/* Test Pointset_Powerset::Pointset_Powerset(C_Polyhedron), Pointset_Powerset::Pointset_Powerset(NNC_Polyhedron). Copyright (C) 2001-2010 Roberto Bagnara Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com) This file is part of the Parma Polyhedra Library (PPL). The PPL is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The PPL is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA. For the most up-to-date information see the Parma Polyhedra Library site: http://www.cs.unipr.it/ppl/ . */ #include "ppl_test.hh" namespace { // Constructs the powerset of polyhedra from an empty polyhedron. bool test01() { C_Polyhedron c_ph(0, EMPTY); Pointset_Powerset c_ps(c_ph); bool ok = (c_ps.OK() && c_ps.is_empty() && c_ps.space_dimension() == 0); NNC_Polyhedron nnc_ph(0, EMPTY); Pointset_Powerset nnc_ps(nnc_ph); ok = ok && (nnc_ps.OK() && nnc_ps.is_empty() && nnc_ps.space_dimension() == 0); return ok; } // Constructs the powerset of polyhedra from a closed polyhedron. bool test02() { Variable x(0); Variable y(1); Variable z(2); Variable w(3); C_Polyhedron c_ph(4); c_ph.add_constraint(x <= 2); c_ph.add_constraint(z == 1); NNC_Polyhedron nnc_ph(c_ph); Pointset_Powerset c_pps1(c_ph); Pointset_Powerset c_pps2(4, EMPTY); c_pps2.add_disjunct(c_ph); Pointset_Powerset nnc_pps1(c_ph); Pointset_Powerset nnc_pps2(4, EMPTY); nnc_pps2.add_disjunct(nnc_ph); bool ok = (c_pps1 == c_pps2 && nnc_pps1 == nnc_pps2); Pointset_Powerset::const_iterator c_i = c_pps1.begin(); C_Polyhedron c_phi = c_i->pointset(); print_constraints(c_phi, "*** c_phi ***"); Pointset_Powerset::const_iterator nnc_i = nnc_pps1.begin(); NNC_Polyhedron nnc_phi = nnc_i->pointset(); print_constraints(nnc_phi, "*** nnc_phi ***"); return ok && c_pps1.OK() && nnc_pps1.OK(); } // Constructs the powerset of polyhedra from an nnc polyhedron. bool test03() { Variable x(0); Variable y(1); Variable z(2); Variable w(3); NNC_Polyhedron nnc_ph(4); nnc_ph.add_constraint(x <= 2); nnc_ph.add_constraint(z == 1); C_Polyhedron c_ph(nnc_ph); Pointset_Powerset c_pps1(nnc_ph); Pointset_Powerset c_pps2(4, EMPTY); c_pps2.add_disjunct(c_ph); Pointset_Powerset nnc_pps1(nnc_ph); Pointset_Powerset nnc_pps2(4, EMPTY); nnc_pps2.add_disjunct(nnc_ph); bool ok = (c_pps1 == c_pps2 && nnc_pps1 == nnc_pps2); Pointset_Powerset::const_iterator c_i = c_pps1.begin(); C_Polyhedron c_phi = c_i->pointset(); print_constraints(c_phi, "*** c_phi ***"); Pointset_Powerset::const_iterator nnc_i = nnc_pps1.begin(); NNC_Polyhedron nnc_phi = nnc_i->pointset(); print_constraints(nnc_phi, "*** nnc_phi ***"); return ok && c_pps1.OK() && nnc_pps1.OK(); } // Constructs the powerset of nnc polyhedra from a powerset of // closed polyhedra. bool test04() { Variable x(0); Variable y(1); C_Polyhedron ph(2); ph.add_constraint(2*x == 1); ph.add_constraint(y >= 0); Pointset_Powerset pps_c(ph); Pointset_Powerset pps(pps_c); Pointset_Powerset known_pps(2); known_pps.add_constraint(2*x == 1); known_pps.add_constraint(y >= 0); bool ok = (pps == known_pps); Pointset_Powerset::const_iterator i = pps.begin(); NNC_Polyhedron phi = i->pointset(); print_constraints(phi, "*** phi ***"); return ok; } // Constructs the powerset of nnc polyhedra from a powerset of // closed polyhedra. bool test05() { Variable x(0); Variable y(1); Pointset_Powerset pps(2); pps.add_constraint(x >= 1); pps.add_constraint(x <= 1); pps.add_constraint(y >= 0); Pointset_Powerset pps1(pps, POLYNOMIAL_COMPLEXITY); Pointset_Powerset::const_iterator i1 = pps.begin(); C_Polyhedron phi1 = i1->pointset(); print_constraints(phi1, "*** phi1 ***"); pps.OK(); Pointset_Powerset::const_iterator i = pps.begin(); C_Polyhedron phi = i->pointset(); phi.OK(); print_constraints(phi, "*** phi after ok check ***"); bool ok = true; return ok; } // Constructs the powerset of bd shapes from a polyhedron. bool test06() { Variable x(0); Variable y(1); Variable z(2); Variable w(3); C_Polyhedron ph(4); ph.add_constraint(3*x >= 2); ph.add_constraint(z >= 1); ph.add_constraint(3*x + z <= 3); C_Polyhedron ph1(ph); // With the default complexity, the implied equalities 4*x = 2 and z = 1. // are found Pointset_Powerset pps(ph); Pointset_Powerset::const_iterator i = pps.begin(); TBD_Shape bdsi = i->pointset(); BD_Shape known_bdsi(4); known_bdsi.add_constraint(3*x == 2); known_bdsi.add_constraint(z == 1); bool ok = check_result(bdsi, known_bdsi, "5.97e-8", "3.15e-8", "1.99e-8"); print_constraints(bdsi, "*** bdsi ***"); print_constraints(known_bdsi, "*** known_bdsi ***"); // With the polynomial complexity, implied equalities are not found. Pointset_Powerset pps1(ph1, POLYNOMIAL_COMPLEXITY); Pointset_Powerset::const_iterator i1 = pps1.begin(); TBD_Shape bdsi1 = i1->pointset(); BD_Shape known_bdsi1(4); known_bdsi1.add_constraint(3*x >= 2); known_bdsi1.add_constraint(z >= 1); ok = check_result(bdsi1, known_bdsi1, "3.98e-8", "3.98e-8", "3.98e-8") && ok; print_constraints(bdsi1, "*** bdsi1 ***"); print_constraints(known_bdsi1, "*** known_bds1i ***"); ok = ok && pps.OK() && pps1.OK(); Pointset_Powerset::const_iterator i_ok = pps.begin(); TBD_Shape bdsi_ok = i_ok->pointset(); Pointset_Powerset::const_iterator i1_ok = pps1.begin(); TBD_Shape bdsi1_ok = i1_ok->pointset(); print_constraints(bdsi_ok, "*** bdsi after OK() ***"); print_constraints(bdsi1_ok, "*** bdsi1 after OK() ***"); return ok; } // Constructs the powerset of bd shapes from a polyhedron whose // constraints are inconsistent (i.e., is empty but not marked as // empty). bool test07() { Variable x(0); Variable y(1); Variable z(2); Variable w(3); C_Polyhedron ph(4); ph.add_constraint(3*x >= 2); ph.add_constraint(z >= 1); ph.add_constraint(3*x + z <= 2); C_Polyhedron ph1(ph); // With the default complexity, the built powerset is empty. Pointset_Powerset pps(ph); // With the polynomial complexity, the built powerset is non-empty. Pointset_Powerset pps1(ph1, POLYNOMIAL_COMPLEXITY); BD_Shape known_bds1(4); known_bds1.add_constraint(3*x >= 2); known_bds1.add_constraint(z >= 1); Pointset_Powerset::const_iterator i1 = pps1.begin(); TBD_Shape bdsi1 = i1->pointset(); bool ok = check_result(bdsi1, known_bds1, "1.92e-7", "8.89e-8", "7.95e-8") && pps.is_empty(); print_constraints(bdsi1, "*** bdsi1 ***"); return ok && pps.OK() && pps1.OK(); } // Constructs the powerset of bd shapes from an empty polyhedron. bool test08() { Variable x(0); Variable y(1); NNC_Polyhedron ph(2, EMPTY); Pointset_Powerset pps(ph); Pointset_Powerset known_pps(2, EMPTY); bool ok = (pps == known_pps); return ok; } // Constructs the powerset of bd shapes from a powerset of polyhedra. bool test09() { Variable x(0); Variable y(1); Constraint_System cs; cs.insert(2*x >= 1); cs.insert(2*x + y <= 1); cs.insert(y >= 0); C_Polyhedron ph1(cs); C_Polyhedron ph2(cs); Pointset_Powerset pps1_c(ph1, POLYNOMIAL_COMPLEXITY); Pointset_Powerset pps2_c(ph2); Pointset_Powerset pps1(pps1_c, POLYNOMIAL_COMPLEXITY); Pointset_Powerset pps2(pps2_c); Pointset_Powerset known_pps1(2); known_pps1.add_constraint(2*x >= 1); known_pps1.add_constraint(y >= 0); Pointset_Powerset known_pps2(2); known_pps2.add_constraint(2*x == 1); known_pps2.add_constraint(y == 0); bool ok = (pps1 == known_pps1 && pps2 == known_pps2); Pointset_Powerset::const_iterator i1 = pps1.begin(); TBD_Shape bdsi1 = i1->pointset(); print_constraints(bdsi1, "*** bdsi1 ***"); Pointset_Powerset::const_iterator i2 = pps2.begin(); TBD_Shape bdsi2 = i2->pointset(); print_constraints(bdsi2, "*** bdsi2 ***"); return ok; } // Constructs the powerset of octagonal_shapes from a polyhedron. bool test10() { Variable x(0); Variable y(1); Variable z(2); Variable w(3); C_Polyhedron ph(4); ph.add_constraint(3*x >= 2); ph.add_constraint(z >= 1); ph.add_constraint(3*x + z <= 3); C_Polyhedron ph1(ph); // With the default complexity, the implied equalities 4*x = 2 and z = 1. // are found Pointset_Powerset pps(ph); Pointset_Powerset::const_iterator i = pps.begin(); TOctagonal_Shape osi = i->pointset(); Octagonal_Shape known_osi(4); known_osi.add_constraint(3*x == 2); known_osi.add_constraint(z == 1); bool ok = check_result(osi, known_osi, "1.193e-7", "5.45e-8", "3.98e-8"); print_constraints(osi, "*** osi ***"); print_constraints(known_osi, "*** known_osi ***"); // With the polynomial complexity, implied equalities are not found. Pointset_Powerset pps1(ph1, POLYNOMIAL_COMPLEXITY); Pointset_Powerset::const_iterator i1 = pps1.begin(); TOctagonal_Shape osi1 = i1->pointset(); Octagonal_Shape known_osi1(4); known_osi1.add_constraint(3*x >= 2); known_osi1.add_constraint(z >= 1); ok = check_result(osi1, known_osi1, "1.193e-7", "8.89e-8", "7.95e-8") && ok; print_constraints(osi1, "*** osi1 ***"); print_constraints(known_osi1, "*** known_osi1 ***"); ok = ok && pps.OK() && pps1.OK(); Pointset_Powerset::const_iterator i_ok = pps.begin(); TOctagonal_Shape osi_ok = i_ok->pointset(); Pointset_Powerset::const_iterator i1_ok = pps1.begin(); TOctagonal_Shape osi1_ok = i1_ok->pointset(); print_constraints(osi_ok, "*** osi after OK() ***"); print_constraints(osi1_ok, "*** osi1 after OK() ***"); return ok; } // Constructs the powerset of octagonal_shapes from a polyhedron whose // constraints are inconsistent (i.e., is empty but not marked as // empty). bool test11() { Variable x(0); Variable y(1); Variable z(2); Variable w(3); C_Polyhedron ph(4); ph.add_constraint(3*x >= 2); ph.add_constraint(z >= 1); ph.add_constraint(3*x + z <= 2); C_Polyhedron ph1(ph); // With the default complexity, the built powerset is empty. Pointset_Powerset pps(ph); // With the polynomial complexity, the built powerset is non-empty. Pointset_Powerset pps1(ph1, POLYNOMIAL_COMPLEXITY); Octagonal_Shape known_os1(4); known_os1.add_constraint(3*x >= 2); known_os1.add_constraint(z >= 1); Pointset_Powerset::const_iterator i1 = pps1.begin(); TOctagonal_Shape osi1 = i1->pointset(); bool ok = check_result(osi1, known_os1, "1.92e-7", "8.89e-8", "7.95e-8") && pps.is_empty(); print_constraints(osi1, "*** osi1 ***"); return ok && pps.OK() && pps1.OK(); } // Constructs the powerset of octagonal_shapes from an empty polyhedron. bool test12() { Variable x(0); Variable y(1); NNC_Polyhedron ph(2, EMPTY); Pointset_Powerset pps(ph); Pointset_Powerset known_pps(2, EMPTY); bool ok = (pps == known_pps); return ok; } // Constructs the powerset of octagonal_shapes from a powerset of polyhedra. bool test13() { Variable x(0); Variable y(1); Constraint_System cs; cs.insert(2*x >= 1); cs.insert(2*x + y <= 1); cs.insert(y >= 0); C_Polyhedron ph1(cs); C_Polyhedron ph2(cs); Pointset_Powerset pps1_c(ph1, POLYNOMIAL_COMPLEXITY); Pointset_Powerset pps2_c(ph2); Pointset_Powerset pps1(pps1_c, POLYNOMIAL_COMPLEXITY); Pointset_Powerset pps2(pps2_c); Pointset_Powerset known_pps1(2); known_pps1.add_constraint(2*x >= 1); known_pps1.add_constraint(y >= 0); Pointset_Powerset known_pps2(2); known_pps2.add_constraint(2*x == 1); known_pps2.add_constraint(y == 0); bool ok = (pps1 == known_pps1 && pps2 == known_pps2); Pointset_Powerset::const_iterator i1 = pps1.begin(); TOctagonal_Shape osi1 = i1->pointset(); print_constraints(osi1, "*** osi1 ***"); Pointset_Powerset::const_iterator i2 = pps2.begin(); TOctagonal_Shape osi2 = i2->pointset(); print_constraints(osi2, "*** osi2 ***"); return ok; } // Constructs the powerset of boxes from a polyhedron. bool test14() { Variable x(0); Variable y(1); Variable z(2); Variable w(3); C_Polyhedron ph(4); ph.add_constraint(x >= 2); ph.add_constraint(y >= 5); ph.add_constraint(z >= 1); ph.add_constraint(x + y + z <= 8); C_Polyhedron ph1(ph); // With both the default and polynomial complexities, // the implied equalities x = 2, y = 5 and z = 1 are found. Pointset_Powerset pps(ph); Pointset_Powerset pps1(ph1, POLYNOMIAL_COMPLEXITY); Pointset_Powerset known_pps(4); known_pps.add_constraint(x == 2); known_pps.add_constraint(y == 5); known_pps.add_constraint(z == 1); bool ok = (pps == known_pps && pps1 == known_pps); if (pps.size() > 0) print_constraints(pps.begin()->pointset(), "*** box ***"); if (pps1.size() > 0) print_constraints(pps1.begin()->pointset(), "*** box1 ***"); return ok && pps.OK() && pps1.OK(); } // Constructs the powerset of boxes from a polyhedron whose constraints // are inconsistent (i.e., is empty but not marked as empty). bool test15() { Variable x(0); Variable y(1); Variable z(2); Variable w(3); C_Polyhedron ph(4); ph.add_constraint(x >= 2); ph.add_constraint(y >= 5); ph.add_constraint(z >= 1); ph.add_constraint(x + y + z <= 7); C_Polyhedron ph1(ph); // With both the default and polynomial complexity, // the built powerset is detected to be empty. Pointset_Powerset pps(ph); Pointset_Powerset pps1(ph1, POLYNOMIAL_COMPLEXITY); Pointset_Powerset known_pps(4, EMPTY); bool ok = (pps == known_pps && pps1 == known_pps); // These will print something only if test is going to fail. if (pps.size() > 0) print_constraints(pps.begin()->pointset(), "*** box ***"); if (pps1.size() > 0) print_constraints(pps1.begin()->pointset(), "*** box1 ***"); return ok && pps.OK() && pps1.OK(); } // Constructs the powerset of boxes from an empty polyhedron. bool test16() { Variable x(0); Variable y(1); NNC_Polyhedron ph(2, EMPTY); Pointset_Powerset pps(ph); Pointset_Powerset known_pps(2, EMPTY); bool ok = (pps == known_pps); return ok; } // Constructs the powerset of boxes from a powerset of polyhedra. bool test17() { Variable x(0); Variable y(1); Constraint_System cs; cs.insert(2*x >= 1); cs.insert(2*x + y <= 1); cs.insert(y >= 0); C_Polyhedron ph1(cs); C_Polyhedron ph2(cs); Pointset_Powerset pps1_c(ph1, POLYNOMIAL_COMPLEXITY); Pointset_Powerset pps2_c(ph2); Pointset_Powerset pps1(pps1_c, POLYNOMIAL_COMPLEXITY); Pointset_Powerset pps2(pps2_c); Pointset_Powerset known_pps(2); known_pps.add_constraint(2*x == 1); known_pps.add_constraint(y == 0); bool ok = (pps1 == known_pps && pps2 == known_pps); if (pps1.size() > 0) print_constraints(pps1.begin()->pointset(), "*** box1 ***"); if (pps2.size() > 0) print_constraints(pps2.begin()->pointset(), "*** box2 ***"); return ok; } // Constructs the powerset of grids from a polyhedron. bool test18() { Variable x(0); Variable y(1); Variable z(2); Variable w(3); C_Polyhedron ph(4); ph.add_constraint(x >= 2); ph.add_constraint(z >= 1); ph.add_constraint(x + z <= 3); C_Polyhedron ph1(4); ph1.add_constraint(x >= 2); ph1.add_constraint(z >= 1); ph1.add_constraint(x + z <= 3); // With the default complexity, the implied equalities x = 2 and z = 1. // are found Pointset_Powerset pps(ph); // With the polynomial complexity, no implied equalities are found. Pointset_Powerset pps1(ph1, POLYNOMIAL_COMPLEXITY); Pointset_Powerset known_pps(4); known_pps.add_congruence((x %= 2) / 0); known_pps.add_congruence((z %= 1) / 0); Pointset_Powerset known_pps1(4); bool ok = (pps == known_pps && pps1 == known_pps1); Pointset_Powerset::const_iterator i = pps.begin(); Grid gri = i->pointset(); print_congruences(gri, "*** gri ***"); Pointset_Powerset::const_iterator i1 = pps1.begin(); Grid gri1 = i1->pointset(); print_congruences(gri1, "*** gri1 ***"); return ok && pps.OK() && pps1.OK(); } // Constructs the powerset of grids from a polyhedron whose constraints // are inconsistent (i.e., is empty but not marked as empty). bool test19() { Variable x(0); Variable y(1); Variable z(2); Variable w(3); C_Polyhedron ph(4); ph.add_constraint(x >= 2); ph.add_constraint(z >= 1); ph.add_constraint(x + z <= 2); C_Polyhedron ph1(ph); // With the default complexity, the built powerset is empty. Pointset_Powerset pps(ph); // With the polynomial complexity, the built powerset is the universe. Pointset_Powerset pps1(ph1, POLYNOMIAL_COMPLEXITY); Pointset_Powerset known_pps(4, EMPTY); Pointset_Powerset known_pps1(4); bool ok = (pps == known_pps && pps1 == known_pps1); Pointset_Powerset::const_iterator i1 = pps1.begin(); Grid gri1 = i1->pointset(); print_congruences(gri1, "*** gri1 ***"); return ok && pps.OK() && pps1.OK(); } // Constructs the powerset of grids from an empty polyhedron. bool test20() { Variable x(0); Variable y(1); NNC_Polyhedron ph(2, EMPTY); Pointset_Powerset pps(ph); Pointset_Powerset known_pps(2, EMPTY); bool ok = (pps == known_pps); return ok; } // Constructs the powerset of grids from a powerset of polyhedra. bool test21() { Variable x(0); Variable y(1); Constraint_System cs; cs.insert(2*x >= 1); cs.insert(2*x + y <= 1); cs.insert(y >= 0); C_Polyhedron ph1(cs); C_Polyhedron ph2(cs); Pointset_Powerset pps1_c(ph1, POLYNOMIAL_COMPLEXITY); Pointset_Powerset pps2_c(ph2); Pointset_Powerset pps1(pps1_c, POLYNOMIAL_COMPLEXITY); Pointset_Powerset pps2(pps2_c); Pointset_Powerset known_pps1(2); Pointset_Powerset known_pps2(2); known_pps2.add_constraint(2*x == 1); known_pps2.add_constraint(y == 0); bool ok = (pps1 == known_pps1 && pps2 == known_pps2); Pointset_Powerset::const_iterator i1 = pps1.begin(); Grid gri1 = i1->pointset(); print_congruences(gri1, "*** gri1 ***"); Pointset_Powerset::const_iterator i2 = pps2.begin(); Grid gri2 = i2->pointset(); print_congruences(gri2, "*** gri2 ***"); return ok; } } // namespace BEGIN_MAIN DO_TEST(test01); DO_TEST(test02); DO_TEST(test03); DO_TEST(test04); DO_TEST(test05); DO_TEST(test06); DO_TEST(test07); DO_TEST(test08); DO_TEST(test09); DO_TEST(test10); DO_TEST(test11); DO_TEST(test12); DO_TEST(test13); DO_TEST(test14); DO_TEST(test15); DO_TEST(test16); DO_TEST(test17); DO_TEST(test18); DO_TEST(test19); DO_TEST(test20); DO_TEST(test21); END_MAIN