/* Test BD_Shape::maximize(const Linear_Expression&, ...) and BD_Shape::minimize(const Linear_Expression&, ...). Copyright (C) 2001-2010 Roberto Bagnara Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com) This file is part of the Parma Polyhedra Library (PPL). The PPL is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The PPL is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA. For the most up-to-date information see the Parma Polyhedra Library site: http://www.cs.unipr.it/ppl/ . */ #include "ppl_test.hh" namespace { bool test01() { Variable A(0); Variable B(1); TBD_Shape bds(2); bds.add_constraint(A >= -1); bds.add_constraint(A <= 1); bds.add_constraint(B <= 1); bds.add_constraint(B >= 0); print_constraints(bds, "*** bds ***"); Coefficient num; Coefficient den; bool included; bool ok = bds.maximize(5*A - 1, num, den, included) && num == 4 && den == 1 && included; nout << (included ? "maximum" : "supremum") << " = " << num; if (den != 1) nout << "/" << den; nout << endl; if (!ok) return false; ok = bds.minimize(5*A - 1, num, den, included) && num == -6 && den == 1 && included; nout << (included ? "minimum" : "infimum") << " = " << num; if (den != 1) nout << "/" << den; nout << endl; return ok; } bool test02() { Variable A(0); Variable B(1); TBD_Shape bds(2); bds.add_constraint(A >= -1); bds.add_constraint(A <= 1); bds.add_constraint(B <= 1); bds.add_constraint(B >= 0); print_constraints(bds, "*** bds ***"); Coefficient num; Coefficient den; bool included; bool ok = bds.maximize(-5*A - 1, num, den, included) && num == 4 && den == 1 && included; nout << (included ? "maximum" : "supremum") << " = " << num; if (den != 1) nout << "/" << den; nout << endl; if (!ok) return false; ok = bds.minimize(-5*A - 1, num, den, included) && num == -6 && den == 1 && included; nout << (included ? "minimum" : "infimum") << " = " << num; if (den != 1) nout << "/" << den; nout << endl; return ok; } bool test03() { Variable A(0); Variable B(1); TBD_Shape bds(2); bds.add_constraint(A >= -1); bds.add_constraint(A <= 1); bds.add_constraint(B <= 1); bds.add_constraint(B >= 0); print_constraints(bds, "*** bds ***"); Coefficient num; Coefficient den; bool included; bool ok = bds.maximize(-5*A + 1, num, den, included) && num == 6 && den == 1 && included; nout << (included ? "maximum" : "supremum") << " = " << num; if (den != 1) nout << "/" << den; nout << endl; if (!ok) return false; ok = bds.minimize(-5*A + 1, num, den, included) && num == -4 && den == 1 && included; nout << (included ? "minimum" : "infimum") << " = " << num; if (den != 1) nout << "/" << den; nout << endl; return ok; } bool test04() { Variable A(0); Variable B(1); TBD_Shape bds(2); bds.add_constraint(A >= -1); bds.add_constraint(A <= 1); bds.add_constraint(B <= 1); bds.add_constraint(B >= 0); print_constraints(bds, "*** bds ***"); Coefficient num; Coefficient den; bool included; bool ok = bds.maximize(5*A + 1, num, den, included) && num == 6 && den == 1 && included; nout << (included ? "maximum" : "supremum") << " = " << num; if (den != 1) nout << "/" << den; nout << endl; if (!ok) return false; ok = bds.minimize(5*A + 1, num, den, included) && num == -4 && den == 1 && included; nout << (included ? "minimum" : "infimum") << " = " << num; if (den != 1) nout << "/" << den; nout << endl; return ok; } bool test05() { Variable A(0); Variable B(1); TBD_Shape bds(2); print_constraints(bds, "*** bds ***"); Coefficient num; Coefficient den; bool included; Generator g(point()); Linear_Expression LE(Linear_Expression(3)); bool ok = bds.maximize(LE, num, den, included, g) && num == 3 && den == 1 && included; nout << (included ? "maximum" : "supremum") << " = " << num; if (den != 1) nout << "/" << den; nout << endl; if (!ok) return false; ok = bds.minimize(LE, num, den, included, g) && num == 3 && den == 1 && included; nout << (included ? "minimum" : "infimum") << " = " << num; if (den != 1) nout << "/" << den; nout << endl; return ok; } bool test06() { Variable A(0); TBD_Shape bds(1); bds.add_constraint(A >= 0); print_constraints(bds, "*** bds ***"); Coefficient num; Coefficient den; bool included; Generator g(point()); Linear_Expression LE(A); bool ok = !bds.maximize(LE, num, den, included, g); if (!ok) return false; ok = bds.minimize(LE, num, den, included, g) && num == 0 && den == 1 && included && g.is_point() && g.divisor() == 1; nout << (included ? "minimum" : "infimum") << " = " << num; if (den != 1) nout << "/" << den; nout << " @ "; print_generator(g); nout << endl; return ok; } bool test07() { Variable A(0); TBD_Shape bds(1); bds.add_constraint(A <= 0); print_constraints(bds, "*** bds ***"); Coefficient num; Coefficient den; bool included; Generator g(point()); Linear_Expression LE(A); bool ok = bds.maximize(LE, num, den, included, g) && num == 0 && den == 1 && included && g.is_point() && g.divisor() == 1; nout << (included ? "maximum" : "supremum") << " = " << num; if (den != 1) nout << "/" << den; nout << " @ "; print_generator(g); nout << endl; if (!ok) return false; ok = !bds.minimize(LE, num, den, included, g); return ok; } bool test08() { Variable A(0); BD_Shape bds(1); bds.add_constraint(5*A <= 2); bds.add_constraint(5*A >= 1); print_constraints(bds, "*** bds ***"); Coefficient num; Coefficient den; bool included; Linear_Expression LE(3*A); bool ok = bds.maximize(LE, num, den, included) && num == 6 && den == 5 && included; nout << (included ? "maximum" : "supremum") << " = " << num; if (den != 1) nout << "/" << den; nout << endl; if (!ok) return false; ok = bds.minimize(LE, num, den, included) && num == 3 && den == 5 && included; nout << (included ? "minimum" : "infimum") << " = " << num; if (den != 1) nout << "/" << den; nout << endl; return ok; } bool test09() { Variable A(0); BD_Shape bds(1); bds.add_constraint(5*A <= 2); bds.add_constraint(3*A >= 1); print_constraints(bds, "*** bds ***"); Coefficient num; Coefficient den; bool included; Linear_Expression LE(-7*A); bool ok = bds.maximize(LE, num, den, included) && num == -7 && den == 3 && included; nout << (included ? "maximum" : "supremum") << " = " << num; if (den != 1) nout << "/" << den; nout << endl; if (!ok) return false; ok = bds.minimize(LE, num, den, included) && num == -14 && den == 5 && included; nout << (included ? "minimum" : "infimum") << " = " << num; if (den != 1) nout << "/" << den; nout << endl; return ok; } bool test10() { Variable A(0); Variable B(1); TBD_Shape bds(2); bds.add_constraint(2*A >= 1); bds.add_constraint(B >= 1); bds.add_constraint(2*A <= 3); bds.add_constraint(B <= 4); print_constraints(bds, "*** bds ***"); Coefficient num; Coefficient den; bool included; Generator g(point()); Linear_Expression LE(A + 4*B - 1); Checked_Number divisor; assign_r(divisor, 2, ROUND_NOT_NEEDED); Checked_Number known_max_value; assign_r(known_max_value, 33, ROUND_NOT_NEEDED); div_assign_r(known_max_value, known_max_value, divisor, ROUND_NOT_NEEDED); Generator known_max_location = point(3*A + 8*B, 2); bool ok_max = bds.maximize(LE, num, den, included, g); Checked_Number max_value; assign_r(max_value, num, ROUND_NOT_NEEDED); assign_r(divisor, den, ROUND_NOT_NEEDED); div_assign_r(max_value, max_value, divisor, ROUND_NOT_NEEDED); ok_max &= included && g.is_point() && check_result(max_value, known_max_value, "0.5") && check_result(g, known_max_location, "0.5", "0.5", "0.5"); nout << (included ? "maximum" : "supremum") << " = " << max_value; nout << " @ "; print_generator(g); nout << endl; Checked_Number known_min_value; assign_r(known_min_value, 7, ROUND_NOT_NEEDED); assign_r(divisor, 2, ROUND_NOT_NEEDED); div_assign_r(known_min_value, known_min_value, divisor, ROUND_NOT_NEEDED); Generator known_min_location = point(A + 2*B, 2); bool ok_min = bds.minimize(LE, num, den, included, g); Checked_Number min_value; assign_r(min_value, num, ROUND_NOT_NEEDED); assign_r(divisor, den, ROUND_NOT_NEEDED); div_assign_r(min_value, min_value, divisor, ROUND_NOT_NEEDED); ok_min &= included && g.is_point() && check_result(min_value, known_min_value, "0.5") && check_result(g, known_min_location, "0.5", "0.5", "0.5"); nout << (included ? "minimum" : "infinum") << " = " << min_value; nout << " @ "; print_generator(g); nout << endl; return ok_max && ok_min; } } // namespace BEGIN_MAIN DO_TEST(test01); DO_TEST(test02); DO_TEST(test03); DO_TEST(test04); DO_TEST(test05); DO_TEST(test06); DO_TEST(test07); DO_TEST(test08); DO_TEST(test09); DO_TEST(test10); END_MAIN