/* Test Grid::fold_space_dimensions(). Copyright (C) 2001-2010 Roberto Bagnara Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com) This file is part of the Parma Polyhedra Library (PPL). The PPL is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The PPL is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA. For the most up-to-date information see the Parma Polyhedra Library site: http://www.cs.unipr.it/ppl/ . */ #include "ppl_test.hh" namespace { // Universe grid. bool test01() { Variable A(0); Variable B(1); Grid gr(3); print_congruences(gr, "*** gr ***"); Variables_Set to_fold; to_fold.insert(A); gr.fold_space_dimensions(to_fold, B); Grid known_gr(2); bool ok = (gr == known_gr); print_congruences(gr, "*** gr.fold_space_dimensions(to_fold, B) ***"); return ok; } // Empty grid. bool test02() { Variable A(0); Variable B(1); Grid gr(3, EMPTY); print_congruences(gr, "*** gr ***"); Variables_Set to_fold; to_fold.insert(A); gr.fold_space_dimensions(to_fold, B); Grid known_gr(2, EMPTY); bool ok = (gr == known_gr); print_congruences(gr, "*** gr.fold_space_dimensions(to_fold, B) ***"); return ok; } // Trivial fold. bool test03() { Variable A(0); Variable B(1); Variable C(2); Grid gr(3); gr.add_congruence(A %= 0); gr.add_congruence((A + B + C %= 2) / 3); print_congruences(gr, "*** gr ***"); Grid known_gr = gr; Variables_Set to_fold; gr.fold_space_dimensions(to_fold, B); bool ok = (gr == known_gr); print_congruences(gr, "*** gr.fold_space_dimensions(to_fold, B) ***"); return ok; } // Simple fold from congruences. bool test04() { Variable A(0); Variable B(1); Grid gr(2); gr.add_congruence(A %= 1); gr.add_congruence((B %= 1) / 3); print_congruences(gr, "*** gr ***"); Variables_Set to_fold; to_fold.insert(A); gr.fold_space_dimensions(to_fold, B); Grid known_gr(1); known_gr.add_congruence(A %= 1); bool ok = (gr == known_gr); print_congruences(gr, "*** gr.fold_space_dimensions(to_fold, B) ***"); return ok; } // Simple fold from generators. bool test05() { Variable A(0); Variable B(1); Variable C(2); Grid gr(3, EMPTY); gr.add_grid_generator(grid_point(A + 2*B + 2*C)); gr.add_grid_generator(grid_point(A + 2*B + 4*C)); gr.add_grid_generator(grid_point(A + 6*B + 2*C)); print_generators(gr, "*** gr ***"); Variables_Set to_fold; to_fold.insert(C); gr.fold_space_dimensions(to_fold, B); Grid known_gr(2, EMPTY); known_gr.add_grid_generator(grid_point(A + 2*B)); known_gr.add_grid_generator(grid_point(A + 4*B)); bool ok = (gr == known_gr); print_congruences(gr, "*** gr.fold_space_dimensions(to_fold, B) ***"); return ok; } // Folding several dimensions into a higher dimension. bool test06() { Variable A(0); Variable B(1); Variable C(2); Grid gr(3); gr.add_congruence((A %= 2) / 3); gr.add_congruence((B %= 8) / 9); gr.add_congruence((C == 17) / 0); print_congruences(gr, "*** gr ***"); Variables_Set to_fold; to_fold.insert(A); to_fold.insert(B); gr.fold_space_dimensions(to_fold, C); Grid known_gr(1); known_gr.add_congruence((A %= 2) / 3); bool ok = (gr == known_gr); print_congruences(gr, "*** gr.fold_space_dimensions(to_fold, C) ***"); return ok; } // Folding dimensions into a lower dimension. bool test07() { Variable A(0); Variable B(1); Variable C(2); Variable D(3); Grid gr(4); gr.add_congruence((A - B %= 3) / 4); gr.add_congruence((C %= 5) / 9); gr.add_congruence((D %= 2) / 6); print_congruences(gr, "*** gr ***"); Variables_Set to_fold; to_fold.insert(C); to_fold.insert(D); gr.fold_space_dimensions(to_fold, A); Grid known_gr(2); bool ok = (gr == known_gr); print_congruences(gr, "*** gr.fold_space_dimensions(to_fold, A) ***"); return ok; } // Folding dimensions into an intermediate dimension. bool test08() { Variable A(0); Variable B(1); Variable C(2); Variable D(3); Grid gr(4); gr.add_congruence((A %= 0) / 2); gr.add_congruence((B %= 0) / 9); gr.add_congruence((C %= 0) / 6); gr.add_congruence((D %= 0) / 12); print_congruences(gr, "*** gr ***"); Variables_Set to_fold; to_fold.insert(B); to_fold.insert(D); gr.fold_space_dimensions(to_fold, C); Grid known_gr(2); known_gr.add_congruence((A %= 0) / 2); known_gr.add_congruence((B %= 0) / 3); bool ok = (gr == known_gr); print_congruences(gr, "*** gr.fold_space_dimensions(to_fold, C) ***"); return ok; } // Test folding dimensions of a relational grid into an intermediate // dimension. bool test09() { Variable A(0); Variable B(1); Variable C(2); Variable D(3); Grid gr(4); gr.add_congruence((A - B %= 0) / 9); gr.add_congruence((C %= 0) / 6); gr.add_congruence((D %= 0) / 12); print_congruences(gr, "*** gr ***"); Variables_Set to_fold; to_fold.insert(B); to_fold.insert(D); gr.fold_space_dimensions(to_fold, C); Grid known_gr(2); bool ok = (gr == known_gr); print_congruences(gr, "*** gr.fold_space_dimensions(to_fold, C) ***"); return ok; } // One dimension. bool test10() { Variable A(0); Grid gr(1); gr.add_congruence((A %= 3) / 7); print_congruences(gr, "*** gr ***"); Grid known_gr = gr; Variables_Set to_fold; gr.fold_space_dimensions(to_fold, A); bool ok = (gr == known_gr); print_congruences(gr, "*** gr.fold_space_dimensions(to_fold, A) ***"); return ok; } // Test folding dimensions of a relational grid into an intermediate // dimension, where the resulting grid is smaller than the universe. bool test11() { Variable A(0); Variable B(1); Variable C(2); Grid gr(3); gr.add_constraint(A - B == 0); gr.add_congruence(A %= 0); gr.add_constraint(C == 0); print_congruences(gr, "*** gr ***"); Variables_Set to_fold; to_fold.insert(A); gr.fold_space_dimensions(to_fold, C); Grid known_gr(2); known_gr.add_congruence(A %= 0); known_gr.add_congruence(B %= 0); bool ok = (gr == known_gr); print_congruences(gr, "*** gr.fold_space_dimensions(to_fold, C) ***"); return ok; } // Second parameter of greater dimension than grid. bool test12() { Variable A(0); Variable B(1); Grid gr(1, EMPTY); Variables_Set vars; vars.insert(A); try { gr.fold_space_dimensions(vars, B); } catch (const std::invalid_argument& e) { nout << "invalid_argument: " << e.what() << endl; return true; } catch (...) { } return false; } // Highest variable in set of greater dimension than grid. bool test13() { Variable B(1); Grid gr(3, EMPTY); Variables_Set vars; vars.insert(B); try { gr.fold_space_dimensions(vars, B); } catch (const std::invalid_argument& e) { nout << "invalid_argument: " << e.what() << endl; return true; } catch (...) { } return false; } // Dimension of highest variable in set greater than dimension of // grid. bool test14() { Variable A(0); Variable B(1); Grid gr(1, EMPTY); Variables_Set vars; vars.insert(B); try { gr.fold_space_dimensions(vars, A); } catch (const std::invalid_argument& e) { nout << "invalid_argument: " << e.what() << endl; return true; } catch (...) { } return false; } } // namespace BEGIN_MAIN DO_TEST(test01); DO_TEST(test02); DO_TEST(test03); DO_TEST(test04); DO_TEST(test05); DO_TEST(test06); DO_TEST(test07); DO_TEST(test08); DO_TEST(test09); DO_TEST(test10); DO_TEST(test11); DO_TEST(test12); DO_TEST(test13); DO_TEST(test14); END_MAIN