/* Test that the right exceptions are thrown in case of incorrect uses. Copyright (C) 2001-2010 Roberto Bagnara Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com) This file is part of the Parma Polyhedra Library (PPL). The PPL is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The PPL is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA. For the most up-to-date information see the Parma Polyhedra Library site: http://www.cs.unipr.it/ppl/ . */ #include "ppl_test.hh" namespace { bool test01() { Variable A(0); Constraint_System cs; cs.insert(A >= 6); cs.insert(A > -6); MIP_Problem mip(cs.space_dimension()); try { // This tries to build an invalid MIP_Problem object: the feasible // region can not be defined using strict inequalities. mip.add_constraints(cs); } catch (std::invalid_argument& e) { nout << "invalid_argument: " << e.what() << endl << endl; return true; } catch (...) { } return false; } bool test02() { Variable A(0); MIP_Problem mip; try { // This tries to build an invalid MIP_Problem object: the space dimension // of the objective function can not be greater than the space dimension // of the feasible region. mip.set_objective_function(A); } catch (std::invalid_argument& e) { nout << "invalid_argument: " << e.what() << endl << endl; return true; } catch (...) { } return false; } bool test03() { Variable A(0); Constraint_System cs; cs.insert(A >= 6); cs.insert(A <= 0); MIP_Problem mip(cs.space_dimension(), cs, A, MAXIMIZATION); try { // We cannot extract a feasible point from an unsatisfiable MIP_Problem. Generator fp = mip.feasible_point(); } catch (std::domain_error& e) { nout << "domain_error: " << e.what() << endl << endl; return true; } catch (...) { } return false; } bool test04() { Variable A(0); Constraint_System cs; cs.insert(A >= 6); MIP_Problem mip(cs.space_dimension(), cs, A, MAXIMIZATION); try { // We cannot extract an optimizing point from an unbounded MIP_Problem. Generator fp = mip.optimizing_point(); } catch (std::domain_error& e) { nout << "domain_error: " << e.what() << endl << endl; return true; } catch (...) { } return false; } bool test05() { Variable A(0); Variable B(1); Constraint_System cs; cs.insert(A >= 6); MIP_Problem mip(cs.space_dimension(), cs, A, MAXIMIZATION); Generator p = point(A + B); Coefficient num; Coefficient den; try { // This tries to evaluate the objective function on a space-dimension // incompatible generator. mip.evaluate_objective_function(p, num, den); } catch (std::invalid_argument& e) { nout << "invalid_argument: " << e.what() << endl << endl; return true; } catch (...) { } return false; } bool test06() { Variable A(0); Constraint_System cs; cs.insert(A >= 6); MIP_Problem mip(cs.space_dimension(), cs, A, MAXIMIZATION); Generator r = ray(A); Coefficient num; Coefficient den; try { // This tries to evaluate the objective function on a ray. mip.evaluate_objective_function(r, num, den); } catch (std::invalid_argument& e) { nout << "invalid_argument: " << e.what() << endl << endl; return true; } catch (...) { } return false; } bool test07() { try { // This tries to overflow the maximum space dimension. MIP_Problem mip(MIP_Problem::max_space_dimension() + 1); } catch (std::length_error& e) { nout << "length_error: " << e.what() << endl << endl; return true; } catch (...) { } return false; } bool test08() { MIP_Problem mip(1); try { // This tries to overflow the maximum space dimension. mip.add_space_dimensions_and_embed(MIP_Problem::max_space_dimension()); } catch (std::length_error& e) { nout << "length_error: " << e.what() << endl << endl; return true; } catch (...) { } return false; } bool test09() { Variable A(0); Variable B(1); Constraint_System cs; cs.insert(A >= 6); cs.insert(A <= 0); dimension_type cs_space_dimension = cs.space_dimension(); Linear_Expression cost(A + B); try { // This tries to make the cost function incompatible with the MIP_Problem // space dimension. MIP_Problem mip(cs_space_dimension, cs, cost, MAXIMIZATION); } catch (std::invalid_argument& e) { nout << "invalid_argument: " << e.what() << endl << endl; return true; } catch (...) { } return false; } bool test10() { Variable A(0); Variable B(1); Constraint_System cs; cs.insert(A >= 6); cs.insert(A <= 0); Linear_Expression cost(A + B); try { // This tries to overflow the maximum space dimension. MIP_Problem mip(MIP_Problem::max_space_dimension() + 1, cs, cost, MAXIMIZATION); } catch (std::length_error& e) { nout << "length_error: " << e.what() << endl << endl; return true; } catch (...) { } return false; } bool test11() { Variable A(0); Variable B(1); Constraint_System cs; cs.insert(A >= 6); cs.insert(A < 0); dimension_type cs_space_dimension = cs.space_dimension(); Linear_Expression cost(A + B); try { // This tries to build an MIP_Problem with strict inequalities. MIP_Problem mip(cs_space_dimension, cs, cost, MAXIMIZATION); } catch (std::invalid_argument& e) { nout << "invalid_argument: " << e.what() << endl << endl; return true; } catch (...) { } return false; } bool test12() { Variable A(0); Variable B(1); Variable C(2); Constraint_System cs; cs.insert(A >= 6); cs.insert(B <= 0); dimension_type cs_space_dimension = cs.space_dimension(); Linear_Expression cost(A + B); MIP_Problem mip(cs_space_dimension, cs, cost, MAXIMIZATION); try { // This tries to add Constraint that exceeds the MIP_Problem // space dimension. mip.add_constraint(C >= 0); } catch (std::invalid_argument& e) { nout << "invalid_argument: " << e.what() << endl << endl; return true; } catch (...) { } return false; } bool test13() { Variable A(0); Variable B(1); Constraint_System cs; cs.insert(A >= 6); cs.insert(B <= 0); dimension_type cs_space_dimension = cs.space_dimension(); Linear_Expression cost(A + B); MIP_Problem mip(cs_space_dimension, cs, cost, MAXIMIZATION); try { // This tries to add a strict inequality. mip.add_constraint(B > 0); } catch (std::invalid_argument& e) { nout << "invalid_argument: " << e.what() << endl << endl; return true; } catch (...) { } return false; } bool test14() { Variable A(0); Variable B(1); Variable C(2); Variable D(3); Constraint_System cs; cs.insert(A >= 6); cs.insert(B <= 0); dimension_type cs_space_dimension = cs.space_dimension(); Linear_Expression cost(A + B); Constraint_System incompatible_cs; incompatible_cs.insert(C >= 6); incompatible_cs.insert(D <= 0); MIP_Problem mip(cs_space_dimension, cs, cost, MAXIMIZATION); try { // Adds a Constraint_System that exceeds the space dimension of the // MIP_Problem. mip.add_constraints(incompatible_cs); } catch (std::invalid_argument& e) { nout << "invalid_argument: " << e.what() << endl << endl; return true; } catch (...) { } return false; } bool test15() { Variable A(0); Variable B(1); Constraint_System cs; cs.insert(A >= 6); cs.insert(B <= 0); dimension_type cs_space_dimension = cs.space_dimension(); Linear_Expression cost(A + B); Constraint_System incompatible_cs; incompatible_cs.insert(A >= 10); incompatible_cs.insert(B < 22 ); MIP_Problem mip(cs_space_dimension, cs, cost, MAXIMIZATION); try { // This tries to add Constraint_System that contains a strict inequality. mip.add_constraints(incompatible_cs); } catch (std::invalid_argument& e) { nout << "invalid_argument: " << e.what() << endl << endl; return true; } catch (...) { } return false; } bool test16() { Variable A(0); Variable B(1); Constraint_System cs; cs.insert(A >= 6); cs.insert(B <= 0); Linear_Expression cost(A + B); try { // This tries to overflow the maximum space dimension. MIP_Problem mip(MIP_Problem::max_space_dimension() + 1, cs.begin(), cs.end(), A + B, MAXIMIZATION); } catch (std::length_error& e) { nout << "length_error: " << e.what() << endl << endl; return true; } catch (...) { } return false; } bool test17() { Variable A(0); Variable B(1); Variable C(2); Constraint_System cs; cs.insert(A >= 6); cs.insert(B <= 0); Linear_Expression cost(A + B); try { // This tries to let exceed the objective function space dimension. MIP_Problem mip(cs.space_dimension(), cs.begin(), cs.end(), A + B + C, MAXIMIZATION); } catch (std::invalid_argument& e) { nout << "invalid_argument: " << e.what() << endl << endl; return true; } catch (...) { } return false; } bool test18() { Variable A(0); Variable B(1); Constraint_System cs; cs.insert(A >= 6); cs.insert(B < 0); Linear_Expression cost(A + B); try { // This tries to build an MIP_Problem with strict inequalities.. MIP_Problem mip(cs.space_dimension(), cs.begin(), cs.end(), A + B, MAXIMIZATION); } catch (std::invalid_argument& e) { nout << "invalid_argument: " << e.what() << endl << endl; return true; } catch (...) { } return false; } bool test19() { Variable A(0); Variable B(1); Constraint_System cs; cs.insert(A >= 6); cs.insert(B <= 0); Linear_Expression cost(A + B); try { // This tries to build an MIP_Problem with a wrong space dimension. MIP_Problem mip(cs.space_dimension() - 1, cs.begin(), cs.end(), A + B, MAXIMIZATION); } catch (std::invalid_argument& e) { nout << "invalid_argument: " << e.what() << endl << endl; return true; } catch (...) { } return false; } } // namespace BEGIN_MAIN DO_TEST(test01); DO_TEST(test02); DO_TEST(test03); DO_TEST(test04); DO_TEST(test05); DO_TEST(test06); DO_TEST(test07); DO_TEST(test08); DO_TEST(test09); DO_TEST(test10); DO_TEST(test11); DO_TEST(test12); DO_TEST(test13); DO_TEST(test14); DO_TEST(test15); DO_TEST(test16); DO_TEST(test17); DO_TEST(test18); DO_TEST(test19); END_MAIN