/* Test Grid::bounds_from_above() and Grid::bounds_from_below(). Copyright (C) 2001-2010 Roberto Bagnara Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com) This file is part of the Parma Polyhedra Library (PPL). The PPL is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The PPL is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA. For the most up-to-date information see the Parma Polyhedra Library site: http://www.cs.unipr.it/ppl/ . */ #include "ppl_test.hh" namespace { // Empty. bool test01() { Grid gr(7, EMPTY); bool ok = (gr.bounds_from_above(Linear_Expression(0)) && gr.bounds_from_below(Linear_Expression(0))); print_congruences(gr, "*** gr ***"); return ok; } // Zero dimension empty. bool test02() { Grid gr(0, EMPTY); bool ok = (gr.bounds_from_above(Linear_Expression(3)) && gr.bounds_from_below(Linear_Expression(3))); print_congruences(gr, "*** gr ***"); return ok; } // Zero dimension universe. bool test03() { Grid gr(0); bool ok = (gr.bounds_from_above(Linear_Expression(1)) && gr.bounds_from_below(Linear_Expression(1))); print_congruences(gr, "*** gr ***"); return ok; } // Point. bool test04() { Variable A(0); Variable B(1); Grid gr_gs_min(2, EMPTY); gr_gs_min.add_grid_generator(grid_point(3*A + 2*B, 3)); Grid gr_gs_needs_min(2, EMPTY); gr_gs_needs_min.add_grid_generator(grid_point(3*A + 2*B, 3)); Grid gr_cgs_needs_min(2); gr_cgs_needs_min.add_constraint(A == 1); gr_cgs_needs_min.add_constraint(3*B == 2); // Grids gr_gs_min, gr_gs_needs_min and gr_cgs_needs_min are the // same grids. Linear_Expression le = A + B; bool ok = gr_gs_min.bounds_from_above(le) && gr_gs_min.bounds_from_below(le) && gr_gs_needs_min.bounds_from_above(le) && gr_gs_needs_min.bounds_from_below(le) && gr_cgs_needs_min.bounds_from_above(le) && gr_cgs_needs_min.bounds_from_below(le); print_congruences(gr_gs_min, "*** gr_gs_min **"); print_congruences(gr_gs_needs_min, "*** gr_gs_needs_min **"); print_congruences(gr_cgs_needs_min, "*** gr_cgs_needs_min **"); return ok; } // Rectilinear line. bool test05() { Variable A(0); Variable B(1); Grid gr_gs_min(2, EMPTY); gr_gs_min.add_grid_generator(grid_point()); gr_gs_min.add_grid_generator(grid_line(B)); Grid gr_gs_needs_min(2, EMPTY); gr_gs_needs_min.add_grid_generator(grid_point()); gr_gs_needs_min.add_grid_generator(grid_line(B)); Grid gr_cgs_needs_min(2); gr_cgs_needs_min.add_constraint(A == 0); // Grids gr_gs_min, gr_gs_needs_min and gr_cgs_needs_min are the // same grids. Linear_Expression le = 2*A - B; bool ok = !gr_gs_min.bounds_from_above(le) && !gr_gs_min.bounds_from_below(le) && !gr_gs_needs_min.bounds_from_above(le) && !gr_gs_needs_min.bounds_from_below(le) && !gr_cgs_needs_min.bounds_from_above(le) && !gr_cgs_needs_min.bounds_from_below(le); print_congruences(gr_gs_min, "*** gr_gs_min **"); print_congruences(gr_gs_needs_min, "*** gr_gs_needs_min **"); print_congruences(gr_cgs_needs_min, "*** gr_cgs_needs_min **"); return ok; } // Line. bool test06() { Variable A(0); Variable B(1); Grid gr_gs_min(2, EMPTY); gr_gs_min.add_grid_generator(grid_point()); gr_gs_min.add_grid_generator(grid_line(2*A + B)); Grid gr_gs_needs_min(2, EMPTY); gr_gs_needs_min.add_grid_generator(grid_point()); gr_gs_needs_min.add_grid_generator(grid_line(2*A + B)); Grid gr_cgs_needs_min(2); gr_cgs_needs_min.add_constraint(A - 2*B == 0); // Grids gr_gs_min, gr_gs_needs_min and gr_cgs_needs_min are the // same grids. Linear_Expression le = 2*A + B; bool ok = !gr_gs_min.bounds_from_above(le) && !gr_gs_min.bounds_from_below(le) && !gr_gs_needs_min.bounds_from_above(le) && !gr_gs_needs_min.bounds_from_below(le) && !gr_cgs_needs_min.bounds_from_above(le) && !gr_cgs_needs_min.bounds_from_below(le); print_congruences(gr_gs_min, "*** gr_gs_min **"); print_congruences(gr_gs_needs_min, "*** gr_gs_needs_min **"); print_congruences(gr_cgs_needs_min, "*** gr_cgs_needs_min **"); return ok; } // A line along expr in the grid. bool test07() { Variable A(0); Variable B(1); Grid gr_gs_min(2, EMPTY); gr_gs_min.add_grid_generator(grid_point()); gr_gs_min.add_grid_generator(grid_line(A + 2*B)); Grid gr_gs_needs_min(2, EMPTY); gr_gs_needs_min.add_grid_generator(grid_point()); gr_gs_needs_min.add_grid_generator(grid_line(A + 2*B)); Grid gr_cgs_needs_min(2); gr_cgs_needs_min.add_constraint(2*A - B == 0); // Grids gr_gs_min, gr_gs_needs_min and gr_cgs_needs_min are the // same grids. Linear_Expression le = 2*A - B; bool ok = gr_gs_min.bounds_from_above(le) && gr_gs_min.bounds_from_below(le) && gr_gs_needs_min.bounds_from_above(le) && gr_gs_needs_min.bounds_from_below(le) && gr_cgs_needs_min.bounds_from_above(le) && gr_cgs_needs_min.bounds_from_below(le); print_congruences(gr_gs_min, "*** gr_gs_min **"); print_congruences(gr_gs_needs_min, "*** gr_gs_needs_min **"); print_congruences(gr_cgs_needs_min, "*** gr_cgs_needs_min **"); return ok; } // A parameter along expr in the grid. bool test08() { Variable A(0); Variable B(1); Grid gr_gs_min(2, EMPTY); gr_gs_min.add_grid_generator(grid_point()); gr_gs_min.add_grid_generator(grid_point(A + 2*B)); Grid gr_gs_needs_min(2, EMPTY); gr_gs_needs_min.add_grid_generator(grid_point()); gr_gs_needs_min.add_grid_generator(grid_point(A + 2*B)); Grid gr_cgs_needs_min(2); gr_cgs_needs_min.add_constraint(2*A - B == 0); gr_cgs_needs_min.add_congruence((B %= 0) / 2); // Grids gr_gs_min, gr_gs_needs_min and gr_cgs_needs_min are the // same grids. Linear_Expression le = 2*A - B; bool ok = gr_gs_min.bounds_from_above(le) && gr_gs_min.bounds_from_below(le) && gr_gs_needs_min.bounds_from_above(le) && gr_gs_needs_min.bounds_from_below(le) && gr_cgs_needs_min.bounds_from_above(le) && gr_cgs_needs_min.bounds_from_below(le); print_congruences(gr_gs_min, "*** gr_gs_min **"); print_congruences(gr_gs_needs_min, "*** gr_gs_needs_min **"); print_congruences(gr_cgs_needs_min, "*** gr_cgs_needs_min **"); return ok; } // Two lines which combine to cover any line bounded by expr. bool test09() { Variable A(0); Variable B(1); Grid gr_gs_min(2, EMPTY); gr_gs_min.add_grid_generator(grid_point()); gr_gs_min.add_grid_generator(grid_line(A)); gr_gs_min.add_grid_generator(grid_line(B)); Grid gr_gs_needs_min(2, EMPTY); gr_gs_needs_min.add_grid_generator(grid_point()); gr_gs_needs_min.add_grid_generator(grid_line(A)); gr_gs_needs_min.add_grid_generator(grid_line(B)); Grid gr_cgs_needs_min(2); // Grids gr_gs_min, gr_gs_needs_min and gr_cgs_needs_min are the // same grids. Linear_Expression le = A - B; bool ok = !gr_gs_min.bounds_from_above(le) && !gr_gs_min.bounds_from_below(le) && !gr_gs_needs_min.bounds_from_above(le) && !gr_gs_needs_min.bounds_from_below(le) && !gr_cgs_needs_min.bounds_from_above(le) && !gr_cgs_needs_min.bounds_from_below(le); print_congruences(gr_gs_min, "*** gr_gs_min **"); print_congruences(gr_gs_needs_min, "*** gr_gs_needs_min **"); print_congruences(gr_cgs_needs_min, "*** gr_cgs_needs_min **"); return ok; } // In three dimensions, lines and parameters which combine to include // expr. bool test10() { Variable A(0); Variable B(1); Variable C(2); Grid gr_gs_min(3, EMPTY); gr_gs_min.add_grid_generator(grid_point()); gr_gs_min.add_grid_generator(grid_line(A)); gr_gs_min.add_grid_generator(grid_point(B + C)); Grid gr_gs_needs_min(3, EMPTY); gr_gs_needs_min.add_grid_generator(grid_point()); gr_gs_needs_min.add_grid_generator(grid_line(A)); gr_gs_needs_min.add_grid_generator(grid_point(B + C)); Grid gr_cgs_needs_min(3); gr_cgs_needs_min.add_constraint(B - C == 0); gr_cgs_needs_min.add_congruence(B %= 0); // Grids gr_gs_min, gr_gs_needs_min and gr_cgs_needs_min are the // same grids. Linear_Expression le = 2*A + B - C; bool ok = !gr_gs_min.bounds_from_above(le) && !gr_gs_min.bounds_from_below(le) && !gr_gs_needs_min.bounds_from_above(le) && !gr_gs_needs_min.bounds_from_below(le) && !gr_cgs_needs_min.bounds_from_above(le) && !gr_cgs_needs_min.bounds_from_below(le); print_congruences(gr_gs_min, "*** gr_gs_min **"); print_congruences(gr_gs_needs_min, "*** gr_gs_needs_min **"); print_congruences(gr_cgs_needs_min, "*** gr_cgs_needs_min **"); return ok; } // Grid which bounds a 3D expr. bool test11() { Variable A(0); Variable B(1); Variable C(2); Grid gr_gs_min(3, EMPTY); gr_gs_min.add_grid_generator(grid_point()); gr_gs_min.add_grid_generator(grid_line(3*B + C)); gr_gs_min.add_grid_generator(grid_line(A - 2*B)); Grid gr_gs_needs_min(3, EMPTY); gr_gs_needs_min.add_grid_generator(grid_point()); gr_gs_needs_min.add_grid_generator(grid_line(3*B + C)); gr_gs_needs_min.add_grid_generator(grid_line(A - 2*B)); Grid gr_cgs_needs_min(3); gr_cgs_needs_min.add_constraint(2*A + B - 3*C == 0); // Grids gr_gs_min, gr_gs_needs_min and gr_cgs_needs_min are the // same grids. Linear_Expression le = 2*A + B - 3*C; bool ok = gr_gs_min.bounds_from_above(le) && gr_gs_min.bounds_from_below(le) && gr_gs_needs_min.bounds_from_above(le) && gr_gs_needs_min.bounds_from_below(le) && gr_cgs_needs_min.bounds_from_above(le) && gr_cgs_needs_min.bounds_from_below(le); print_congruences(gr_gs_min, "*** gr_gs_min **"); print_congruences(gr_gs_needs_min, "*** gr_gs_needs_min **"); print_congruences(gr_cgs_needs_min, "*** gr_cgs_needs_min **"); return ok; } // Point in 6D. bool test12() { Variable A(0); Variable B(1); Variable C(2); Variable D(3); Variable E(4); Variable F(5); Grid gr_gs_min(6, EMPTY); gr_gs_min.add_grid_generator(grid_point(7*A - 11*B + 19*F)); Grid gr_gs_needs_min(6, EMPTY); gr_gs_needs_min.add_grid_generator(grid_point(7*A - 11*B + 19*F)); Grid gr_cgs_needs_min(6); gr_cgs_needs_min.add_constraint(A == 7); gr_cgs_needs_min.add_constraint(B == -11); gr_cgs_needs_min.add_constraint(C == 0); gr_cgs_needs_min.add_constraint(D == 0); gr_cgs_needs_min.add_constraint(E == 0); gr_cgs_needs_min.add_constraint(F == 19); // Grids gr_gs_min, gr_gs_needs_min and gr_cgs_needs_min are the // same grids. Linear_Expression le = A + 2*B + 3*C + 4*D + 6*F; bool ok = gr_gs_min.bounds_from_above(le) && gr_gs_min.bounds_from_below(le) && gr_gs_needs_min.bounds_from_above(le) && gr_gs_needs_min.bounds_from_below(le) && gr_cgs_needs_min.bounds_from_above(le) && gr_cgs_needs_min.bounds_from_below(le); print_congruences(gr_gs_min, "*** gr_gs_min **"); print_congruences(gr_gs_needs_min, "*** gr_gs_needs_min **"); print_congruences(gr_cgs_needs_min, "*** gr_cgs_needs_min **"); return ok; } // Space dimension exception. bool test13() { Variable A(0); Variable B(1); Variable D(3); Variable E(4); Variable F(5); Variable C(2); Grid gr(3, EMPTY); Linear_Expression le = A + 2*B + 3*C + 4*D + 6*F; try { gr.bounds_from_above(le); } catch (const std::invalid_argument& e) { nout << "invalid_argument: " << e.what() << endl; return true; } catch (...) { } return false; } // The generator system is up-to-date but not minimized. bool test14() { Variable A(0); Grid gr(1, EMPTY); gr.add_grid_generator(grid_point(A)); gr.add_grid_generator(grid_point(A, 2)); print_generators(gr, "*** gr generators before ***"); bool ok = !gr.bounds_from_above(A) && !gr.bounds_from_below(A); print_generators(gr, "*** gr generators after ***"); return ok; } } // namespace BEGIN_MAIN DO_TEST(test01); DO_TEST(test02); DO_TEST(test03); DO_TEST(test04); DO_TEST(test05); DO_TEST(test06); DO_TEST(test07); DO_TEST(test08); DO_TEST(test09); DO_TEST(test10); DO_TEST(test11); DO_TEST(test12); DO_TEST(test13); DO_TEST(test14); END_MAIN