/* Test construction of grids from polyhedron. Copyright (C) 2001-2010 Roberto Bagnara Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com) This file is part of the Parma Polyhedra Library (PPL). The PPL is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The PPL is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA. For the most up-to-date information see the Parma Polyhedra Library site: http://www.cs.unipr.it/ppl/ . */ #include "ppl_test.hh" namespace { // Grid(ph) - non-empty polyhedron bool test01() { Variable A(0); Variable B(1); Variable C(2); Constraint_System cs; cs.insert(B == 0); cs.insert(A >= 0); cs.insert(C > 0); NNC_Polyhedron ph(cs); Grid gr(ph); Grid known_gr(3); known_gr.add_constraint(B == 0); bool ok = (gr == known_gr); print_congruences(gr, "*** gr(ph) ***"); return ok; } // Grid(ph) - empty polyhedron bool test02() { Variable A(0); Variable B(1); Variable C(2); Constraint_System cs; cs.insert(B == 0); cs.insert(A >= 0); cs.insert(B >= 1); cs.insert(C > 0); NNC_Polyhedron ph(cs); Grid gr(ph); Grid known_gr(3, EMPTY); bool ok = (gr == known_gr); print_congruences(gr, "*** gr(ph) ***"); return ok; } // Grid(ph) - zero dimension universe polyhedron bool test03() { NNC_Polyhedron ph(0); Grid gr(ph); Grid known_gr(0); bool ok = (gr == known_gr); print_congruences(gr, "*** gr(ph) ***"); return ok; } // Grid(ph) - zero dimension empty polyhedron bool test04() { NNC_Polyhedron ph(0, EMPTY); Grid gr(ph); Grid known_gr(0, EMPTY); bool ok = (gr == known_gr); print_congruences(gr, "*** gr(ph) ***"); return ok; } // Grid(ph) - non-empty polyhedron constructed from generators bool test05() { Variable A(0); Variable B(1); Variable C(2); Generator_System cs; cs.insert(point(A + B, 3)); cs.insert(ray(A - C)); cs.insert(point()); C_Polyhedron ph(cs); Grid gr(ph); Grid known_gr(3); known_gr.add_constraint(A - B + C == 0); bool ok = (gr == known_gr); print_congruences(gr, "*** gr(ph) ***"); print_generators(gr, "*** gr(ph) ***"); return ok; } /* Grid(ph) - non-empty and non-universe grid built from C_polyhedron constructed from generators */ bool test06() { Variable A(0); Variable B(1); Variable C(2); Generator_System cs; cs.insert(point(A + B, 3)); cs.insert(line(A - C)); cs.insert(point(3 * C, 2)); C_Polyhedron ph(cs); Grid gr(ph); print_constraints(ph, "*** ph ***"); Grid known_gr(3); known_gr.add_constraint(2*A + 7*B + 2*C == 3); bool ok = (gr == known_gr); print_congruences(gr, "*** gr(ph) ***"); print_generators(gr, "*** gr(ph) ***"); print_congruences(known_gr, "*** known_gr(ph) ***"); print_generators(known_gr, "*** known_gr(ph) ***"); return ok; } /* Grid(ph) - universe grid built from non-universe C_polyhedron constructed from generators */ bool test07() { Variable A(0); Variable B(1); Variable C(2); Generator_System cs; cs.insert(point(A + B, 3)); cs.insert(point(3 * A, 2)); cs.insert(point(B, 7)); cs.insert(point(5 * C)); C_Polyhedron ph(cs); Grid gr(ph); print_constraints(ph, "*** ph ***"); Grid known_gr(3); bool ok = (gr == known_gr); print_congruences(gr, "*** gr(ph) ***"); print_generators(gr, "*** gr(ph) ***"); return ok; } // Grid(ph) - universe polyhedron bool test08() { NNC_Polyhedron ph(5); Grid gr(ph); Grid known_gr(5); bool ok = (gr == known_gr); print_congruences(gr, "*** gr(ph) ***"); return ok; } /* Grid(ph) - non-empty and non-universe grid built from C_polyhedron constructed from generators; The complexity limit allows the detection of implicit equalities from any generator system*/ bool test09() { Variable A(0); Variable B(1); Variable C(2); Generator_System cs; cs.insert(point(A + B)); cs.insert(line(A - C)); cs.insert(point(3 * C)); C_Polyhedron ph(cs); Grid gr(ph, POLYNOMIAL_COMPLEXITY); print_constraints(ph, "*** ph ***"); Grid known_gr(3); known_gr.add_constraint(A + 2*B + C == 3); bool ok = (gr == known_gr); print_congruences(gr, "*** gr(ph) ***"); print_generators(gr, "*** gr(ph) ***"); print_congruences(known_gr, "*** known_gr(ph) ***"); print_generators(known_gr, "*** known_gr(ph) ***"); return ok; } /* Grid(ph) - non-empty and non-universe grid built from C_polyhedron constructed from constraints; The complexity is unlimited so it is able to detect the implicit equality */ bool test10() { Variable A(0); Variable B(1); Constraint_System cs; cs.insert(B >= 0); cs.insert(B <= 0); cs.insert(A >= 0); C_Polyhedron ph(cs); Grid gr(ph, ANY_COMPLEXITY); Grid known_gr(2); known_gr.add_constraint(B == 0); bool ok = (gr == known_gr); print_congruences(gr, "*** gr(ph) ***"); return ok; } /* Grid(ph) - non-empty and non-universe grid built from C_polyhedron constructed from constraints; The complexity is limited to be polynomial so it is unable to detect the implicit equality */ bool test11() { Variable A(0); Variable B(1); Constraint_System cs; cs.insert(B >= 0); cs.insert(B <= 0); cs.insert(A >= 0); C_Polyhedron ph(cs); Grid gr(ph, POLYNOMIAL_COMPLEXITY); Grid known_gr(2); bool ok = (gr == known_gr); print_congruences(gr, "*** gr(ph) ***"); return ok; } /* Grid(ph) - non-empty and non-universe grid built from C_polyhedron constructed from constraints; The complexity is limited to that of simplex so it is unable to detect the implicit equality */ bool test12() { Variable A(0); Variable B(1); Constraint_System cs; cs.insert(B >= 0); cs.insert(B <= 0); cs.insert(A >= 0); C_Polyhedron ph(cs); Grid gr(ph, SIMPLEX_COMPLEXITY); Grid known_gr(2); bool ok = (gr == known_gr); print_congruences(gr, "*** gr(ph) ***"); return ok; } } // namespace BEGIN_MAIN DO_TEST(test01); DO_TEST(test02); DO_TEST(test03); DO_TEST(test04); DO_TEST(test05); DO_TEST(test06); DO_TEST_F8(test07); DO_TEST(test08); DO_TEST(test09); DO_TEST(test10); DO_TEST(test11); DO_TEST(test12); END_MAIN