1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
|
/* BHRZ03_Certificate class implementation
(non-inline member functions).
Copyright (C) 2001-2010 Roberto Bagnara <bagnara@cs.unipr.it>
Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com)
This file is part of the Parma Polyhedra Library (PPL).
The PPL is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The PPL is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA.
For the most up-to-date information see the Parma Polyhedra Library
site: http://www.cs.unipr.it/ppl/ . */
#include <ppl-config.h>
#include "BHRZ03_Certificate.defs.hh"
#include "Polyhedron.defs.hh"
#include "assert.hh"
#include <iostream>
namespace PPL = Parma_Polyhedra_Library;
PPL::BHRZ03_Certificate::BHRZ03_Certificate(const Polyhedron& ph)
: affine_dim(0), lin_space_dim(0), num_constraints(0), num_points(0),
num_rays_null_coord(ph.space_dimension(), 0) {
// TODO: provide a correct and reasonably efficient
// implementation for NNC polyhedra.
// The computation of the certificate requires both the
// constraint and the generator systems in minimal form.
ph.minimize();
// It is assumed that `ph' is not an empty polyhedron.
PPL_ASSERT(!ph.marked_empty());
// The dimension of the polyhedron is obtained by subtracting
// the number of equalities from the space dimension.
// When counting constraints, for a correct reasoning, we have
// to disregard the low-level constraints (i.e., the positivity
// constraint and epsilon bounds).
const dimension_type space_dim = ph.space_dimension();
affine_dim = space_dim;
PPL_ASSERT(num_constraints == 0);
const Constraint_System& cs = ph.minimized_constraints();
for (Constraint_System::const_iterator i = cs.begin(),
cs_end = cs.end(); i != cs_end; ++i) {
++num_constraints;
if (i->is_equality())
--affine_dim;
}
PPL_ASSERT(lin_space_dim == 0);
PPL_ASSERT(num_points == 0);
const Generator_System& gs = ph.minimized_generators();
for (Generator_System::const_iterator i = gs.begin(),
gs_end = gs.end(); i != gs_end; ++i)
switch (i->type()) {
case Generator::POINT:
// Intentionally fall through.
case Generator::CLOSURE_POINT:
++num_points;
break;
case Generator::RAY:
// For each i such that 0 <= j < space_dim,
// `num_rays_null_coord[j]' will be the number of rays
// having exactly `j' coordinates equal to 0.
{
const Generator& r = *i;
dimension_type num_zeroes = 0;
for (dimension_type j = space_dim; j-- > 0; )
if (r.coefficient(Variable(j)) == 0)
++num_zeroes;
++num_rays_null_coord[num_zeroes];
}
break;
case Generator::LINE:
// Since the generator systems is minimized, the dimension of
// the lineality space is equal to the number of lines.
++lin_space_dim;
break;
}
PPL_ASSERT(OK());
// TODO: this is an inefficient workaround.
// For NNC polyhedra, constraints might be no longer up-to-date
// (and hence, neither minimized) due to the strong minimization
// process applied to generators when constructing the certificate.
// We have to reinforce the (normal) minimization of the constraint
// system. The future, lazy implementation of the strong minimization
// process will solve this problem.
if (!ph.is_necessarily_closed())
ph.minimize();
}
int
PPL::BHRZ03_Certificate::compare(const BHRZ03_Certificate& y) const {
PPL_ASSERT(OK() && y.OK());
if (affine_dim != y.affine_dim)
return affine_dim > y.affine_dim ? 1 : -1;
if (lin_space_dim != y.lin_space_dim)
return lin_space_dim > y.lin_space_dim ? 1 : -1;
if (num_constraints != y.num_constraints)
return num_constraints > y.num_constraints ? 1 : -1;
if (num_points != y.num_points)
return num_points > y.num_points ? 1 : -1;
const dimension_type space_dim = num_rays_null_coord.size();
PPL_ASSERT(num_rays_null_coord.size() == y.num_rays_null_coord.size());
// Note: iterating upwards, because we have to check first
// the number of rays having more NON-zero coordinates.
for (dimension_type i = 0; i < space_dim; i++)
if (num_rays_null_coord[i] != y.num_rays_null_coord[i])
return num_rays_null_coord[i] > y.num_rays_null_coord[i] ? 1 : -1;
// All components are equal.
return 0;
}
int
PPL::BHRZ03_Certificate::compare(const Polyhedron& ph) const {
PPL_ASSERT(ph.space_dimension() == num_rays_null_coord.size());
// TODO: provide a correct and reasonably efficient
// implementation for NNC polyhedra.
// The computation of the certificate requires both the
// constraint and the generator systems in minimal form.
ph.minimize();
// It is assumed that `ph' is a polyhedron containing the
// polyhedron described by `*this': hence, it cannot be empty.
PPL_ASSERT(!ph.marked_empty());
// The dimension of the polyhedron is obtained by subtracting
// the number of equalities from the space dimension.
// When counting constraints, for a correct reasoning, we have
// to disregard the low-level constraints (i.e., the positivity
// constraint and epsilon bounds).
const dimension_type space_dim = ph.space_dimension();
dimension_type ph_affine_dim = space_dim;
dimension_type ph_num_constraints = 0;
const Constraint_System& cs = ph.minimized_constraints();
for (Constraint_System::const_iterator i = cs.begin(),
cs_end = cs.end(); i != cs_end; ++i) {
++ph_num_constraints;
if (i->is_equality())
--ph_affine_dim;
}
// TODO: this is an inefficient workaround.
// For NNC polyhedra, constraints might be no longer up-to-date
// (and hence, neither minimized) due to the strong minimization
// process applied to generators when constructing the certificate.
// We have to reinforce the (normal) minimization of the constraint
// system. The future, lazy implementation of the strong minimization
// process will solve this problem.
if (!ph.is_necessarily_closed())
ph.minimize();
// If the dimension of `ph' is increasing, the chain is stabilizing.
if (ph_affine_dim > affine_dim)
return 1;
// At this point the two polyhedra must have the same dimension.
PPL_ASSERT(ph_affine_dim == affine_dim);
// Speculative optimization: in order to better exploit the incrementality
// of the comparison, we do not compute information about rays here,
// hoping that the other components will be enough.
dimension_type ph_lin_space_dim = 0;
dimension_type ph_num_points = 0;
const Generator_System& gs = ph.minimized_generators();
for (Generator_System::const_iterator i = gs.begin(),
gs_end = gs.end(); i != gs_end; ++i)
switch (i->type()) {
case Generator::POINT:
// Intentionally fall through.
case Generator::CLOSURE_POINT:
++ph_num_points;
break;
case Generator::RAY:
break;
case Generator::LINE:
// Since the generator systems is minimized, the dimension of
// the lineality space is equal to the number of lines.
++ph_lin_space_dim;
break;
}
// TODO: this is an inefficient workaround.
// For NNC polyhedra, constraints might be no longer up-to-date
// (and hence, neither minimized) due to the strong minimization
// process applied to generators when constructing the certificate.
// We have to reinforce the (normal) minimization of the constraint
// system. The future, lazy implementation of the strong minimization
// process will solve this problem.
if (!ph.is_necessarily_closed())
ph.minimize();
// If the dimension of the lineality space is increasing,
// then the chain is stabilizing.
if (ph_lin_space_dim > lin_space_dim)
return 1;
// At this point the lineality space of the two polyhedra must have
// the same dimension.
PPL_ASSERT(ph_lin_space_dim == lin_space_dim);
// If the number of constraints of `ph' is decreasing, then the chain
// is stabilizing. If it is increasing, the chain is not stabilizing.
// If they are equal, further investigation is needed.
if (ph_num_constraints != num_constraints)
return ph_num_constraints < num_constraints ? 1 : -1;
// If the number of points of `ph' is decreasing, then the chain
// is stabilizing. If it is increasing, the chain is not stabilizing.
// If they are equal, further investigation is needed.
if (ph_num_points != num_points)
return ph_num_points < num_points ? 1 : -1;
// The speculative optimization was not worth:
// compute information about rays.
std::vector<dimension_type> ph_num_rays_null_coord(ph.space_dim, 0);
for (Generator_System::const_iterator i = gs.begin(),
gs_end = gs.end(); i != gs_end; ++i)
if (i->is_ray()) {
const Generator& r = *i;
dimension_type num_zeroes = 0;
for (dimension_type j = space_dim; j-- > 0; )
if (r.coefficient(Variable(j)) == 0)
++num_zeroes;
++ph_num_rays_null_coord[num_zeroes];
}
// Compare (lexicographically) the two vectors:
// if ph_num_rays_null_coord < num_rays_null_coord the chain is stabilizing.
for (dimension_type i = 0; i < space_dim; i++)
if (ph_num_rays_null_coord[i] != num_rays_null_coord[i])
return ph_num_rays_null_coord[i] < num_rays_null_coord[i] ? 1 : -1;
// All components are equal.
return 0;
}
bool
PPL::BHRZ03_Certificate::OK() const {
#ifndef NDEBUG
using std::endl;
using std::cerr;
#endif
// The dimension of the vector space.
const dimension_type space_dim = num_rays_null_coord.size();
if (affine_dim > space_dim) {
#ifndef NDEBUG
cerr << "In the BHRZ03 certificate about a non-empty polyhedron:"
<< endl
<< "the affine dimension is greater than the space dimension!"
<< endl;
#endif
return false;
}
if (lin_space_dim > affine_dim) {
#ifndef NDEBUG
cerr << "In the BHRZ03 certificate about a non-empty polyhedron:"
<< endl
<< "the lineality space dimension is greater than "
<< "the affine dimension!"
<< endl;
#endif
return false;
}
if (num_constraints < space_dim - affine_dim) {
#ifndef NDEBUG
cerr << "In the BHRZ03 certificate about a non-empty polyhedron:"
<< endl
<< "in a vector space of dimension `n',"
<< "any polyhedron of affine dimension `k'" << endl
<< "should have `n-k' non-redundant constraints at least."
<< endl
<< "Here space_dim = " << space_dim << ", "
<< "affine_dim = " << affine_dim << ", "
<< "but num_constraints = " << num_constraints << "!"
<< endl;
#endif
return false;
}
if (num_points == 0) {
#ifndef NDEBUG
cerr << "In the BHRZ03 certificate about a non-empty polyhedron:"
<< endl
<< "the generator system has no points!"
<< endl;
#endif
return false;
}
if (lin_space_dim == space_dim) {
// This was a universe polyhedron.
if (num_constraints > 0) {
#ifndef NDEBUG
cerr << "In the BHRZ03 certificate about a non-empty polyhedron:"
<< endl
<< "a universe polyhedron has non-redundant constraints!"
<< endl;
#endif
return false;
}
if (num_points != 1) {
#ifndef NDEBUG
cerr << "In the BHRZ03 certificate about a non-empty polyhedron:"
<< endl
<< "a universe polyhedron has more than one non-redundant point!"
<< endl;
#endif
return false;
}
}
// All tests passed.
return true;
}
|