1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
|
/* Interval boundary functions.
Copyright (C) 2001-2010 Roberto Bagnara <bagnara@cs.unipr.it>
Copyright (C) 2010-2012 BUGSENG srl (http://bugseng.com)
This file is part of the Parma Polyhedra Library (PPL).
The PPL is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The PPL is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA.
For the most up-to-date information see the Parma Polyhedra Library
site: http://bugseng.com/products/ppl/ . */
#ifndef PPL_Boundary_defs_hh
#define PPL_Boundary_defs_hh 1
#include "Checked_Number_defs.hh"
namespace Parma_Polyhedra_Library {
namespace Boundary_NS {
struct Property {
enum Type {
SPECIAL_,
OPEN_,
};
typedef bool Value;
static const Value default_value = true;
static const Value unsupported_value = false;
Property(Type t)
: type(t) {
}
Type type;
};
static const Property SPECIAL(Property::SPECIAL_);
static const Property OPEN(Property::OPEN_);
enum Boundary_Type {
LOWER = ROUND_DOWN,
UPPER = ROUND_UP
};
inline Rounding_Dir
round_dir_check(Boundary_Type t, bool check = false) {
if (check)
return static_cast<Rounding_Dir>(t) | ROUND_STRICT_RELATION;
else
return static_cast<Rounding_Dir>(t);
}
template <typename T, typename Info>
inline Result
special_set_boundary_infinity(Boundary_Type type, T&, Info& info) {
PPL_ASSERT(Info::store_special);
info.set_boundary_property(type, SPECIAL);
return V_EQ;
}
template <typename T, typename Info>
inline bool
special_is_open(Boundary_Type, const T&, const Info&) {
return !Info::may_contain_infinity;
}
template <typename T, typename Info>
inline bool
normal_is_open(Boundary_Type type, const T& x, const Info& info) {
if (Info::store_open)
return info.get_boundary_property(type, OPEN);
else
return !Info::store_special && !Info::may_contain_infinity
&& normal_is_boundary_infinity(type, x, info);
}
template <typename T, typename Info>
inline bool
is_open(Boundary_Type type, const T& x, const Info& info) {
if (Info::store_open)
return info.get_boundary_property(type, OPEN);
else
return !Info::may_contain_infinity
&& is_boundary_infinity(type, x, info);
}
template <typename T, typename Info>
inline Result
set_unbounded(Boundary_Type type, T& x, Info& info) {
PPL_COMPILE_TIME_CHECK(Info::store_special
|| std::numeric_limits<T>::is_bounded
|| std::numeric_limits<T>::has_infinity,
"unbounded is not representable");
Result r;
if (Info::store_special)
r = special_set_boundary_infinity(type, x, info);
else if (type == LOWER)
r = assign_r(x, MINUS_INFINITY, ROUND_UP);
else
r = assign_r(x, PLUS_INFINITY, ROUND_DOWN);
if (result_relation(r) == VR_EQ && !Info::may_contain_infinity)
info.set_boundary_property(type, OPEN);
return r;
}
template <typename T, typename Info>
inline Result
set_minus_infinity(Boundary_Type type, T& x, Info& info, bool open = false) {
if (open) {
PPL_ASSERT(type == LOWER);
}
else {
PPL_ASSERT(Info::may_contain_infinity);
}
Result r;
if (Info::store_special) {
PPL_ASSERT(type == LOWER);
r = special_set_boundary_infinity(type, x, info);
}
else {
r = assign_r(x, MINUS_INFINITY, round_dir_check(type));
PPL_ASSERT(result_representable(r));
}
if (open || result_relation(r) != VR_EQ)
info.set_boundary_property(type, OPEN);
return r;
}
template <typename T, typename Info>
inline Result
set_plus_infinity(Boundary_Type type, T& x, Info& info, bool open = false) {
if (open) {
PPL_ASSERT(type == UPPER);
}
else {
PPL_ASSERT(Info::may_contain_infinity);
}
Result r;
if (Info::store_special) {
PPL_ASSERT(type == UPPER);
r = special_set_boundary_infinity(type, x, info);
}
else {
r = assign_r(x, PLUS_INFINITY, round_dir_check(type));
PPL_ASSERT(result_representable(r));
}
if (open || result_relation(r) != VR_EQ)
info.set_boundary_property(type, OPEN);
return r;
}
template <typename T, typename Info>
inline Result
set_boundary_infinity(Boundary_Type type, T& x, Info& info, bool open = false) {
PPL_ASSERT(open || Info::may_contain_infinity);
Result r;
if (Info::store_special)
r = special_set_boundary_infinity(type, x, info);
else if (type == LOWER)
r = assign_r(x, MINUS_INFINITY, round_dir_check(type));
else
r = assign_r(x, PLUS_INFINITY, round_dir_check(type));
PPL_ASSERT(result_representable(r));
if (open)
info.set_boundary_property(type, OPEN);
return r;
}
template <typename T, typename Info>
inline bool
is_domain_inf(Boundary_Type type, const T& x, const Info& info) {
if (Info::store_special && type == LOWER)
return info.get_boundary_property(type, SPECIAL);
else if (std::numeric_limits<T>::has_infinity)
return Parma_Polyhedra_Library::is_minus_infinity(x);
else if (std::numeric_limits<T>::is_bounded)
return x == std::numeric_limits<T>::min();
else
return false;
}
template <typename T, typename Info>
inline bool
is_domain_sup(Boundary_Type type, const T& x, const Info& info) {
if (Info::store_special && type == UPPER)
return info.get_boundary_property(type, SPECIAL);
else if (std::numeric_limits<T>::has_infinity)
return Parma_Polyhedra_Library::is_plus_infinity(x);
else if (std::numeric_limits<T>::is_bounded)
return x == std::numeric_limits<T>::max();
else
return false;
}
template <typename T, typename Info>
inline bool
normal_is_boundary_infinity(Boundary_Type type, const T& x, const Info&) {
if (!std::numeric_limits<T>::has_infinity)
return false;
if (type == LOWER)
return Parma_Polyhedra_Library::is_minus_infinity(x);
else
return Parma_Polyhedra_Library::is_plus_infinity(x);
}
template <typename T, typename Info>
inline bool
is_boundary_infinity(Boundary_Type type, const T& x, const Info& info) {
if (Info::store_special)
return info.get_boundary_property(type, SPECIAL);
else
return normal_is_boundary_infinity(type, x, info);
}
template <typename T, typename Info>
inline bool
normal_is_reverse_infinity(Boundary_Type type, const T& x, const Info&) {
if (!Info::may_contain_infinity)
return false;
else if (type == LOWER)
return Parma_Polyhedra_Library::is_plus_infinity(x);
else
return Parma_Polyhedra_Library::is_minus_infinity(x);
}
template <typename T, typename Info>
inline bool
is_minus_infinity(Boundary_Type type, const T& x, const Info& info) {
if (type == LOWER) {
if (Info::store_special)
return info.get_boundary_property(type, SPECIAL);
else
return normal_is_boundary_infinity(type, x, info);
}
else
return !Info::store_special && normal_is_reverse_infinity(type, x, info);
}
template <typename T, typename Info>
inline bool
is_plus_infinity(Boundary_Type type, const T& x, const Info& info) {
if (type == UPPER) {
if (Info::store_special)
return info.get_boundary_property(type, SPECIAL);
else
return normal_is_boundary_infinity(type, x, info);
}
else
return !Info::store_special && normal_is_reverse_infinity(type, x, info);
}
template <typename T, typename Info>
inline bool
is_reverse_infinity(Boundary_Type type, const T& x, const Info& info) {
return normal_is_reverse_infinity(type, x, info);
}
template <typename T, typename Info>
inline int
infinity_sign(Boundary_Type type, const T& x, const Info& info) {
if (is_boundary_infinity(type, x, info))
return (type == LOWER) ? -1 : 1;
else if (is_reverse_infinity(type, x, info))
return (type == UPPER) ? -1 : 1;
else
return 0;
}
template <typename T, typename Info>
inline bool
is_boundary_infinity_closed(Boundary_Type type, const T& x, const Info& info) {
return Info::may_contain_infinity
&& !info.get_boundary_property(type, OPEN)
&& is_boundary_infinity(type, x, info);
}
template <typename Info>
inline bool
boundary_infinity_is_open(Boundary_Type type, const Info& info) {
return !Info::may_contain_infinity
|| info.get_boundary_property(type, OPEN);
}
template <typename T, typename Info>
inline int
sgn_b(Boundary_Type type, const T& x, const Info& info) {
if (info.get_boundary_property(type, SPECIAL))
return (type == LOWER) ? -1 : 1;
else
// The following Parma_Polyhedra_Library:: qualification is to work
// around a bug of GCC 4.0.x.
return Parma_Polyhedra_Library::sgn(x);
}
template <typename T, typename Info>
inline int
sgn(Boundary_Type type, const T& x, const Info& info) {
int sign = sgn_b(type, x, info);
if (x == 0 && info.get_boundary_property(type, OPEN))
return (type == LOWER) ? -1 : 1;
else
return sign;
}
template <typename T1, typename Info1, typename T2, typename Info2>
inline bool
eq(Boundary_Type type1, const T1& x1, const Info1& info1,
Boundary_Type type2, const T2& x2, const Info2& info2) {
if (type1 == type2) {
if (is_open(type1, x1, info1)
!= is_open(type2, x2, info2))
return false;
}
else if (is_open(type1, x1, info1)
|| is_open(type2, x2, info2))
return false;
if (is_minus_infinity(type1, x1, info1))
return is_minus_infinity(type2, x2, info2);
else if (is_plus_infinity(type1, x1, info1))
return is_plus_infinity(type2, x2, info2);
else if (is_minus_infinity(type2, x2, info2)
|| is_plus_infinity(type2, x2, info2))
return false;
else
return equal(x1, x2);
}
template <typename T1, typename Info1, typename T2, typename Info2>
inline bool
lt(Boundary_Type type1, const T1& x1, const Info1& info1,
Boundary_Type type2, const T2& x2, const Info2& info2) {
if (is_open(type1, x1, info1)) {
if (type1 == UPPER
&& (type2 == LOWER
|| !is_open(type2, x2, info2)))
goto le;
}
else if (type2 == LOWER
&& is_open(type2, x2, info2)) {
le:
if (is_minus_infinity(type1, x1, info1)
|| is_plus_infinity(type2, x2, info2))
return true;
if (is_plus_infinity(type1, x1, info1)
|| is_minus_infinity(type2, x2, info2))
return false;
else
return less_or_equal(x1, x2);
}
if (is_plus_infinity(type1, x1, info1)
|| is_minus_infinity(type2, x2, info2))
return false;
if (is_minus_infinity(type1, x1, info1)
|| is_plus_infinity(type2, x2, info2))
return true;
else
return less_than(x1, x2);
}
template <typename T1, typename Info1, typename T2, typename Info2>
inline bool
gt(Boundary_Type type1, const T1& x1, const Info1& info1,
Boundary_Type type2, const T2& x2, const Info2& info2) {
return lt(type2, x2, info2, type1, x1, info1);
}
template <typename T1, typename Info1, typename T2, typename Info2>
inline bool
le(Boundary_Type type1, const T1& x1, const Info1& info1,
Boundary_Type type2, const T2& x2, const Info2& info2) {
return !gt(type1, x1, info1, type2, x2, info2);
}
template <typename T1, typename Info1, typename T2, typename Info2>
inline bool
ge(Boundary_Type type1, const T1& x1, const Info1& info1,
Boundary_Type type2, const T2& x2, const Info2& info2) {
return !lt(type1, x1, info1, type2, x2, info2);
}
template <typename T, typename Info>
inline Result
adjust_boundary(Boundary_Type type, T& x, Info& info,
bool open, Result r) {
r = result_relation_class(r);
if (type == LOWER) {
switch (r) {
case V_GT_MINUS_INFINITY:
open = true;
/* Fall through */
case V_EQ_MINUS_INFINITY:
if (!Info::store_special)
return r;
if (open)
info.set_boundary_property(type, OPEN);
return special_set_boundary_infinity(type, x, info);
case V_GT:
open = true;
/* Fall through */
case V_GE:
case V_EQ:
if (open)
info.set_boundary_property(type, OPEN);
return r;
default:
PPL_UNREACHABLE;
return V_NAN;
}
}
else {
switch (r) {
case V_LT_PLUS_INFINITY:
open = true;
/* Fall through */
case V_EQ_PLUS_INFINITY:
if (!Info::store_special)
return r;
if (open)
info.set_boundary_property(type, OPEN);
return special_set_boundary_infinity(type, x, info);
case V_LT:
open = true;
/* Fall through */
case V_LE:
case V_EQ:
if (open)
info.set_boundary_property(type, OPEN);
return r;
default:
PPL_UNREACHABLE;
return V_NAN;
}
}
}
template <typename To, typename To_Info, typename T, typename Info>
inline Result
complement(Boundary_Type to_type, To& to, To_Info& to_info,
Boundary_Type type, const T& x, const Info& info) {
PPL_ASSERT(to_type != type);
bool should_shrink;
if (info.get_boundary_property(type, SPECIAL)) {
should_shrink = !special_is_open(type, x, info);
if (type == LOWER)
return set_minus_infinity(to_type, to, to_info, should_shrink);
else
return set_plus_infinity(to_type, to, to_info, should_shrink);
}
should_shrink = !normal_is_open(type, x, info);
bool check = (To_Info::check_inexact || (!should_shrink && To_Info::store_open));
Result r = assign_r(to, x, round_dir_check(to_type, check));
return adjust_boundary(to_type, to, to_info, should_shrink, r);
}
template <typename To, typename To_Info, typename T, typename Info>
inline Result
assign(Boundary_Type to_type, To& to, To_Info& to_info,
Boundary_Type type, const T& x, const Info& info,
bool should_shrink = false) {
PPL_ASSERT(to_type == type);
if (info.get_boundary_property(type, SPECIAL)) {
should_shrink = (should_shrink || special_is_open(type, x, info));
return set_boundary_infinity(to_type, to, to_info, should_shrink);
}
should_shrink = (should_shrink || normal_is_open(type, x, info));
bool check = (To_Info::check_inexact || (!should_shrink && To_Info::store_open));
Result r = assign_r(to, x, round_dir_check(to_type, check));
return adjust_boundary(to_type, to, to_info, should_shrink, r);
}
template <typename To, typename To_Info, typename T, typename Info>
inline Result
min_assign(Boundary_Type to_type, To& to, To_Info& to_info,
Boundary_Type type, const T& x, const Info& info) {
if (lt(type, x, info, to_type, to, to_info)) {
to_info.clear_boundary_properties(to_type);
return assign(to_type, to, to_info, type, x, info);
}
return V_EQ;
}
template <typename To, typename To_Info, typename T1, typename Info1, typename T2, typename Info2>
inline Result
min_assign(Boundary_Type to_type, To& to, To_Info& to_info,
Boundary_Type type1, const T1& x1, const Info1& info1,
Boundary_Type type2, const T2& x2, const Info2& info2) {
if (lt(type1, x1, info1, type2, x2, info2))
return assign(to_type, to, to_info, type1, x1, info1);
else
return assign(to_type, to, to_info, type2, x2, info2);
}
template <typename To, typename To_Info, typename T, typename Info>
inline Result
max_assign(Boundary_Type to_type, To& to, To_Info& to_info,
Boundary_Type type, const T& x, const Info& info) {
if (gt(type, x, info, to_type, to, to_info)) {
to_info.clear_boundary_properties(to_type);
return assign(to_type, to, to_info, type, x, info);
}
return V_EQ;
}
template <typename To, typename To_Info, typename T1, typename Info1, typename T2, typename Info2>
inline Result
max_assign(Boundary_Type to_type, To& to, To_Info& to_info,
Boundary_Type type1, const T1& x1, const Info1& info1,
Boundary_Type type2, const T2& x2, const Info2& info2) {
if (gt(type1, x1, info1, type2, x2, info2))
return assign(to_type, to, to_info, type1, x1, info1);
else
return assign(to_type, to, to_info, type2, x2, info2);
}
template <typename To, typename To_Info, typename T, typename Info>
inline Result
neg_assign(Boundary_Type to_type, To& to, To_Info& to_info,
Boundary_Type type, const T& x, const Info& info) {
PPL_ASSERT(to_type != type);
bool should_shrink;
if (info.get_boundary_property(type, SPECIAL)) {
should_shrink = special_is_open(type, x, info);
return set_boundary_infinity(to_type, to, to_info, should_shrink);
}
should_shrink = normal_is_open(type, x, info);
bool check = (To_Info::check_inexact || (!should_shrink && To_Info::store_open));
Result r = neg_assign_r(to, x, round_dir_check(to_type, check));
return adjust_boundary(to_type, to, to_info, should_shrink, r);
}
template <typename To, typename To_Info, typename T1, typename Info1, typename T2, typename Info2>
inline Result
add_assign(Boundary_Type to_type, To& to, To_Info& to_info,
Boundary_Type type1, const T1& x1, const Info1& info1,
Boundary_Type type2, const T2& x2, const Info2& info2) {
PPL_ASSERT(type1 == type2);
bool should_shrink;
if (is_boundary_infinity(type1, x1, info1)) {
should_shrink = (boundary_infinity_is_open(type1, info1)
&& !is_boundary_infinity_closed(type2, x2, info2));
return set_boundary_infinity(to_type, to, to_info, should_shrink);
}
else if (is_boundary_infinity(type2, x2, info2)) {
should_shrink = (boundary_infinity_is_open(type2, info2)
&& !is_boundary_infinity_closed(type1, x1, info1));
return set_boundary_infinity(to_type, to, to_info, should_shrink);
}
should_shrink = (normal_is_open(type1, x1, info1)
|| normal_is_open(type2, x2, info2));
bool check = (To_Info::check_inexact || (!should_shrink && To_Info::store_open));
// FIXME: extended handling is not needed
Result r = add_assign_r(to, x1, x2, round_dir_check(to_type, check));
return adjust_boundary(to_type, to, to_info, should_shrink, r);
}
template <typename To, typename To_Info, typename T1, typename Info1, typename T2, typename Info2>
inline Result
sub_assign(Boundary_Type to_type, To& to, To_Info& to_info,
Boundary_Type type1, const T1& x1, const Info1& info1,
Boundary_Type type2, const T2& x2, const Info2& info2) {
PPL_ASSERT(type1 != type2);
bool should_shrink;
if (is_boundary_infinity(type1, x1, info1)) {
should_shrink = (boundary_infinity_is_open(type1, info1)
&& !is_boundary_infinity_closed(type2, x2, info2));
return set_boundary_infinity(to_type, to, to_info, should_shrink);
}
else if (is_boundary_infinity(type2, x2, info2)) {
should_shrink = (boundary_infinity_is_open(type2, info2)
&& !is_boundary_infinity_closed(type1, x1, info1));
return set_boundary_infinity(to_type, to, to_info, should_shrink);
}
should_shrink = (normal_is_open(type1, x1, info1)
|| normal_is_open(type2, x2, info2));
bool check = (To_Info::check_inexact || (!should_shrink && To_Info::store_open));
// FIXME: extended handling is not needed
Result r = sub_assign_r(to, x1, x2, round_dir_check(to_type, check));
return adjust_boundary(to_type, to, to_info, should_shrink, r);
}
template <typename To, typename To_Info, typename T1, typename Info1, typename T2, typename Info2>
inline Result
mul_assign(Boundary_Type to_type, To& to, To_Info& to_info,
Boundary_Type type1, const T1& x1, const Info1& info1,
Boundary_Type type2, const T2& x2, const Info2& info2) {
bool should_shrink;
if (is_boundary_infinity(type1, x1, info1)) {
should_shrink = (boundary_infinity_is_open(type1, info1)
&& !is_boundary_infinity_closed(type2, x2, info2));
return set_boundary_infinity(to_type, to, to_info, should_shrink);
}
else if (is_boundary_infinity(type2, x2, info2)) {
should_shrink = (boundary_infinity_is_open(type2, info2)
&& !is_boundary_infinity_closed(type1, x1, info1));
return set_boundary_infinity(to_type, to, to_info, should_shrink);
}
should_shrink = (normal_is_open(type1, x1, info1)
|| normal_is_open(type2, x2, info2));
bool check = (To_Info::check_inexact || (!should_shrink && To_Info::store_open));
PPL_ASSERT(x1 != Constant<0>::value && x2 != Constant<0>::value);
// FIXME: extended handling is not needed
Result r = mul_assign_r(to, x1, x2, round_dir_check(to_type, check));
return adjust_boundary(to_type, to, to_info, should_shrink, r);
}
template <typename To, typename To_Info>
inline Result
set_zero(Boundary_Type to_type, To& to, To_Info& to_info, bool should_shrink) {
bool check = (To_Info::check_inexact || (!should_shrink && To_Info::store_open));
Result r = assign_r(to, Constant<0>::value, round_dir_check(to_type, check));
return adjust_boundary(to_type, to, to_info, should_shrink, r);
}
template <typename To, typename To_Info, typename T1, typename Info1, typename T2, typename Info2>
inline Result
mul_assign_z(Boundary_Type to_type, To& to, To_Info& to_info,
Boundary_Type type1, const T1& x1, const Info1& info1, int x1s,
Boundary_Type type2, const T2& x2, const Info2& info2, int x2s) {
bool should_shrink;
if (x1s != 0) {
if (x2s != 0)
return mul_assign(to_type, to, to_info,
type1, x1, info1,
type2, x2, info2);
else
should_shrink = info2.get_boundary_property(type2, OPEN);
}
else {
should_shrink = (info1.get_boundary_property(type1, OPEN)
&& (x2s != 0 || info2.get_boundary_property(type2, OPEN)));
}
return set_zero(to_type, to, to_info, should_shrink);
}
template <typename To, typename To_Info, typename T1, typename Info1, typename T2, typename Info2>
inline Result
div_assign(Boundary_Type to_type, To& to, To_Info& to_info,
Boundary_Type type1, const T1& x1, const Info1& info1,
Boundary_Type type2, const T2& x2, const Info2& info2) {
bool should_shrink;
if (is_boundary_infinity(type1, x1, info1)) {
should_shrink = boundary_infinity_is_open(type1, info1);
return set_boundary_infinity(to_type, to, to_info, should_shrink);
}
else if (is_boundary_infinity(type2, x2, info2)) {
should_shrink = boundary_infinity_is_open(type2, info2);
return set_zero(to_type, to, to_info, should_shrink);
}
should_shrink = (normal_is_open(type1, x1, info1)
|| normal_is_open(type2, x2, info2));
bool check = (To_Info::check_inexact || (!should_shrink && To_Info::store_open));
PPL_ASSERT(x1 != Constant<0>::value && x2 != Constant<0>::value);
// FIXME: extended handling is not needed
Result r = div_assign_r(to, x1, x2, round_dir_check(to_type, check));
return adjust_boundary(to_type, to, to_info, should_shrink, r);
}
template <typename To, typename To_Info, typename T1, typename Info1, typename T2, typename Info2>
inline Result
div_assign_z(Boundary_Type to_type, To& to, To_Info& to_info,
Boundary_Type type1, const T1& x1, const Info1& info1, int x1s,
Boundary_Type type2, const T2& x2, const Info2& info2, int x2s) {
if (x1s != 0) {
if (x2s != 0)
return div_assign(to_type, to, to_info,
type1, x1, info1,
type2, x2, info2);
else {
return set_boundary_infinity(to_type, to, to_info, true);
}
}
else {
bool should_shrink = info1.get_boundary_property(type1, OPEN)
&& !is_boundary_infinity_closed(type2, x2, info2);
return set_zero(to_type, to, to_info, should_shrink);
}
}
template <typename To, typename To_Info, typename T, typename Info>
inline Result
umod_2exp_assign(Boundary_Type to_type, To& to, To_Info& to_info,
Boundary_Type type, const T& x, const Info& info,
unsigned int exp) {
PPL_ASSERT(to_type == type);
bool should_shrink;
if (is_boundary_infinity(type, x, info)) {
should_shrink = boundary_infinity_is_open(type, info);
return set_boundary_infinity(to_type, to, to_info, should_shrink);
}
should_shrink = normal_is_open(type, x, info);
bool check = (To_Info::check_inexact || (!should_shrink && To_Info::store_open));
Result r = umod_2exp_assign_r(to, x, exp, round_dir_check(to_type, check));
return adjust_boundary(to_type, to, to_info, should_shrink, r);
}
template <typename To, typename To_Info, typename T, typename Info>
inline Result
smod_2exp_assign(Boundary_Type to_type, To& to, To_Info& to_info,
Boundary_Type type, const T& x, const Info& info,
unsigned int exp) {
PPL_ASSERT(to_type == type);
bool should_shrink;
if (is_boundary_infinity(type, x, info)) {
should_shrink = boundary_infinity_is_open(type, info);
return set_boundary_infinity(to_type, to, to_info, should_shrink);
}
should_shrink = normal_is_open(type, x, info);
bool check = (To_Info::check_inexact || (!should_shrink && To_Info::store_open));
Result r = smod_2exp_assign_r(to, x, exp, round_dir_check(to_type, check));
return adjust_boundary(to_type, to, to_info, should_shrink, r);
}
} // namespace Boundary_NS
} // namespace Parma_Polyhedra_Library
#endif // !defined(PPL_Boundary_defs_hh)
|