/* Test Grid::map_space_dimensions(). Copyright (C) 2001-2010 Roberto Bagnara Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com) This file is part of the Parma Polyhedra Library (PPL). The PPL is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The PPL is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA. For the most up-to-date information see the Parma Polyhedra Library site: http://www.cs.unipr.it/ppl/ . */ #include "ppl_test.hh" namespace { // Empty grid, empty mapping. bool test01() { Partial_Function function; Grid gr(3, EMPTY); print_congruences(gr, "*** gr ***"); gr.map_space_dimensions(function); Grid known_gr(0, EMPTY); bool ok = (gr == known_gr); print_congruences(gr, "*** gr.map_space_dimensions(function) ***"); return ok; } // Mapping all dimensions. bool test02() { Variable A(0); Variable B(1); Variable C(2); Partial_Function function; function.insert(0, 2); function.insert(2, 0); function.insert(1, 1); Grid_Generator_System gs; gs.insert(grid_point(2*C)); gs.insert(grid_point(4*C)); gs.insert(grid_point(A)); Grid gr(gs); print_generators(gr, "*** gr ***"); gr.map_space_dimensions(function); Grid_Generator_System known_gs; known_gs.insert(grid_point(2*A)); known_gs.insert(grid_point(4*A)); known_gs.insert(grid_point(C)); Grid known_gr(known_gs); bool ok = (gr == known_gr); print_congruences(gr, "*** gr.map_space_dimensions(function) ***"); return ok; } // Mapping all dimensions, with overlap. bool test03() { Variable A(0); Variable B(1); Variable C(2); Partial_Function function; function.insert(0, 1); function.insert(2, 0); Grid_Generator_System gs; gs.insert(grid_point()); gs.insert(grid_point(2*A)); gs.insert(grid_line(A - C)); Grid gr(gs); print_generators(gr, "*** gr ***"); gr.map_space_dimensions(function); Grid_Generator_System known_gs; known_gs.insert(grid_point()); known_gs.insert(grid_point(2*B)); known_gs.insert(grid_line(B - A)); Grid known_gr(known_gs); bool ok = (gr == known_gr); print_congruences(gr, "*** gr.map_space_dimensions(function) ***"); return ok; } // Mapping more dimensions than there are in the grid. bool test04() { Variable A(0); Variable B(1); Variable C(2); Partial_Function function; function.insert(2, 0); function.insert(3, 2); function.insert(4, 1); Grid_Generator_System gs; gs.insert(grid_point()); gs.insert(grid_point(A)); gs.insert(grid_point(B)); Grid gr(gs); print_generators(gr, "*** gr ***"); gr.map_space_dimensions(function); Grid_Generator_System known_gs; known_gs.insert(grid_point(0*C)); Grid known_gr(known_gs); bool ok = (gr == known_gr); print_congruences(gr, "*** gr.map_space_dimensions(function) ***"); return ok; } // Mapping all dimensions to themselves. bool test05() { Variable A(0); Variable B(1); Partial_Function function; function.insert(0, 0); function.insert(1, 1); Grid_Generator_System gs; gs.insert(grid_point()); gs.insert(grid_point(A)); gs.insert(grid_point(B)); gs.insert(grid_point(A + B)); Grid gr(gs); print_generators(gr, "*** gr ***"); Grid known_gr(gr); gr.map_space_dimensions(function); bool ok = (gr == known_gr); print_congruences(gr, "*** gr.map_space_dimensions(function) ***"); return ok; } // Mapping all additional dimensions (in the mapping) to themselves. bool test06() { Variable A(0); Variable B(1); Partial_Function function; function.insert(0, 1); function.insert(1, 0); function.insert(2, 2); function.insert(3, 3); Grid_Generator_System gs; gs.insert(grid_point()); gs.insert(grid_point(A)); gs.insert(grid_point(2*B)); gs.insert(grid_point(A + 2*B)); Grid gr(gs); print_generators(gr, "*** gr ***"); gr.map_space_dimensions(function); Grid known_gr(4, EMPTY); known_gr.add_grid_generator(grid_point()); known_gr.add_grid_generator(grid_point(B)); known_gr.add_grid_generator(grid_point(2*A)); known_gr.add_grid_generator(grid_point(2*A + B)); bool ok = (gr == known_gr); print_congruences(gr, "*** gr.map_space_dimensions(function) ***"); return ok; } // Mapping new dimensions over existing ones. bool test07() { Variable A(0); Variable B(1); Partial_Function function; function.insert(0, 0); function.insert(2, 1); function.insert(3, 2); Grid_Generator_System gs; gs.insert(grid_point()); gs.insert(grid_point(A)); gs.insert(grid_line(B)); gs.insert(grid_line(A + B)); Grid gr(gs); print_generators(gr, "*** gr ***"); gr.map_space_dimensions(function); Grid known_gr(3, EMPTY); known_gr.add_grid_generator(grid_point()); known_gr.add_grid_generator(grid_line(A)); bool ok = (gr == known_gr); print_congruences(gr, "*** gr.map_space_dimensions(function) ***"); return ok; } // Mapping away a dimension in an empty grid. bool test08() { Partial_Function function; function.insert(0, 1); function.insert(1, 0); Grid gr(3, EMPTY); print_generators(gr, "*** gr ***"); gr.map_space_dimensions(function); Grid known_gr(2, EMPTY); bool ok = (gr == known_gr); print_congruences(gr, "*** gr.map_space_dimensions(function) ***"); return ok; } // A minimized grid in which the point contains factors and the // divisor is greater than one. bool test09() { Variable A(0); Variable B(1); Variable C(2); Partial_Function function; function.insert(0, 1); function.insert(1, 0); Grid gr(3, EMPTY); gr.add_grid_generator(grid_point(4*A, 2)); gr.add_grid_generator(grid_point(4*A + B, 2)); // Force minimization. gr.minimized_grid_generators(); print_generators(gr, "*** gr ***"); gr.map_space_dimensions(function); Grid known_gr(2, EMPTY); known_gr.add_grid_generator(grid_point(4*B, 2)); known_gr.add_grid_generator(grid_point(4*B + A, 2)); bool ok = (gr == known_gr); print_congruences(gr, "*** gr.map_space_dimensions(function) ***"); return ok; } } // namespace BEGIN_MAIN DO_TEST(test01); DO_TEST(test02); DO_TEST(test03); DO_TEST(test04); DO_TEST(test05); DO_TEST(test06); DO_TEST(test07); DO_TEST(test08); DO_TEST(test09); END_MAIN