1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
|
/* BD_Shape class declaration.
Copyright (C) 2001-2010 Roberto Bagnara <bagnara@cs.unipr.it>
Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com)
This file is part of the Parma Polyhedra Library (PPL).
The PPL is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The PPL is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA.
For the most up-to-date information see the Parma Polyhedra Library
site: http://www.cs.unipr.it/ppl/ . */
#ifndef PPL_BD_Shape_defs_hh
#define PPL_BD_Shape_defs_hh 1
#include "BD_Shape.types.hh"
#include "globals.defs.hh"
#include "Constraint.types.hh"
#include "Generator.types.hh"
#include "Congruence.types.hh"
#include "Linear_Expression.types.hh"
#include "Constraint_System.types.hh"
#include "Generator_System.types.hh"
#include "Congruence_System.types.hh"
#include "Poly_Con_Relation.types.hh"
#include "Poly_Gen_Relation.types.hh"
#include "Polyhedron.types.hh"
#include "Box.types.hh"
#include "Grid.types.hh"
#include "Octagonal_Shape.types.hh"
#include "Variable.defs.hh"
#include "Variables_Set.types.hh"
#include "DB_Matrix.defs.hh"
#include "DB_Row.defs.hh"
#include "Checked_Number.defs.hh"
#include "WRD_coefficient_types.defs.hh"
#include "Bit_Matrix.defs.hh"
#include <cstddef>
#include <iosfwd>
#include <vector>
namespace Parma_Polyhedra_Library {
namespace IO_Operators {
//! Output operator.
/*! \relates Parma_Polyhedra_Library::BD_Shape
Writes a textual representation of \p bds on \p s:
<CODE>false</CODE> is written if \p bds is an empty polyhedron;
<CODE>true</CODE> is written if \p bds is the universe polyhedron;
a system of constraints defining \p bds is written otherwise,
all constraints separated by ", ".
*/
template <typename T>
std::ostream&
operator<<(std::ostream& s, const BD_Shape<T>& bds);
} // namespace IO_Operators
//! Returns <CODE>true</CODE> if and only if \p x and \p y are the same BDS.
/*! \relates BD_Shape
Note that \p x and \p y may be dimension-incompatible shapes:
in this case, the value <CODE>false</CODE> is returned.
*/
template <typename T>
bool operator==(const BD_Shape<T>& x, const BD_Shape<T>& y);
//! Returns <CODE>true</CODE> if and only if \p x and \p y aren't the same BDS.
/*! \relates BD_Shape
Note that \p x and \p y may be dimension-incompatible shapes:
in this case, the value <CODE>true</CODE> is returned.
*/
template <typename T>
bool operator!=(const BD_Shape<T>& x, const BD_Shape<T>& y);
//! Computes the rectilinear (or Manhattan) distance between \p x and \p y.
/*! \relates BD_Shape
If the rectilinear distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using variables of type
Checked_Number<To, Extended_Number_Policy>.
*/
template <typename To, typename T>
bool rectilinear_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const BD_Shape<T>& x,
const BD_Shape<T>& y,
Rounding_Dir dir);
//! Computes the rectilinear (or Manhattan) distance between \p x and \p y.
/*! \relates BD_Shape
If the rectilinear distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using variables of type
Checked_Number<Temp, Extended_Number_Policy>.
*/
template <typename Temp, typename To, typename T>
bool rectilinear_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const BD_Shape<T>& x,
const BD_Shape<T>& y,
Rounding_Dir dir);
//! Computes the rectilinear (or Manhattan) distance between \p x and \p y.
/*! \relates BD_Shape
If the rectilinear distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using the temporary variables
\p tmp0, \p tmp1 and \p tmp2.
*/
template <typename Temp, typename To, typename T>
bool rectilinear_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const BD_Shape<T>& x,
const BD_Shape<T>& y,
Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2);
//! Computes the euclidean distance between \p x and \p y.
/*! \relates BD_Shape
If the euclidean distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using variables of type
Checked_Number<To, Extended_Number_Policy>.
*/
template <typename To, typename T>
bool euclidean_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const BD_Shape<T>& x,
const BD_Shape<T>& y,
Rounding_Dir dir);
//! Computes the euclidean distance between \p x and \p y.
/*! \relates BD_Shape
If the euclidean distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using variables of type
Checked_Number<Temp, Extended_Number_Policy>.
*/
template <typename Temp, typename To, typename T>
bool euclidean_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const BD_Shape<T>& x,
const BD_Shape<T>& y,
Rounding_Dir dir);
//! Computes the euclidean distance between \p x and \p y.
/*! \relates BD_Shape
If the euclidean distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using the temporary variables
\p tmp0, \p tmp1 and \p tmp2.
*/
template <typename Temp, typename To, typename T>
bool euclidean_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const BD_Shape<T>& x,
const BD_Shape<T>& y,
Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2);
//! Computes the \f$L_\infty\f$ distance between \p x and \p y.
/*! \relates BD_Shape
If the \f$L_\infty\f$ distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using variables of type
Checked_Number<To, Extended_Number_Policy>.
*/
template <typename To, typename T>
bool l_infinity_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const BD_Shape<T>& x,
const BD_Shape<T>& y,
Rounding_Dir dir);
//! Computes the \f$L_\infty\f$ distance between \p x and \p y.
/*! \relates BD_Shape
If the \f$L_\infty\f$ distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using variables of type
Checked_Number<Temp, Extended_Number_Policy>.
*/
template <typename Temp, typename To, typename T>
bool l_infinity_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const BD_Shape<T>& x,
const BD_Shape<T>& y,
Rounding_Dir dir);
//! Computes the \f$L_\infty\f$ distance between \p x and \p y.
/*! \relates BD_Shape
If the \f$L_\infty\f$ distance between \p x and \p y is defined,
stores an approximation of it into \p r and returns <CODE>true</CODE>;
returns <CODE>false</CODE> otherwise.
The direction of the approximation is specified by \p dir.
All computations are performed using the temporary variables
\p tmp0, \p tmp1 and \p tmp2.
*/
template <typename Temp, typename To, typename T>
bool l_infinity_distance_assign(Checked_Number<To, Extended_Number_Policy>& r,
const BD_Shape<T>& x,
const BD_Shape<T>& y,
Rounding_Dir dir,
Temp& tmp0,
Temp& tmp1,
Temp& tmp2);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Decodes the constraint \p c as a bounded difference.
/*! \relates BD_Shape
\return
<CODE>true</CODE> if the constraint \p c is a
\ref Bounded_Difference_Shapes "bounded difference";
<CODE>false</CODE> otherwise.
\param c
The constraint to be decoded.
\param c_space_dim
The space dimension of the constraint \p c (it is <EM>assumed</EM>
to match the actual space dimension of \p c).
\param c_num_vars
If <CODE>true</CODE> is returned, then it will be set to the number
of variables having a non-zero coefficient. The only legal values
will therefore be 0, 1 and 2.
\param c_first_var
If <CODE>true</CODE> is returned and if \p c_num_vars is not set to 0,
then it will be set to the index of the first variable having
a non-zero coefficient in \p c.
\param c_second_var
If <CODE>true</CODE> is returned and if \p c_num_vars is set to 2,
then it will be set to the index of the second variable having
a non-zero coefficient in \p c.
\param c_coeff
If <CODE>true</CODE> is returned and if \p c_num_vars is not set to 0,
then it will be set to the value of the first non-zero coefficient
in \p c.
*/
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
bool extract_bounded_difference(const Constraint& c,
dimension_type c_space_dim,
dimension_type& c_num_vars,
dimension_type& c_first_var,
dimension_type& c_second_var,
Coefficient& c_coeff);
#ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS
//! Extracts leader indices from the predecessor relation.
/*! \relates BD_Shape */
#endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS)
void compute_leader_indices(const std::vector<dimension_type>& predecessor,
std::vector<dimension_type>& indices);
} // namespace Parma_Polyhedra_Library
//! A bounded difference shape.
/*! \ingroup PPL_CXX_interface
The class template BD_Shape<T> allows for the efficient representation
of a restricted kind of <EM>topologically closed</EM> convex polyhedra
called <EM>bounded difference shapes</EM> (BDSs, for short).
The name comes from the fact that the closed affine half-spaces that
characterize the polyhedron can be expressed by constraints of the form
\f$\pm x_i \leq k\f$ or \f$x_i - x_j \leq k\f$, where the inhomogeneous
term \f$k\f$ is a rational number.
Based on the class template type parameter \p T, a family of extended
numbers is built and used to approximate the inhomogeneous term of
bounded differences. These extended numbers provide a representation
for the value \f$+\infty\f$, as well as <EM>rounding-aware</EM>
implementations for several arithmetic functions.
The value of the type parameter \p T may be one of the following:
- a bounded precision integer type (e.g., \c int32_t or \c int64_t);
- a bounded precision floating point type (e.g., \c float or \c double);
- an unbounded integer or rational type, as provided by GMP
(i.e., \c mpz_class or \c mpq_class).
The user interface for BDSs is meant to be as similar as possible to
the one developed for the polyhedron class C_Polyhedron.
The domain of BD shapes <EM>optimally supports</EM>:
- tautological and inconsistent constraints and congruences;
- bounded difference constraints;
- non-proper congruences (i.e., equalities) that are expressible
as bounded-difference constraints.
Depending on the method, using a constraint or congruence that is not
optimally supported by the domain will either raise an exception or
result in a (possibly non-optimal) upward approximation.
A constraint is a bounded difference if it has the form
\f[
a_i x_i - a_j x_j \relsym b
\f]
where \f$\mathord{\relsym} \in \{ \leq, =, \geq \}\f$ and
\f$a_i\f$, \f$a_j\f$, \f$b\f$ are integer coefficients such that
\f$a_i = 0\f$, or \f$a_j = 0\f$, or \f$a_i = a_j\f$.
The user is warned that the above bounded difference Constraint object
will be mapped into a \e correct and \e optimal approximation that,
depending on the expressive power of the chosen template argument \p T,
may loose some precision. Also note that strict constraints are not
bounded differences.
For instance, a Constraint object encoding \f$3x - 3y \leq 1\f$ will be
approximated by:
- \f$x - y \leq 1\f$,
if \p T is a (bounded or unbounded) integer type;
- \f$x - y \leq \frac{1}{3}\f$,
if \p T is the unbounded rational type \c mpq_class;
- \f$x - y \leq k\f$, where \f$k > \frac{1}{3}\f$,
if \p T is a floating point type (having no exact representation
for \f$\frac{1}{3}\f$).
On the other hand, depending from the context, a Constraint object
encoding \f$3x - y \leq 1\f$ will be either upward approximated
(e.g., by safely ignoring it) or it will cause an exception.
In the following examples it is assumed that the type argument \p T
is one of the possible instances listed above and that variables
<CODE>x</CODE>, <CODE>y</CODE> and <CODE>z</CODE> are defined
(where they are used) as follows:
\code
Variable x(0);
Variable y(1);
Variable z(2);
\endcode
\par Example 1
The following code builds a BDS corresponding to a cube in \f$\Rset^3\f$,
given as a system of constraints:
\code
Constraint_System cs;
cs.insert(x >= 0);
cs.insert(x <= 1);
cs.insert(y >= 0);
cs.insert(y <= 1);
cs.insert(z >= 0);
cs.insert(z <= 1);
BD_Shape<T> bd(cs);
\endcode
Since only those constraints having the syntactic form of a
<EM>bounded difference</EM> are optimally supported, the following code
will throw an exception (caused by constraints 7, 8 and 9):
\code
Constraint_System cs;
cs.insert(x >= 0);
cs.insert(x <= 1);
cs.insert(y >= 0);
cs.insert(y <= 1);
cs.insert(z >= 0);
cs.insert(z <= 1);
cs.insert(x + y <= 0); // 7
cs.insert(x - z + x >= 0); // 8
cs.insert(3*z - y <= 1); // 9
BD_Shape<T> bd(cs);
\endcode
*/
template <typename T>
class Parma_Polyhedra_Library::BD_Shape {
private:
/*! \brief
The (extended) numeric type of the inhomogeneous term of
the inequalities defining a BDS.
*/
#ifndef NDEBUG
typedef Checked_Number<T, Debug_WRD_Extended_Number_Policy> N;
#else
typedef Checked_Number<T, WRD_Extended_Number_Policy> N;
#endif
public:
//! The numeric base type upon which bounded differences are built.
typedef T coefficient_type_base;
/*! \brief
The (extended) numeric type of the inhomogeneous term of the
inequalities defining a BDS.
*/
typedef N coefficient_type;
//! Returns the maximum space dimension that a BDS can handle.
static dimension_type max_space_dimension();
/*! \brief
Returns \c false indicating that this domain cannot recycle constraints.
*/
static bool can_recycle_constraint_systems();
/*! \brief
Returns \c false indicating that this domain cannot recycle congruences.
*/
static bool can_recycle_congruence_systems();
//! \name Constructors, Assignment, Swap and Destructor
//@{
//! Builds a universe or empty BDS of the specified space dimension.
/*!
\param num_dimensions
The number of dimensions of the vector space enclosing the BDS;
\param kind
Specifies whether the universe or the empty BDS has to be built.
*/
explicit BD_Shape(dimension_type num_dimensions = 0,
Degenerate_Element kind = UNIVERSE);
//! Ordinary copy constructor.
/*!
The complexity argument is ignored.
*/
BD_Shape(const BD_Shape& y,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Builds a conservative, upward approximation of \p y.
/*!
The complexity argument is ignored.
*/
template <typename U>
explicit BD_Shape(const BD_Shape<U>& y,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Builds a BDS from the system of constraints \p cs.
/*!
The BDS inherits the space dimension of \p cs.
\param cs
A system of BD constraints.
\exception std::invalid_argument
Thrown if \p cs contains a constraint which is not optimally supported
by the BD shape domain.
*/
explicit BD_Shape(const Constraint_System& cs);
//! Builds a BDS from a system of congruences.
/*!
The BDS inherits the space dimension of \p cgs
\param cgs
A system of congruences.
\exception std::invalid_argument
Thrown if \p cgs contains congruences which are not optimally
supported by the BD shape domain.
*/
explicit BD_Shape(const Congruence_System& cgs);
//! Builds a BDS from the system of generators \p gs.
/*!
Builds the smallest BDS containing the polyhedron defined by \p gs.
The BDS inherits the space dimension of \p gs.
\exception std::invalid_argument
Thrown if the system of generators is not empty but has no points.
*/
explicit BD_Shape(const Generator_System& gs);
//! Builds a BDS from the polyhedron \p ph.
/*!
Builds a BDS containing \p ph using algorithms whose complexity
does not exceed the one specified by \p complexity. If
\p complexity is \p ANY_COMPLEXITY, then the BDS built is the
smallest one containing \p ph.
*/
explicit BD_Shape(const Polyhedron& ph,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Builds a BDS out of a box.
/*!
The BDS inherits the space dimension of the box.
The built BDS is the most precise BDS that includes the box.
\param box
The box representing the BDS to be built.
\param complexity
This argument is ignored as the algorithm used has
polynomial complexity.
\exception std::length_error
Thrown if the space dimension of \p box exceeds the maximum
allowed space dimension.
*/
template <typename Interval>
explicit BD_Shape(const Box<Interval>& box,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Builds a BDS out of a grid.
/*!
The BDS inherits the space dimension of the grid.
The built BDS is the most precise BDS that includes the grid.
\param grid
The grid used to build the BDS.
\param complexity
This argument is ignored as the algorithm used has
polynomial complexity.
\exception std::length_error
Thrown if the space dimension of \p grid exceeds the maximum
allowed space dimension.
*/
explicit BD_Shape(const Grid& grid,
Complexity_Class complexity = ANY_COMPLEXITY);
//! Builds a BDS from an octagonal shape.
/*!
The BDS inherits the space dimension of the octagonal shape.
The built BDS is the most precise BDS that includes the octagonal shape.
\param os
The octagonal shape used to build the BDS.
\param complexity
This argument is ignored as the algorithm used has
polynomial complexity.
\exception std::length_error
Thrown if the space dimension of \p os exceeds the maximum
allowed space dimension.
*/
template <typename U>
explicit BD_Shape(const Octagonal_Shape<U>& os,
Complexity_Class complexity = ANY_COMPLEXITY);
/*! \brief
The assignment operator
(\p *this and \p y can be dimension-incompatible).
*/
BD_Shape& operator=(const BD_Shape& y);
/*! \brief
Swaps \p *this with \p y
(\p *this and \p y can be dimension-incompatible).
*/
void swap(BD_Shape& y);
//! Destructor.
~BD_Shape();
//@} Constructors, Assignment, Swap and Destructor
//! \name Member Functions that Do Not Modify the BD_Shape
//@{
//! Returns the dimension of the vector space enclosing \p *this.
dimension_type space_dimension() const;
/*! \brief
Returns \f$0\f$, if \p *this is empty; otherwise, returns the
\ref Affine_Independence_and_Affine_Dimension "affine dimension"
of \p *this.
*/
dimension_type affine_dimension() const;
//! Returns a system of constraints defining \p *this.
Constraint_System constraints() const;
//! Returns a minimized system of constraints defining \p *this.
Constraint_System minimized_constraints() const;
//! Returns a system of (equality) congruences satisfied by \p *this.
Congruence_System congruences() const;
/*! \brief
Returns a minimal system of (equality) congruences
satisfied by \p *this with the same affine dimension as \p *this.
*/
Congruence_System minimized_congruences() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p expr is
bounded from above in \p *this.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
*/
bool bounds_from_above(const Linear_Expression& expr) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p expr is
bounded from below in \p *this.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
*/
bool bounds_from_below(const Linear_Expression& expr) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is not empty
and \p expr is bounded from above in \p *this, in which case
the supremum value is computed.
\param expr
The linear expression to be maximized subject to \p *this;
\param sup_n
The numerator of the supremum value;
\param sup_d
The denominator of the supremum value;
\param maximum
<CODE>true</CODE> if and only if the supremum is also the maximum value.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded from above,
<CODE>false</CODE> is returned and \p sup_n, \p sup_d
and \p maximum are left untouched.
*/
bool maximize(const Linear_Expression& expr,
Coefficient& sup_n, Coefficient& sup_d, bool& maximum) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is not empty
and \p expr is bounded from above in \p *this, in which case
the supremum value and a point where \p expr reaches it are computed.
\param expr
The linear expression to be maximized subject to \p *this;
\param sup_n
The numerator of the supremum value;
\param sup_d
The denominator of the supremum value;
\param maximum
<CODE>true</CODE> if and only if the supremum is also the maximum value;
\param g
When maximization succeeds, will be assigned the point or
closure point where \p expr reaches its supremum value.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded from above,
<CODE>false</CODE> is returned and \p sup_n, \p sup_d, \p maximum
and \p g are left untouched.
*/
bool maximize(const Linear_Expression& expr,
Coefficient& sup_n, Coefficient& sup_d, bool& maximum,
Generator& g) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is not empty
and \p expr is bounded from below in \p *this, in which case
the infimum value is computed.
\param expr
The linear expression to be minimized subject to \p *this;
\param inf_n
The numerator of the infimum value;
\param inf_d
The denominator of the infimum value;
\param minimum
<CODE>true</CODE> if and only if the infimum is also the minimum value.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded from below,
<CODE>false</CODE> is returned and \p inf_n, \p inf_d
and \p minimum are left untouched.
*/
bool minimize(const Linear_Expression& expr,
Coefficient& inf_n, Coefficient& inf_d, bool& minimum) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this is not empty
and \p expr is bounded from below in \p *this, in which case
the infimum value and a point where \p expr reaches it are computed.
\param expr
The linear expression to be minimized subject to \p *this;
\param inf_n
The numerator of the infimum value;
\param inf_d
The denominator of the infimum value;
\param minimum
<CODE>true</CODE> if and only if the infimum is also the minimum value;
\param g
When minimization succeeds, will be assigned a point or
closure point where \p expr reaches its infimum value.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded from below,
<CODE>false</CODE> is returned and \p inf_n, \p inf_d, \p minimum
and \p g are left untouched.
*/
bool minimize(const Linear_Expression& expr,
Coefficient& inf_n, Coefficient& inf_d, bool& minimum,
Generator& g) const;
/*! \brief
Returns <CODE>true</CODE> if and only if there exist a
unique value \p val such that \p *this
saturates the equality <CODE>expr = val</CODE>.
\param expr
The linear expression for which the frequency is needed;
\param freq_n
If <CODE>true</CODE> is returned, the value is set to \f$0\f$;
Present for interface compatibility with class Grid, where
the \ref Grid_Frequency "frequency" can have a non-zero value;
\param freq_d
If <CODE>true</CODE> is returned, the value is set to \f$1\f$;
\param val_n
The numerator of \p val;
\param val_d
The denominator of \p val;
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If <CODE>false</CODE> is returned, then \p freq_n, \p freq_d,
\p val_n and \p val_d are left untouched.
*/
bool frequency(const Linear_Expression& expr,
Coefficient& freq_n, Coefficient& freq_d,
Coefficient& val_n, Coefficient& val_d) const;
//! Returns <CODE>true</CODE> if and only if \p *this contains \p y.
/*!
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
bool contains(const BD_Shape& y) const;
//! Returns <CODE>true</CODE> if and only if \p *this strictly contains \p y.
/*!
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
bool strictly_contains(const BD_Shape& y) const;
//! Returns <CODE>true</CODE> if and only if \p *this and \p y are disjoint.
/*!
\exception std::invalid_argument
Thrown if \p x and \p y are topology-incompatible or
dimension-incompatible.
*/
bool is_disjoint_from(const BD_Shape& y) const;
//! Returns the relations holding between \p *this and the constraint \p c.
/*!
\exception std::invalid_argument
Thrown if \p *this and constraint \p c are dimension-incompatible.
*/
Poly_Con_Relation relation_with(const Constraint& c) const;
//! Returns the relations holding between \p *this and the congruence \p cg.
/*!
\exception std::invalid_argument
Thrown if \p *this and congruence \p cg are dimension-incompatible.
*/
Poly_Con_Relation relation_with(const Congruence& cg) const;
//! Returns the relations holding between \p *this and the generator \p g.
/*!
\exception std::invalid_argument
Thrown if \p *this and generator \p g are dimension-incompatible.
*/
Poly_Gen_Relation relation_with(const Generator& g) const;
//! Returns <CODE>true</CODE> if and only if \p *this is an empty BDS.
bool is_empty() const;
//! Returns <CODE>true</CODE> if and only if \p *this is a universe BDS.
bool is_universe() const;
//! Returns <CODE>true</CODE> if and only if \p *this is discrete.
bool is_discrete() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this
is a topologically closed subset of the vector space.
*/
bool is_topologically_closed() const;
//! Returns <CODE>true</CODE> if and only if \p *this is a bounded BDS.
bool is_bounded() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this
contains at least one integer point.
*/
bool contains_integer_point() const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p var is constrained in
\p *this.
\exception std::invalid_argument
Thrown if \p var is not a space dimension of \p *this.
*/
bool constrains(Variable var) const;
/*! \brief
Returns <CODE>true</CODE> if and only if \p *this satisfies
all its invariants.
*/
bool OK() const;
//@} Member Functions that Do Not Modify the BD_Shape
//! \name Space-Dimension Preserving Member Functions that May Modify the BD_Shape
//@{
/*! \brief
Adds a copy of constraint \p c to the system of bounded differences
defining \p *this.
\param c
The constraint to be added.
\exception std::invalid_argument
Thrown if \p *this and constraint \p c are dimension-incompatible,
or \p c is not optimally supported by the BD shape domain.
*/
void add_constraint(const Constraint& c);
/*! \brief
Adds a copy of congruence \p cg to the system of congruences of \p *this.
\param cg
The congruence to be added.
\exception std::invalid_argument
Thrown if \p *this and congruence \p cg are dimension-incompatible,
or \p cg is not optimally supported by the BD shape domain.
*/
void add_congruence(const Congruence& cg);
/*! \brief
Adds the constraints in \p cs to the system of bounded differences
defining \p *this.
\param cs
The constraints that will be added.
\exception std::invalid_argument
Thrown if \p *this and \p cs are dimension-incompatible,
or \p cs contains a constraint which is not optimally supported
by the BD shape domain.
*/
void add_constraints(const Constraint_System& cs);
/*! \brief
Adds the constraints in \p cs to the system of constraints
of \p *this.
\param cs
The constraint system to be added to \p *this. The constraints in
\p cs may be recycled.
\exception std::invalid_argument
Thrown if \p *this and \p cs are dimension-incompatible,
or \p cs contains a constraint which is not optimally supported
by the BD shape domain.
\warning
The only assumption that can be made on \p cs upon successful or
exceptional return is that it can be safely destroyed.
*/
void add_recycled_constraints(Constraint_System& cs);
/*! \brief
Adds to \p *this constraints equivalent to the congruences in \p cgs.
\param cgs
Contains the congruences that will be added to the system of
constraints of \p *this.
\exception std::invalid_argument
Thrown if \p *this and \p cgs are dimension-incompatible,
or \p cgs contains a congruence which is not optimally supported
by the BD shape domain.
*/
void add_congruences(const Congruence_System& cgs);
/*! \brief
Adds to \p *this constraints equivalent to the congruences in \p cgs.
\param cgs
Contains the congruences that will be added to the system of
constraints of \p *this. Its elements may be recycled.
\exception std::invalid_argument
Thrown if \p *this and \p cgs are dimension-incompatible,
or \p cgs contains a congruence which is not optimally supported
by the BD shape domain.
\warning
The only assumption that can be made on \p cgs upon successful or
exceptional return is that it can be safely destroyed.
*/
void add_recycled_congruences(Congruence_System& cgs);
/*! \brief
Uses a copy of constraint \p c to refine the system of bounded differences
defining \p *this.
\param c
The constraint. If it is not a bounded difference, it will be ignored.
\exception std::invalid_argument
Thrown if \p *this and constraint \p c are dimension-incompatible.
*/
void refine_with_constraint(const Constraint& c);
/*! \brief
Uses a copy of congruence \p cg to refine the system of
bounded differences of \p *this.
\param cg
The congruence. If it is not a bounded difference equality, it
will be ignored.
\exception std::invalid_argument
Thrown if \p *this and congruence \p cg are dimension-incompatible.
*/
void refine_with_congruence(const Congruence& cg);
/*! \brief
Uses a copy of the constraints in \p cs to refine the system of
bounded differences defining \p *this.
\param cs
The constraint system to be used. Constraints that are not bounded
differences are ignored.
\exception std::invalid_argument
Thrown if \p *this and \p cs are dimension-incompatible.
*/
void refine_with_constraints(const Constraint_System& cs);
/*! \brief
Uses a copy of the congruences in \p cgs to refine the system of
bounded differences defining \p *this.
\param cgs
The congruence system to be used. Congruences that are not bounded
difference equalities are ignored.
\exception std::invalid_argument
Thrown if \p *this and \p cgs are dimension-incompatible.
*/
void refine_with_congruences(const Congruence_System& cgs);
/*! \brief
Computes the \ref Cylindrification "cylindrification" of \p *this with
respect to space dimension \p var, assigning the result to \p *this.
\param var
The space dimension that will be unconstrained.
\exception std::invalid_argument
Thrown if \p var is not a space dimension of \p *this.
*/
void unconstrain(Variable var);
/*! \brief
Computes the \ref Cylindrification "cylindrification" of \p *this with
respect to the set of space dimensions \p vars,
assigning the result to \p *this.
\param vars
The set of space dimension that will be unconstrained.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with one of the
Variable objects contained in \p vars.
*/
void unconstrain(const Variables_Set& vars);
//! Assigns to \p *this the intersection of \p *this and \p y.
/*!
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
void intersection_assign(const BD_Shape& y);
/*! \brief
Assigns to \p *this the smallest BDS containing the union
of \p *this and \p y.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
void upper_bound_assign(const BD_Shape& y);
/*! \brief
If the upper bound of \p *this and \p y is exact, it is assigned
to \p *this and <CODE>true</CODE> is returned,
otherwise <CODE>false</CODE> is returned.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
bool upper_bound_assign_if_exact(const BD_Shape& y);
/*! \brief
If the \e integer upper bound of \p *this and \p y is exact,
it is assigned to \p *this and <CODE>true</CODE> is returned;
otherwise <CODE>false</CODE> is returned.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
\note
The integer upper bound of two rational BDS is the smallest rational
BDS containing all the integral points of the two arguments.
This method requires that the coefficient type parameter \c T is
an integral type.
*/
bool integer_upper_bound_assign_if_exact(const BD_Shape& y);
/*! \brief
Assigns to \p *this the smallest BD shape containing
the set difference of \p *this and \p y.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
void difference_assign(const BD_Shape& y);
/*! \brief
Assigns to \p *this a \ref Meet_Preserving_Simplification
"meet-preserving simplification" of \p *this with respect to \p y.
If \c false is returned, then the intersection is empty.
\exception std::invalid_argument
Thrown if \p *this and \p y are topology-incompatible or
dimension-incompatible.
*/
bool simplify_using_context_assign(const BD_Shape& y);
/*! \brief
Assigns to \p *this the
\ref Single_Update_Affine_Functions "affine image"
of \p *this under the function mapping variable \p var into the
affine expression specified by \p expr and \p denominator.
\param var
The variable to which the affine expression is assigned.
\param expr
The numerator of the affine expression.
\param denominator
The denominator of the affine expression.
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p expr and \p *this
are dimension-incompatible or if \p var is not a dimension of \p *this.
*/
void affine_image(Variable var,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*! \brief
Assigns to \p *this the
\ref Single_Update_Affine_Functions "affine preimage"
of \p *this under the function mapping variable \p var into the
affine expression specified by \p expr and \p denominator.
\param var
The variable to which the affine expression is substituted.
\param expr
The numerator of the affine expression.
\param denominator
The denominator of the affine expression.
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p expr and \p *this
are dimension-incompatible or if \p var is not a dimension of \p *this.
*/
void affine_preimage(Variable var,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*! \brief
Assigns to \p *this the image of \p *this with respect to the
\ref Generalized_Affine_Relations "affine relation"
\f$\mathrm{var}' \relsym \frac{\mathrm{expr}}{\mathrm{denominator}}\f$,
where \f$\mathord{\relsym}\f$ is the relation symbol encoded
by \p relsym.
\param var
The left hand side variable of the generalized affine transfer function.
\param relsym
The relation symbol.
\param expr
The numerator of the right hand side affine expression.
\param denominator
The denominator of the right hand side affine expression.
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p expr and \p *this
are dimension-incompatible or if \p var is not a dimension
of \p *this or if \p relsym is a strict relation symbol.
*/
void generalized_affine_image(Variable var,
Relation_Symbol relsym,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*! \brief
Assigns to \p *this the image of \p *this with respect to the
\ref Generalized_Affine_Relations "affine relation"
\f$\mathrm{lhs}' \relsym \mathrm{rhs}\f$, where
\f$\mathord{\relsym}\f$ is the relation symbol encoded by \p relsym.
\param lhs
The left hand side affine expression.
\param relsym
The relation symbol.
\param rhs
The right hand side affine expression.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with \p lhs or \p rhs
or if \p relsym is a strict relation symbol.
*/
void generalized_affine_image(const Linear_Expression& lhs,
Relation_Symbol relsym,
const Linear_Expression& rhs);
/*! \brief
Assigns to \p *this the preimage of \p *this with respect to the
\ref Generalized_Affine_Relations "affine relation"
\f$\mathrm{var}' \relsym \frac{\mathrm{expr}}{\mathrm{denominator}}\f$,
where \f$\mathord{\relsym}\f$ is the relation symbol encoded
by \p relsym.
\param var
The left hand side variable of the generalized affine transfer function.
\param relsym
The relation symbol.
\param expr
The numerator of the right hand side affine expression.
\param denominator
The denominator of the right hand side affine expression.
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p expr and \p *this
are dimension-incompatible or if \p var is not a dimension
of \p *this or if \p relsym is a strict relation symbol.
*/
void generalized_affine_preimage(Variable var,
Relation_Symbol relsym,
const Linear_Expression& expr,
Coefficient_traits::const_reference
denominator = Coefficient_one());
/*! \brief
Assigns to \p *this the preimage of \p *this with respect to the
\ref Generalized_Affine_Relations "affine relation"
\f$\mathrm{lhs}' \relsym \mathrm{rhs}\f$, where
\f$\mathord{\relsym}\f$ is the relation symbol encoded by \p relsym.
\param lhs
The left hand side affine expression.
\param relsym
The relation symbol.
\param rhs
The right hand side affine expression.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with \p lhs or \p rhs
or if \p relsym is a strict relation symbol.
*/
void generalized_affine_preimage(const Linear_Expression& lhs,
Relation_Symbol relsym,
const Linear_Expression& rhs);
/*!
\brief
Assigns to \p *this the image of \p *this with respect to the
\ref Single_Update_Bounded_Affine_Relations "bounded affine relation"
\f$\frac{\mathrm{lb\_expr}}{\mathrm{denominator}}
\leq \mathrm{var}'
\leq \frac{\mathrm{ub\_expr}}{\mathrm{denominator}}\f$.
\param var
The variable updated by the affine relation;
\param lb_expr
The numerator of the lower bounding affine expression;
\param ub_expr
The numerator of the upper bounding affine expression;
\param denominator
The (common) denominator for the lower and upper bounding
affine expressions (optional argument with default value 1).
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p lb_expr (resp., \p ub_expr)
and \p *this are dimension-incompatible or if \p var is not a space
dimension of \p *this.
*/
void bounded_affine_image(Variable var,
const Linear_Expression& lb_expr,
const Linear_Expression& ub_expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*!
\brief
Assigns to \p *this the preimage of \p *this with respect to the
\ref Single_Update_Bounded_Affine_Relations "bounded affine relation"
\f$\frac{\mathrm{lb\_expr}}{\mathrm{denominator}}
\leq \mathrm{var}'
\leq \frac{\mathrm{ub\_expr}}{\mathrm{denominator}}\f$.
\param var
The variable updated by the affine relation;
\param lb_expr
The numerator of the lower bounding affine expression;
\param ub_expr
The numerator of the upper bounding affine expression;
\param denominator
The (common) denominator for the lower and upper bounding
affine expressions (optional argument with default value 1).
\exception std::invalid_argument
Thrown if \p denominator is zero or if \p lb_expr (resp., \p ub_expr)
and \p *this are dimension-incompatible or if \p var is not a space
dimension of \p *this.
*/
void bounded_affine_preimage(Variable var,
const Linear_Expression& lb_expr,
const Linear_Expression& ub_expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
/*! \brief
Assigns to \p *this the result of computing the
\ref Time_Elapse_Operator "time-elapse" between \p *this and \p y.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
void time_elapse_assign(const BD_Shape& y);
/*! \brief
\ref Wrapping_Operator "Wraps" the specified dimensions of the
vector space.
\param vars
The set of Variable objects corresponding to the space dimensions
to be wrapped.
\param w
The width of the bounded integer type corresponding to
all the dimensions to be wrapped.
\param r
The representation of the bounded integer type corresponding to
all the dimensions to be wrapped.
\param o
The overflow behavior of the bounded integer type corresponding to
all the dimensions to be wrapped.
\param pcs
Possibly null pointer to a constraint system whose variables
are contained in \p vars. If <CODE>*pcs</CODE> depends on
variables not in \p vars, the behavior is undefined.
When non-null, the pointed-to constraint system is assumed to
represent the conditional or looping construct guard with respect
to which wrapping is performed. Since wrapping requires the
computation of upper bounds and due to non-distributivity of
constraint refinement over upper bounds, passing a constraint
system in this way can be more precise than refining the result of
the wrapping operation with the constraints in <CODE>*pcs</CODE>.
\param complexity_threshold
A precision parameter of the \ref Wrapping_Operator "wrapping operator":
higher values result in possibly improved precision.
\param wrap_individually
<CODE>true</CODE> if the dimensions should be wrapped individually
(something that results in much greater efficiency to the detriment of
precision).
\exception std::invalid_argument
Thrown if <CODE>*pcs</CODE> is dimension-incompatible with
\p vars, or if \p *this is dimension-incompatible \p vars or with
<CODE>*pcs</CODE>.
*/
void wrap_assign(const Variables_Set& vars,
Bounded_Integer_Type_Width w,
Bounded_Integer_Type_Representation r,
Bounded_Integer_Type_Overflow o,
const Constraint_System* pcs = 0,
unsigned complexity_threshold = 16,
bool wrap_individually = true);
/*! \brief
Possibly tightens \p *this by dropping some points with non-integer
coordinates.
\param complexity
The maximal complexity of any algorithms used.
\note
Currently there is no optimality guarantee, not even if
\p complexity is <CODE>ANY_COMPLEXITY</CODE>.
*/
void drop_some_non_integer_points(Complexity_Class complexity
= ANY_COMPLEXITY);
/*! \brief
Possibly tightens \p *this by dropping some points with non-integer
coordinates for the space dimensions corresponding to \p vars.
\param vars
Points with non-integer coordinates for these variables/space-dimensions
can be discarded.
\param complexity
The maximal complexity of any algorithms used.
\note
Currently there is no optimality guarantee, not even if
\p complexity is <CODE>ANY_COMPLEXITY</CODE>.
*/
void drop_some_non_integer_points(const Variables_Set& vars,
Complexity_Class complexity
= ANY_COMPLEXITY);
//! Assigns to \p *this its topological closure.
void topological_closure_assign();
/*! \brief
Assigns to \p *this the result of computing the
\ref CC76_extrapolation "CC76-extrapolation" between \p *this and \p y.
\param y
A BDS that <EM>must</EM> be contained in \p *this.
\param tp
An optional pointer to an unsigned variable storing the number of
available tokens (to be used when applying the
\ref Widening_with_Tokens "widening with tokens" delay technique).
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
void CC76_extrapolation_assign(const BD_Shape& y, unsigned* tp = 0);
/*! \brief
Assigns to \p *this the result of computing the
\ref CC76_extrapolation "CC76-extrapolation" between \p *this and \p y.
\param y
A BDS that <EM>must</EM> be contained in \p *this.
\param first
An iterator referencing the first stop-point.
\param last
An iterator referencing one past the last stop-point.
\param tp
An optional pointer to an unsigned variable storing the number of
available tokens (to be used when applying the
\ref Widening_with_Tokens "widening with tokens" delay technique).
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
template <typename Iterator>
void CC76_extrapolation_assign(const BD_Shape& y,
Iterator first, Iterator last,
unsigned* tp = 0);
/*! \brief
Assigns to \p *this the result of computing the
\ref BHMZ05_widening "BHMZ05-widening" of \p *this and \p y.
\param y
A BDS that <EM>must</EM> be contained in \p *this.
\param tp
An optional pointer to an unsigned variable storing the number of
available tokens (to be used when applying the
\ref Widening_with_Tokens "widening with tokens" delay technique).
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
void BHMZ05_widening_assign(const BD_Shape& y, unsigned* tp = 0);
/*! \brief
Improves the result of the \ref BHMZ05_widening "BHMZ05-widening"
computation by also enforcing those constraints in \p cs that are
satisfied by all the points of \p *this.
\param y
A BDS that <EM>must</EM> be contained in \p *this.
\param cs
The system of constraints used to improve the widened BDS.
\param tp
An optional pointer to an unsigned variable storing the number of
available tokens (to be used when applying the
\ref Widening_with_Tokens "widening with tokens" delay technique).
\exception std::invalid_argument
Thrown if \p *this, \p y and \p cs are dimension-incompatible or
if \p cs contains a strict inequality.
*/
void limited_BHMZ05_extrapolation_assign(const BD_Shape& y,
const Constraint_System& cs,
unsigned* tp = 0);
/*! \brief
Assigns to \p *this the result of restoring in \p y the constraints
of \p *this that were lost by
\ref CC76_extrapolation "CC76-extrapolation" applications.
\param y
A BDS that <EM>must</EM> contain \p *this.
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
\note
As was the case for widening operators, the argument \p y is meant to
denote the value computed in the previous iteration step, whereas
\p *this denotes the value computed in the current iteration step
(in the <EM>decreasing</EM> iteration sequence). Hence, the call
<CODE>x.CC76_narrowing_assign(y)</CODE> will assign to \p x
the result of the computation \f$\mathtt{y} \Delta \mathtt{x}\f$.
*/
void CC76_narrowing_assign(const BD_Shape& y);
/*! \brief
Improves the result of the \ref CC76_extrapolation "CC76-extrapolation"
computation by also enforcing those constraints in \p cs that are
satisfied by all the points of \p *this.
\param y
A BDS that <EM>must</EM> be contained in \p *this.
\param cs
The system of constraints used to improve the widened BDS.
\param tp
An optional pointer to an unsigned variable storing the number of
available tokens (to be used when applying the
\ref Widening_with_Tokens "widening with tokens" delay technique).
\exception std::invalid_argument
Thrown if \p *this, \p y and \p cs are dimension-incompatible or
if \p cs contains a strict inequality.
*/
void limited_CC76_extrapolation_assign(const BD_Shape& y,
const Constraint_System& cs,
unsigned* tp = 0);
/*! \brief
Assigns to \p *this the result of computing the
\ref H79_widening "H79-widening" between \p *this and \p y.
\param y
A BDS that <EM>must</EM> be contained in \p *this.
\param tp
An optional pointer to an unsigned variable storing the number of
available tokens (to be used when applying the
\ref Widening_with_Tokens "widening with tokens" delay technique).
\exception std::invalid_argument
Thrown if \p *this and \p y are dimension-incompatible.
*/
void H79_widening_assign(const BD_Shape& y, unsigned* tp = 0);
//! Same as H79_widening_assign(y, tp).
void widening_assign(const BD_Shape& y, unsigned* tp = 0);
/*! \brief
Improves the result of the \ref H79_widening "H79-widening"
computation by also enforcing those constraints in \p cs that are
satisfied by all the points of \p *this.
\param y
A BDS that <EM>must</EM> be contained in \p *this.
\param cs
The system of constraints used to improve the widened BDS.
\param tp
An optional pointer to an unsigned variable storing the number of
available tokens (to be used when applying the
\ref Widening_with_Tokens "widening with tokens" delay technique).
\exception std::invalid_argument
Thrown if \p *this, \p y and \p cs are dimension-incompatible.
*/
void limited_H79_extrapolation_assign(const BD_Shape& y,
const Constraint_System& cs,
unsigned* tp = 0);
//@} Space-Dimension Preserving Member Functions that May Modify [...]
//! \name Member Functions that May Modify the Dimension of the Vector Space
//@{
//! Adds \p m new dimensions and embeds the old BDS into the new space.
/*!
\param m
The number of dimensions to add.
The new dimensions will be those having the highest indexes in the new
BDS, which is defined by a system of bounded differences in which the
variables running through the new dimensions are unconstrained.
For instance, when starting from the BDS \f$\cB \sseq \Rset^2\f$
and adding a third dimension, the result will be the BDS
\f[
\bigl\{\,
(x, y, z)^\transpose \in \Rset^3
\bigm|
(x, y)^\transpose \in \cB
\,\bigr\}.
\f]
*/
void add_space_dimensions_and_embed(dimension_type m);
/*! \brief
Adds \p m new dimensions to the BDS and does not embed it in
the new vector space.
\param m
The number of dimensions to add.
The new dimensions will be those having the highest indexes in the
new BDS, which is defined by a system of bounded differences in
which the variables running through the new dimensions are all
constrained to be equal to 0.
For instance, when starting from the BDS \f$\cB \sseq \Rset^2\f$
and adding a third dimension, the result will be the BDS
\f[
\bigl\{\,
(x, y, 0)^\transpose \in \Rset^3
\bigm|
(x, y)^\transpose \in \cB
\,\bigr\}.
\f]
*/
void add_space_dimensions_and_project(dimension_type m);
/*! \brief
Assigns to \p *this the \ref Concatenating_Polyhedra "concatenation"
of \p *this and \p y, taken in this order.
\exception std::length_error
Thrown if the concatenation would cause the vector space
to exceed dimension <CODE>max_space_dimension()</CODE>.
*/
void concatenate_assign(const BD_Shape& y);
//! Removes all the specified dimensions.
/*!
\param vars
The set of Variable objects corresponding to the dimensions to be removed.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with one of the Variable
objects contained in \p vars.
*/
void remove_space_dimensions(const Variables_Set& vars);
/*! \brief
Removes the higher dimensions so that the resulting space
will have dimension \p new_dimension.
\exception std::invalid_argument
Thrown if \p new_dimension is greater than the space dimension
of \p *this.
*/
void remove_higher_space_dimensions(dimension_type new_dimension);
/*! \brief
Remaps the dimensions of the vector space according to
a \ref Mapping_the_Dimensions_of_the_Vector_Space "partial function".
\param pfunc
The partial function specifying the destiny of each dimension.
The template type parameter Partial_Function must provide
the following methods.
\code
bool has_empty_codomain() const
\endcode
returns <CODE>true</CODE> if and only if the represented partial
function has an empty co-domain (i.e., it is always undefined).
The <CODE>has_empty_codomain()</CODE> method will always be called
before the methods below. However, if
<CODE>has_empty_codomain()</CODE> returns <CODE>true</CODE>, none
of the functions below will be called.
\code
dimension_type max_in_codomain() const
\endcode
returns the maximum value that belongs to the co-domain
of the partial function.
\code
bool maps(dimension_type i, dimension_type& j) const
\endcode
Let \f$f\f$ be the represented function and \f$k\f$ be the value
of \p i. If \f$f\f$ is defined in \f$k\f$, then \f$f(k)\f$ is
assigned to \p j and <CODE>true</CODE> is returned.
If \f$f\f$ is undefined in \f$k\f$, then <CODE>false</CODE> is
returned.
The result is undefined if \p pfunc does not encode a partial
function with the properties described in the
\ref Mapping_the_Dimensions_of_the_Vector_Space
"specification of the mapping operator".
*/
template <typename Partial_Function>
void map_space_dimensions(const Partial_Function& pfunc);
//! Creates \p m copies of the space dimension corresponding to \p var.
/*!
\param var
The variable corresponding to the space dimension to be replicated;
\param m
The number of replicas to be created.
\exception std::invalid_argument
Thrown if \p var does not correspond to a dimension of the vector space.
\exception std::length_error
Thrown if adding \p m new space dimensions would cause the
vector space to exceed dimension <CODE>max_space_dimension()</CODE>.
If \p *this has space dimension \f$n\f$, with \f$n > 0\f$,
and <CODE>var</CODE> has space dimension \f$k \leq n\f$,
then the \f$k\f$-th space dimension is
\ref expand_space_dimension "expanded" to \p m new space dimensions
\f$n\f$, \f$n+1\f$, \f$\dots\f$, \f$n+m-1\f$.
*/
void expand_space_dimension(Variable var, dimension_type m);
//! Folds the space dimensions in \p vars into \p dest.
/*!
\param vars
The set of Variable objects corresponding to the space dimensions
to be folded;
\param dest
The variable corresponding to the space dimension that is the
destination of the folding operation.
\exception std::invalid_argument
Thrown if \p *this is dimension-incompatible with \p dest or with
one of the Variable objects contained in \p vars.
Also thrown if \p dest is contained in \p vars.
If \p *this has space dimension \f$n\f$, with \f$n > 0\f$,
<CODE>dest</CODE> has space dimension \f$k \leq n\f$,
\p vars is a set of variables whose maximum space dimension
is also less than or equal to \f$n\f$, and \p dest is not a member
of \p vars, then the space dimensions corresponding to
variables in \p vars are \ref fold_space_dimensions "folded"
into the \f$k\f$-th space dimension.
*/
void fold_space_dimensions(const Variables_Set& vars, Variable dest);
//@} // Member Functions that May Modify the Dimension of the Vector Space
PPL_OUTPUT_DECLARATIONS
/*! \brief
Loads from \p s an ASCII representation (as produced by
ascii_dump(std::ostream&) const) and sets \p *this accordingly.
Returns <CODE>true</CODE> if successful, <CODE>false</CODE> otherwise.
*/
bool ascii_load(std::istream& s);
//! Returns the total size in bytes of the memory occupied by \p *this.
memory_size_type total_memory_in_bytes() const;
//! Returns the size in bytes of the memory managed by \p *this.
memory_size_type external_memory_in_bytes() const;
/*! \brief
Returns a 32-bit hash code for \p *this.
If \p x and \p y are such that <CODE>x == y</CODE>,
then <CODE>x.hash_code() == y.hash_code()</CODE>.
*/
int32_t hash_code() const;
friend bool operator==<T>(const BD_Shape<T>& x, const BD_Shape<T>& y);
template <typename Temp, typename To, typename U>
friend bool Parma_Polyhedra_Library::rectilinear_distance_assign
(Checked_Number<To, Extended_Number_Policy>& r,
const BD_Shape<U>& x, const BD_Shape<U>& y, const Rounding_Dir dir,
Temp& tmp0, Temp& tmp1, Temp& tmp2);
template <typename Temp, typename To, typename U>
friend bool Parma_Polyhedra_Library::euclidean_distance_assign
(Checked_Number<To, Extended_Number_Policy>& r,
const BD_Shape<U>& x, const BD_Shape<U>& y, const Rounding_Dir dir,
Temp& tmp0, Temp& tmp1, Temp& tmp2);
template <typename Temp, typename To, typename U>
friend bool Parma_Polyhedra_Library::l_infinity_distance_assign
(Checked_Number<To, Extended_Number_Policy>& r,
const BD_Shape<U>& x, const BD_Shape<U>& y, const Rounding_Dir dir,
Temp& tmp0, Temp& tmp1, Temp& tmp2);
private:
template <typename U> friend class Parma_Polyhedra_Library::BD_Shape;
template <typename Interval> friend class Parma_Polyhedra_Library::Box;
//! The matrix representing the system of bounded differences.
DB_Matrix<N> dbm;
#define PPL_IN_BD_Shape_CLASS
#include "BDS_Status.idefs.hh"
#undef PPL_IN_BD_Shape_CLASS
//! The status flags to keep track of the internal state.
Status status;
//! A matrix indicating which constraints are redundant.
Bit_Matrix redundancy_dbm;
//! Returns <CODE>true</CODE> if the BDS is the zero-dimensional universe.
bool marked_zero_dim_univ() const;
/*! \brief
Returns <CODE>true</CODE> if the BDS is known to be empty.
The return value <CODE>false</CODE> does not necessarily
implies that \p *this is non-empty.
*/
bool marked_empty() const;
/*! \brief
Returns <CODE>true</CODE> if the system of bounded differences
is known to be shortest-path closed.
The return value <CODE>false</CODE> does not necessarily
implies that <CODE>this->dbm</CODE> is not shortest-path closed.
*/
bool marked_shortest_path_closed() const;
/*! \brief
Returns <CODE>true</CODE> if the system of bounded differences
is known to be shortest-path reduced.
The return value <CODE>false</CODE> does not necessarily
implies that <CODE>this->dbm</CODE> is not shortest-path reduced.
*/
bool marked_shortest_path_reduced() const;
//! Turns \p *this into an empty BDS.
void set_empty();
//! Turns \p *this into an zero-dimensional universe BDS.
void set_zero_dim_univ();
//! Marks \p *this as shortest-path closed.
void set_shortest_path_closed();
//! Marks \p *this as shortest-path closed.
void set_shortest_path_reduced();
//! Marks \p *this as possibly not shortest-path closed.
void reset_shortest_path_closed();
//! Marks \p *this as possibly not shortest-path reduced.
void reset_shortest_path_reduced();
//! Assigns to <CODE>this->dbm</CODE> its shortest-path closure.
void shortest_path_closure_assign() const;
/*! \brief
Assigns to <CODE>this->dbm</CODE> its shortest-path closure and
records into <CODE>this->redundancy_dbm</CODE> which of the entries
in <CODE>this->dbm</CODE> are redundant.
*/
void shortest_path_reduction_assign() const;
/*! \brief
Returns <CODE>true</CODE> if and only if <CODE>this->dbm</CODE>
is shortest-path closed and <CODE>this->redundancy_dbm</CODE>
correctly flags the redundant entries in <CODE>this->dbm</CODE>.
*/
bool is_shortest_path_reduced() const;
/*! \brief
Incrementally computes shortest-path closure, assuming that only
constraints affecting variable \p var need to be considered.
\note
It is assumed that \c *this, which was shortest-path closed,
has only been modified by adding constraints affecting variable
\p var. If this assumption is not satisfied, i.e., if a non-redundant
constraint not affecting variable \p var has been added, the behavior
is undefined.
*/
void incremental_shortest_path_closure_assign(Variable var) const;
//! Checks if and how \p expr is bounded in \p *this.
/*!
Returns <CODE>true</CODE> if and only if \p from_above is
<CODE>true</CODE> and \p expr is bounded from above in \p *this,
or \p from_above is <CODE>false</CODE> and \p expr is bounded
from below in \p *this.
\param expr
The linear expression to test;
\param from_above
<CODE>true</CODE> if and only if the boundedness of interest is
"from above".
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
*/
bool bounds(const Linear_Expression& expr, bool from_above) const;
//! Maximizes or minimizes \p expr subject to \p *this.
/*!
\param expr
The linear expression to be maximized or minimized subject to \p
*this;
\param maximize
<CODE>true</CODE> if maximization is what is wanted;
\param ext_n
The numerator of the extremum value;
\param ext_d
The denominator of the extremum value;
\param included
<CODE>true</CODE> if and only if the extremum of \p expr can
actually be reached in \p * this;
\param g
When maximization or minimization succeeds, will be assigned
a point or closure point where \p expr reaches the
corresponding extremum value.
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded in the appropriate
direction, <CODE>false</CODE> is returned and \p ext_n, \p ext_d,
\p included and \p g are left untouched.
*/
bool max_min(const Linear_Expression& expr,
bool maximize,
Coefficient& ext_n, Coefficient& ext_d, bool& included,
Generator& g) const;
//! Maximizes or minimizes \p expr subject to \p *this.
/*!
\param expr
The linear expression to be maximized or minimized subject to \p
*this;
\param maximize
<CODE>true</CODE> if maximization is what is wanted;
\param ext_n
The numerator of the extremum value;
\param ext_d
The denominator of the extremum value;
\param included
<CODE>true</CODE> if and only if the extremum of \p expr can
actually be reached in \p * this;
\exception std::invalid_argument
Thrown if \p expr and \p *this are dimension-incompatible.
If \p *this is empty or \p expr is not bounded in the appropriate
direction, <CODE>false</CODE> is returned and \p ext_n, \p ext_d,
\p included and \p point are left untouched.
*/
bool max_min(const Linear_Expression& expr,
bool maximize,
Coefficient& ext_n, Coefficient& ext_d, bool& included) const;
/*! \brief
If the upper bound of \p *this and \p y is exact it is assigned
to \p *this and \c true is returned, otherwise \c false is returned.
Current implementation is based on a variant of Algorithm 4.1 in
A. Bemporad, K. Fukuda, and F. D. Torrisi
<em>Convexity Recognition of the Union of Polyhedra</em>
Technical Report AUT00-13, ETH Zurich, 2000
tailored to the special case of BD shapes.
\note
It is assumed that \p *this and \p y are dimension-compatible;
if the assumption does not hold, the behavior is undefined.
*/
bool BFT00_upper_bound_assign_if_exact(const BD_Shape& y);
/*! \brief
If the upper bound of \p *this and \p y is exact it is assigned
to \p *this and \c true is returned, otherwise \c false is returned.
Implementation for the rational (resp., integer) case is based on
Theorem 5.2 (resp. Theorem 5.3) of \ref BHZ09b "[BHZ09b]".
The Boolean template parameter \c integer_upper_bound allows for
choosing between the rational and integer upper bound algorithms.
\note
It is assumed that \p *this and \p y are dimension-compatible;
if the assumption does not hold, the behavior is undefined.
\note
The integer case is only enabled if T is an integer datatype.
*/
template <bool integer_upper_bound>
bool BHZ09_upper_bound_assign_if_exact(const BD_Shape& y);
/*! \brief
Uses the constraint \p c to refine \p *this.
\param c
The constraint to be added. Non BD constraints are ignored.
\warning
If \p c and \p *this are dimension-incompatible,
the behavior is undefined.
*/
void refine_no_check(const Constraint& c);
/*! \brief
Uses the congruence \p cg to refine \p *this.
\param cg
The congruence to be added.
Nontrivial proper congruences are ignored.
Non BD equalities are ignored.
\warning
If \p cg and \p *this are dimension-incompatible,
the behavior is undefined.
*/
void refine_no_check(const Congruence& cg);
//! Adds the constraint <CODE>dbm[i][j] \<= k</CODE>.
void add_dbm_constraint(dimension_type i, dimension_type j, const N& k);
//! Adds the constraint <CODE>dbm[i][j] \<= num/den</CODE>.
void add_dbm_constraint(dimension_type i, dimension_type j,
Coefficient_traits::const_reference num,
Coefficient_traits::const_reference den);
/*! \brief
Adds to the BDS the constraint
\f$\mathrm{var} \relsym \frac{\mathrm{expr}}{\mathrm{denominator}}\f$.
Note that the coefficient of \p var in \p expr is null.
*/
void refine(Variable var, Relation_Symbol relsym,
const Linear_Expression& expr,
Coefficient_traits::const_reference denominator
= Coefficient_one());
//! Removes all the constraints on row/column \p v.
void forget_all_dbm_constraints(dimension_type v);
//! Removes all binary constraints on row/column \p v.
void forget_binary_dbm_constraints(dimension_type v);
//! An helper function for the computation of affine relations.
/*!
For each dbm index \p u (less than or equal to \p last_v and different
from \p v), deduce constraints of the form <CODE>v - u \<= c</CODE>,
starting from \p ub_v which is an upper bound for \p v.
The shortest-path closure is able to deduce the constraint
<CODE>v - u \<= ub_v - lb_u</CODE>. We can be more precise if variable
\p u played an active role in the computation of the upper bound for
\p v, i.e., if the corresponding coefficient
<CODE>q == sc_expr[u]/sc_den</CODE> is greater than zero. In particular:
- if <CODE>q \>= 1</CODE>, then <CODE>v - u \<= ub_v - ub_u</CODE>;
- if <CODE>0 \< q \< 1</CODE>, then
<CODE>v - u \<= ub_v - (q*ub_u + (1-q)*lb_u)</CODE>.
*/
void deduce_v_minus_u_bounds(dimension_type v,
dimension_type last_v,
const Linear_Expression& sc_expr,
Coefficient_traits::const_reference sc_den,
const N& ub_v);
//! An helper function for the computation of affine relations.
/*!
For each dbm index \p u (less than or equal to \p last_v and different
from \p v), deduce constraints of the form <CODE>u - v \<= c</CODE>,
starting from \p minus_lb_v which is a lower bound for \p v.
The shortest-path closure is able to deduce the constraint
<CODE>u - v \<= ub_u - lb_v</CODE>. We can be more precise if variable
\p u played an active role in the computation of the lower bound for
\p v, i.e., if the corresponding coefficient
<CODE>q == sc_expr[u]/sc_den</CODE> is greater than zero.
In particular:
- if <CODE>q \>= 1</CODE>, then <CODE>u - v \<= lb_u - lb_v</CODE>;
- if <CODE>0 \< q \< 1</CODE>, then
<CODE>u - v \<= (q*lb_u + (1-q)*ub_u) - lb_v</CODE>.
*/
void deduce_u_minus_v_bounds(dimension_type v,
dimension_type last_v,
const Linear_Expression& sc_expr,
Coefficient_traits::const_reference sc_den,
const N& minus_lb_v);
/*! \brief
Adds to \p limiting_shape the bounded differences in \p cs
that are satisfied by \p *this.
*/
void get_limiting_shape(const Constraint_System& cs,
BD_Shape& limiting_shape) const;
//! Compute the (zero-equivalence classes) predecessor relation.
/*!
It is assumed that the BDS is not empty and shortest-path closed.
*/
void compute_predecessors(std::vector<dimension_type>& predecessor) const;
//! Compute the leaders of zero-equivalence classes.
/*!
It is assumed that the BDS is not empty and shortest-path closed.
*/
void compute_leaders(std::vector<dimension_type>& leaders) const;
void drop_some_non_integer_points_helper(N& elem);
friend std::ostream&
Parma_Polyhedra_Library::IO_Operators
::operator<<<>(std::ostream& s, const BD_Shape<T>& c);
//! \name Exception Throwers
//@{
void throw_dimension_incompatible(const char* method,
const BD_Shape& x) const;
void throw_dimension_incompatible(const char* method,
dimension_type required_dim) const;
void throw_dimension_incompatible(const char* method,
const Constraint& c) const;
void throw_dimension_incompatible(const char* method,
const Congruence& cg) const;
void throw_dimension_incompatible(const char* method,
const Generator& g) const;
void throw_dimension_incompatible(const char* method,
const char* name_row,
const Linear_Expression& y) const;
static void throw_expression_too_complex(const char* method,
const Linear_Expression& e);
static void throw_generic(const char* method, const char* reason);
//@} // Exception Throwers
};
namespace std {
//! Specializes <CODE>std::swap</CODE>.
/*! \relates Parma_Polyhedra_Library::BD_Shape */
template <typename T>
void swap(Parma_Polyhedra_Library::BD_Shape<T>& x,
Parma_Polyhedra_Library::BD_Shape<T>& y);
} // namespace std
#include "BDS_Status.inlines.hh"
#include "BD_Shape.inlines.hh"
#include "BD_Shape.templates.hh"
#endif // !defined(PPL_BD_Shape_defs_hh)
|