.space_dimension();
// Dimension-compatibility check.
if (c_space_dim > space_dimension())
throw_dimension_incompatible("propagate_constraint(c)", c);
// If the box is already empty, there is nothing left to do.
if (marked_empty())
return;
propagate_constraint_no_check(c);
}
template <typename ITV>
inline void
Box<ITV>::propagate_constraints(const Constraint_System& cs,
const dimension_type max_iterations) {
// Dimension-compatibility check.
if (cs.space_dimension() > space_dimension())
throw_dimension_incompatible("propagate_constraints(cs)", cs);
// If the box is already empty, there is nothing left to do.
if (marked_empty())
return;
propagate_constraints_no_check(cs, max_iterations);
}
template <typename ITV>
inline void
Box<ITV>::unconstrain(const Variable var) {
const dimension_type var_id = var.id();
// Dimension-compatibility check.
if (space_dimension() < var_id + 1)
throw_dimension_incompatible("unconstrain(var)", var_id + 1);
// If the box is already empty, there is nothing left to do.
if (marked_empty())
return;
// Here the box might still be empty (but we haven't detected it yet):
// check emptiness of the interval for `var' before cylindrification.
ITV& seq_var = seq[var_id];
if (seq_var.is_empty())
set_empty();
else
seq_var.assign(UNIVERSE);
PPL_ASSERT(OK());
}
/*! \relates Box */
template <typename Temp, typename To, typename ITV>
inline bool
rectilinear_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Box<ITV>& x,
const Box<ITV>& y,
const Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2) {
return l_m_distance_assign<Rectilinear_Distance_Specialization<Temp> >
(r, x, y, dir, tmp0, tmp1, tmp2);
}
/*! \relates Box */
template <typename Temp, typename To, typename ITV>
inline bool
rectilinear_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Box<ITV>& x,
const Box<ITV>& y,
const Rounding_Dir dir) {
typedef Checked_Number<Temp, Extended_Number_Policy> Checked_Temp;
PPL_DIRTY_TEMP(Checked_Temp, tmp0);
PPL_DIRTY_TEMP(Checked_Temp, tmp1);
PPL_DIRTY_TEMP(Checked_Temp, tmp2);
return rectilinear_distance_assign(r, x, y, dir, tmp0, tmp1, tmp2);
}
/*! \relates Box */
template <typename To, typename ITV>
inline bool
rectilinear_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Box<ITV>& x,
const Box<ITV>& y,
const Rounding_Dir dir) {
// FIXME: the following qualification is only to work around a bug
// in the Intel C/C++ compiler version 10.1.x.
return Parma_Polyhedra_Library
::rectilinear_distance_assign<To, To, ITV>(r, x, y, dir);
}
/*! \relates Box */
template <typename Temp, typename To, typename ITV>
inline bool
euclidean_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Box<ITV>& x,
const Box<ITV>& y,
const Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2) {
return l_m_distance_assign<Euclidean_Distance_Specialization<Temp> >
(r, x, y, dir, tmp0, tmp1, tmp2);
}
/*! \relates Box */
template <typename Temp, typename To, typename ITV>
inline bool
euclidean_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Box<ITV>& x,
const Box<ITV>& y,
const Rounding_Dir dir) {
typedef Checked_Number<Temp, Extended_Number_Policy> Checked_Temp;
PPL_DIRTY_TEMP(Checked_Temp, tmp0);
PPL_DIRTY_TEMP(Checked_Temp, tmp1);
PPL_DIRTY_TEMP(Checked_Temp, tmp2);
return euclidean_distance_assign(r, x, y, dir, tmp0, tmp1, tmp2);
}
/*! \relates Box */
template <typename To, typename ITV>
inline bool
euclidean_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Box<ITV>& x,
const Box<ITV>& y,
const Rounding_Dir dir) {
// FIXME: the following qualification is only to work around a bug
// in the Intel C/C++ compiler version 10.1.x.
return Parma_Polyhedra_Library
::euclidean_distance_assign<To, To, ITV>(r, x, y, dir);
}
/*! \relates Box */
template <typename Temp, typename To, typename ITV>
inline bool
l_infinity_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Box<ITV>& x,
const Box<ITV>& y,
const Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2) {
return l_m_distance_assign<L_Infinity_Distance_Specialization<Temp> >
(r, x, y, dir, tmp0, tmp1, tmp2);
}
/*! \relates Box */
template <typename Temp, typename To, typename ITV>
inline bool
l_infinity_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Box<ITV>& x,
const Box<ITV>& y,
const Rounding_Dir dir) {
typedef Checked_Number<Temp, Extended_Number_Policy> Checked_Temp;
PPL_DIRTY_TEMP(Checked_Temp, tmp0);
PPL_DIRTY_TEMP(Checked_Temp, tmp1);
PPL_DIRTY_TEMP(Checked_Temp, tmp2);
return l_infinity_distance_assign(r, x, y, dir, tmp0, tmp1, tmp2);
}
/*! \relates Box */
template <typename To, typename ITV>
inline bool
l_infinity_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const Box<ITV>& x,
const Box<ITV>& y,
const Rounding_Dir dir) {
// FIXME: the following qualification is only to work around a bug
// in the Intel C/C++ compiler version 10.1.x.
return Parma_Polyhedra_Library
::l_infinity_distance_assign<To, To, ITV>(r, x, y, dir);
}
} // namespace Parma_Polyhedra_Library
#endif // !defined(PPL_Box_inlines_hh)
|