/* Test Grid::time_elapse_assign(). Copyright (C) 2001-2010 Roberto Bagnara Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com) This file is part of the Parma Polyhedra Library (PPL). The PPL is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The PPL is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA. For the most up-to-date information see the Parma Polyhedra Library site: http://www.cs.unipr.it/ppl/ . */ #include "ppl_test.hh" namespace { // Zero dimension. bool test01() { Grid gr1(0); print_generators(gr1, "*** gr1 ***"); Grid gr2(0); print_generators(gr2, "*** gr2 ***"); gr1.time_elapse_assign(gr2); Grid known_gr(0); bool ok = (gr1 == known_gr); print_congruences(gr1, "*** gr1.time_elapse_assign(gr2) ***"); return ok; } // Zero dimension, second grid empty. bool test02() { Grid gr1(0); print_generators(gr1, "*** gr1 ***"); Grid gr2(0, EMPTY); print_generators(gr2, "*** gr2 ***"); gr1.time_elapse_assign(gr2); Grid known_gr(0, EMPTY); bool ok = (gr1 == known_gr); print_congruences(gr1, "*** gr1.time_elapse_assign(gr2) ***"); return ok; } // First grid empty. bool test03() { Variable A(0); Grid gr1(4, EMPTY); print_generators(gr1, "*** gr1 ***"); Grid gr2(4); gr2.add_congruence(A %= 3); print_congruences(gr2, "*** gr2 ***"); gr1.time_elapse_assign(gr2); Grid known_gr(4, EMPTY); bool ok = (gr1 == known_gr); print_congruences(gr1, "*** gr1.time_elapse_assign(gr2) ***"); return ok; } // Second grid empty. bool test04() { Variable A(0); Grid gr1(4); gr1.add_congruence(A %= 3); print_congruences(gr1, "*** gr1 ***"); Grid gr2(4, EMPTY); print_generators(gr2, "*** gr2 ***"); gr1.time_elapse_assign(gr2); Grid known_gr(4, EMPTY); bool ok = (gr1 == known_gr); print_congruences(gr1, "*** gr1.time_elapse_assign(gr2) ***"); return ok; } // Second grid a single point at the origin. bool test05() { Variable A(0); Variable B(1); Grid gr1(2); gr1.add_congruence(A + 2*B %= 0); print_congruences(gr1, "*** gr1 ***"); Grid gr2(2, EMPTY); gr2.add_grid_generator(grid_point()); print_generators(gr2, "*** gr2 ***"); Grid known_gr(gr1); gr1.time_elapse_assign(gr2); bool ok = (gr1 == known_gr); print_congruences(gr1, "*** gr1.time_elapse_assign(gr2) ***"); return ok; } // One dimension grids of equalities. bool test06() { Variable A(0); Grid gr1(1); gr1.add_constraint(A == 2); print_congruences(gr1, "*** gr1 ***"); Grid gr2(1); gr2.add_constraint(A == 1); print_congruences(gr2, "*** gr2 ***"); gr1.time_elapse_assign(gr2); Grid known_gr(1); known_gr.add_congruence(A %= 0); bool ok = (gr1 == known_gr); print_congruences(gr1, "*** gr1.time_elapse_assign(gr2) ***"); return ok; } // One dimension grids with congruences. bool test07() { Variable A(0); Grid gr1(1); gr1.add_constraint(A == 2); print_generators(gr1, "*** gr1 ***"); Grid gr2(1); gr2.add_congruence((A %= 0) / 3); print_congruences(gr2, "*** gr2 ***"); gr1.time_elapse_assign(gr2); Grid known_gr(1); known_gr.add_congruence((A %= 2) / 3); bool ok = (gr1 == known_gr); print_congruences(gr1, "*** gr1.time_elapse_assign(gr2) ***"); return ok; } // Multi-dimension grids. bool test08() { Variable A(0); Variable B(1); Grid gr1(2); gr1.add_congruence((A - B %= 1) / 6); print_congruences(gr1, "*** gr1 ***"); Grid gr2(2); gr2.add_congruence((A %= 0) / 2); gr2.add_constraint(B == 0); print_congruences(gr2, "*** gr2 ***"); gr1.time_elapse_assign(gr2); Grid known_gr(2); known_gr.add_congruence((A - B %= 1) / 2); bool ok = (gr1 == known_gr); print_congruences(gr1, "*** gr1.time_elapse_assign(gr2) ***"); return ok; } // Multi-dimension grids with denominators, in timeelapse2. // Multi-dimension grids from generators in sub-optimal form. bool test09() { Variable A(0); Variable D(3); Grid gr1(4, EMPTY); gr1.add_grid_generator(grid_point()); gr1.add_grid_generator(grid_point(2*A)); gr1.add_grid_generator(grid_point(4*A)); gr1.add_grid_generator(grid_point(D)); print_generators(gr1, "*** gr1 ***"); Grid gr2(4, EMPTY); gr2.add_grid_generator(grid_point(A)); print_generators(gr2, "*** gr2 ***"); gr1.time_elapse_assign(gr2); Grid known_gr(4, EMPTY); known_gr.add_grid_generator(grid_point()); known_gr.add_grid_generator(grid_point(A)); known_gr.add_grid_generator(grid_point(D)); bool ok = (gr1 == known_gr); print_congruences(gr1, "*** gr1.time_elapse_assign(gr2) ***"); return ok; } // A grid of a single point, where the position of the second grid // causes the result to be more dense than the second grid. bool test10() { Variable A(0); Grid gr1(1); gr1.add_constraint(A == 2); print_generators(gr1, "*** gr1 ***"); Grid gr2(1); gr2.add_congruence((A %= 1) / 3); print_congruences(gr2, "*** gr2 ***"); gr1.time_elapse_assign(gr2); Grid known_gr(1); known_gr.add_congruence(A %= 0); bool ok = (gr1 == known_gr); print_congruences(gr1, "*** gr1.time_elapse_assign(gr2) ***"); return ok; } // Space dimension exception. bool test11() { Grid gr1(1, EMPTY); gr1.add_grid_generator(grid_point()); print_generators(gr1, "*** gr1 ***"); Grid gr2(19, EMPTY); print_generators(gr2, "*** gr2 ***"); try { gr1.time_elapse_assign(gr2); } catch (const std::invalid_argument& e) { nout << "invalid_argument: " << e.what() << endl; return true; } catch (...) { } return false; } // Multi-dimension grids with denominators. bool test12() { Variable A(0); Variable B(1); Variable C(2); Grid gr1(3, EMPTY); gr1.add_grid_generator(grid_point()); gr1.add_grid_generator(grid_point(A + 2*B - 3*C, 3)); print_generators(gr1, "*** gr1 ***"); Grid gr2(3, EMPTY); gr2.add_grid_generator(grid_point(3*A - B + 4*C, 7)); print_generators(gr2, "*** gr2 ***"); gr1.time_elapse_assign(gr2); Grid known_gr(3, EMPTY); known_gr.add_grid_generator(grid_point()); known_gr.add_grid_generator(grid_point(A + 2*B - 3*C, 3)); known_gr.add_grid_generator(grid_point(3*A - B + 4*C, 7)); bool ok = (gr1 == known_gr); print_congruences(gr1, "*** gr1.time_elapse_assign(gr2) ***"); return ok; } } // namespace BEGIN_MAIN DO_TEST(test01); DO_TEST(test02); DO_TEST(test03); DO_TEST(test04); DO_TEST(test05); DO_TEST(test06); DO_TEST(test07); DO_TEST(test08); DO_TEST(test09); DO_TEST(test10); DO_TEST(test11); DO_TEST_F8(test12); END_MAIN