/* Polyhedron class implementation (non-inline private or protected functions). Copyright (C) 2001-2010 Roberto Bagnara Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com) This file is part of the Parma Polyhedra Library (PPL). The PPL is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The PPL is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA. For the most up-to-date information see the Parma Polyhedra Library site: http://www.cs.unipr.it/ppl/ . */ #include #include "Polyhedron.defs.hh" #include "Scalar_Products.defs.hh" #include "assert.hh" #include #include #include #include #ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS /*! \ingroup PPL_defines \brief Controls the laziness level of the implementation. Temporarily used in a few of the function implementations to switch to an even more lazy algorithm. To be removed as soon as we collect enough information to decide which is the better implementation alternative. */ #endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS) #define BE_LAZY 1 namespace PPL = Parma_Polyhedra_Library; PPL::Polyhedron::Polyhedron(const Topology topol, const dimension_type num_dimensions, const Degenerate_Element kind) : con_sys(topol), gen_sys(topol), sat_c(), sat_g() { // Protecting against space dimension overflow is up to the caller. PPL_ASSERT(num_dimensions <= max_space_dimension()); if (kind == EMPTY) status.set_empty(); else if (num_dimensions > 0) { con_sys.add_low_level_constraints(); con_sys.adjust_topology_and_space_dimension(topol, num_dimensions); set_constraints_minimized(); } space_dim = num_dimensions; PPL_ASSERT_HEAVY(OK()); } PPL::Polyhedron::Polyhedron(const Polyhedron& y, Complexity_Class) : con_sys(y.topology()), gen_sys(y.topology()), status(y.status), space_dim(y.space_dim) { // Being a protected method, we simply assert that topologies do match. PPL_ASSERT(topology() == y.topology()); if (y.constraints_are_up_to_date()) con_sys.assign_with_pending(y.con_sys); if (y.generators_are_up_to_date()) gen_sys.assign_with_pending(y.gen_sys); if (y.sat_c_is_up_to_date()) sat_c = y.sat_c; if (y.sat_g_is_up_to_date()) sat_g = y.sat_g; } PPL::Polyhedron::Polyhedron(const Topology topol, const Constraint_System& ccs) : con_sys(topol), gen_sys(topol), sat_c(), sat_g() { // Protecting against space dimension overflow is up to the caller. PPL_ASSERT(ccs.space_dimension() <= max_space_dimension()); // TODO: this implementation is just an executable specification. Constraint_System cs = ccs; // Try to adapt `cs' to the required topology. const dimension_type cs_space_dim = cs.space_dimension(); if (!cs.adjust_topology_and_space_dimension(topol, cs_space_dim)) throw_topology_incompatible((topol == NECESSARILY_CLOSED) ? "C_Polyhedron(cs)" : "NNC_Polyhedron(cs)", "cs", cs); // Set the space dimension. space_dim = cs_space_dim; if (space_dim > 0) { // Stealing the rows from `cs'. std::swap(con_sys, cs); if (con_sys.num_pending_rows() > 0) { // Even though `cs' has pending constraints, since the generators // of the polyhedron are not up-to-date, the polyhedron cannot // have pending constraints. By integrating the pending part // of `con_sys' we may loose sortedness. con_sys.unset_pending_rows(); con_sys.set_sorted(false); } con_sys.add_low_level_constraints(); set_constraints_up_to_date(); } else { // Here `space_dim == 0'. if (cs.num_columns() > 0) // See if an inconsistent constraint has been passed. for (dimension_type i = cs.num_rows(); i-- > 0; ) if (cs[i].is_inconsistent()) { // Inconsistent constraint found: the polyhedron is empty. set_empty(); break; } } PPL_ASSERT_HEAVY(OK()); } PPL::Polyhedron::Polyhedron(const Topology topol, Constraint_System& cs, Recycle_Input) : con_sys(topol), gen_sys(topol), sat_c(), sat_g() { // Protecting against space dimension overflow is up to the caller. PPL_ASSERT(cs.space_dimension() <= max_space_dimension()); // Try to adapt `cs' to the required topology. const dimension_type cs_space_dim = cs.space_dimension(); if (!cs.adjust_topology_and_space_dimension(topol, cs_space_dim)) throw_topology_incompatible((topol == NECESSARILY_CLOSED) ? "C_Polyhedron(cs, recycle)" : "NNC_Polyhedron(cs, recycle)", "cs", cs); // Set the space dimension. space_dim = cs_space_dim; if (space_dim > 0) { // Stealing the rows from `cs'. std::swap(con_sys, cs); if (con_sys.num_pending_rows() > 0) { // Even though `cs' has pending constraints, since the generators // of the polyhedron are not up-to-date, the polyhedron cannot // have pending constraints. By integrating the pending part // of `con_sys' we may loose sortedness. con_sys.unset_pending_rows(); con_sys.set_sorted(false); } con_sys.add_low_level_constraints(); set_constraints_up_to_date(); } else { // Here `space_dim == 0'. if (cs.num_columns() > 0) // See if an inconsistent constraint has been passed. for (dimension_type i = cs.num_rows(); i-- > 0; ) if (cs[i].is_inconsistent()) { // Inconsistent constraint found: the polyhedron is empty. set_empty(); break; } } PPL_ASSERT_HEAVY(OK()); } PPL::Polyhedron::Polyhedron(const Topology topol, const Generator_System& cgs) : con_sys(topol), gen_sys(topol), sat_c(), sat_g() { // Protecting against space dimension overflow is up to the caller. PPL_ASSERT(cgs.space_dimension() <= max_space_dimension()); // TODO: this implementation is just an executable specification. Generator_System gs = cgs; // An empty set of generators defines the empty polyhedron. if (gs.has_no_rows()) { space_dim = gs.space_dimension(); status.set_empty(); PPL_ASSERT_HEAVY(OK()); return; } // Non-empty valid generator systems have a supporting point, at least. if (!gs.has_points()) throw_invalid_generators((topol == NECESSARILY_CLOSED) ? "C_Polyhedron(gs)" : "NNC_Polyhedron(gs)", "gs"); const dimension_type gs_space_dim = gs.space_dimension(); // Try to adapt `gs' to the required topology. if (!gs.adjust_topology_and_space_dimension(topol, gs_space_dim)) throw_topology_incompatible((topol == NECESSARILY_CLOSED) ? "C_Polyhedron(gs)" : "NNC_Polyhedron(gs)", "gs", gs); if (gs_space_dim > 0) { // Stealing the rows from `gs'. std::swap(gen_sys, gs); // In a generator system describing a NNC polyhedron, // for each point we must also have the corresponding closure point. if (topol == NOT_NECESSARILY_CLOSED) gen_sys.add_corresponding_closure_points(); if (gen_sys.num_pending_rows() > 0) { // Even though `gs' has pending generators, since the constraints // of the polyhedron are not up-to-date, the polyhedron cannot // have pending generators. By integrating the pending part // of `gen_sys' we may loose sortedness. gen_sys.unset_pending_rows(); gen_sys.set_sorted(false); } // Generators are now up-to-date. set_generators_up_to_date(); // Set the space dimension. space_dim = gs_space_dim; PPL_ASSERT_HEAVY(OK()); return; } // Here `gs.num_rows > 0' and `gs_space_dim == 0': // we already checked for both the topology-compatibility // and the supporting point. space_dim = 0; PPL_ASSERT_HEAVY(OK()); } PPL::Polyhedron::Polyhedron(const Topology topol, Generator_System& gs, Recycle_Input) : con_sys(topol), gen_sys(topol), sat_c(), sat_g() { // Protecting against space dimension overflow is up to the caller. PPL_ASSERT(gs.space_dimension() <= max_space_dimension()); // An empty set of generators defines the empty polyhedron. if (gs.has_no_rows()) { space_dim = gs.space_dimension(); status.set_empty(); PPL_ASSERT_HEAVY(OK()); return; } // Non-empty valid generator systems have a supporting point, at least. if (!gs.has_points()) throw_invalid_generators((topol == NECESSARILY_CLOSED) ? "C_Polyhedron(gs, recycle)" : "NNC_Polyhedron(gs, recycle)", "gs"); const dimension_type gs_space_dim = gs.space_dimension(); // Try to adapt `gs' to the required topology. if (!gs.adjust_topology_and_space_dimension(topol, gs_space_dim)) throw_topology_incompatible((topol == NECESSARILY_CLOSED) ? "C_Polyhedron(gs, recycle)" : "NNC_Polyhedron(gs, recycle)", "gs", gs); if (gs_space_dim > 0) { // Stealing the rows from `gs'. std::swap(gen_sys, gs); // In a generator system describing a NNC polyhedron, // for each point we must also have the corresponding closure point. if (topol == NOT_NECESSARILY_CLOSED) gen_sys.add_corresponding_closure_points(); if (gen_sys.num_pending_rows() > 0) { // Even though `gs' has pending generators, since the constraints // of the polyhedron are not up-to-date, the polyhedron cannot // have pending generators. By integrating the pending part // of `gen_sys' we may loose sortedness. gen_sys.unset_pending_rows(); gen_sys.set_sorted(false); } // Generators are now up-to-date. set_generators_up_to_date(); // Set the space dimension. space_dim = gs_space_dim; PPL_ASSERT_HEAVY(OK()); return; } // Here `gs.num_rows > 0' and `gs_space_dim == 0': // we already checked for both the topology-compatibility // and the supporting point. space_dim = 0; PPL_ASSERT_HEAVY(OK()); } PPL::Polyhedron& PPL::Polyhedron::operator=(const Polyhedron& y) { // Being a protected method, we simply assert that topologies do match. PPL_ASSERT(topology() == y.topology()); space_dim = y.space_dim; if (y.marked_empty()) set_empty(); else if (space_dim == 0) set_zero_dim_univ(); else { status = y.status; if (y.constraints_are_up_to_date()) con_sys.assign_with_pending(y.con_sys); if (y.generators_are_up_to_date()) gen_sys.assign_with_pending(y.gen_sys); if (y.sat_c_is_up_to_date()) sat_c = y.sat_c; if (y.sat_g_is_up_to_date()) sat_g = y.sat_g; } return *this; } PPL::Polyhedron::Three_Valued_Boolean PPL::Polyhedron::quick_equivalence_test(const Polyhedron& y) const { // Private method: the caller must ensure the following. PPL_ASSERT(topology() == y.topology()); PPL_ASSERT(space_dim == y.space_dim); PPL_ASSERT(!marked_empty() && !y.marked_empty() && space_dim > 0); const Polyhedron& x = *this; if (x.is_necessarily_closed()) { if (!x.has_something_pending() && !y.has_something_pending()) { bool css_normalized = false; if (x.constraints_are_minimized() && y.constraints_are_minimized()) { // Equivalent minimized constraint systems have: // - the same number of constraints; ... if (x.con_sys.num_rows() != y.con_sys.num_rows()) return Polyhedron::TVB_FALSE; // - the same number of equalities; ... dimension_type x_num_equalities = x.con_sys.num_equalities(); if (x_num_equalities != y.con_sys.num_equalities()) return Polyhedron::TVB_FALSE; // - if there are no equalities, they have the same constraints. // Delay this test: try cheaper tests on generators first. css_normalized = (x_num_equalities == 0); } if (x.generators_are_minimized() && y.generators_are_minimized()) { // Equivalent minimized generator systems have: // - the same number of generators; ... if (x.gen_sys.num_rows() != y.gen_sys.num_rows()) return Polyhedron::TVB_FALSE; // - the same number of lines; ... const dimension_type x_num_lines = x.gen_sys.num_lines(); if (x_num_lines != y.gen_sys.num_lines()) return Polyhedron::TVB_FALSE; // - if there are no lines, they have the same generators. if (x_num_lines == 0) { // Sort the two systems and check for syntactic identity. x.obtain_sorted_generators(); y.obtain_sorted_generators(); if (x.gen_sys == y.gen_sys) return Polyhedron::TVB_TRUE; else return Polyhedron::TVB_FALSE; } } if (css_normalized) { // Sort the two systems and check for identity. x.obtain_sorted_constraints(); y.obtain_sorted_constraints(); if (x.con_sys == y.con_sys) return Polyhedron::TVB_TRUE; else return Polyhedron::TVB_FALSE; } } } return Polyhedron::TVB_DONT_KNOW; } bool PPL::Polyhedron::is_included_in(const Polyhedron& y) const { // Private method: the caller must ensure the following. PPL_ASSERT(topology() == y.topology()); PPL_ASSERT(space_dim == y.space_dim); PPL_ASSERT(!marked_empty() && !y.marked_empty() && space_dim > 0); const Polyhedron& x = *this; // `x' cannot have pending constraints, because we need its generators. if (x.has_pending_constraints() && !x.process_pending_constraints()) return true; // `y' cannot have pending generators, because we need its constraints. if (y.has_pending_generators()) y.process_pending_generators(); #if BE_LAZY if (!x.generators_are_up_to_date() && !x.update_generators()) return true; if (!y.constraints_are_up_to_date()) y.update_constraints(); #else if (!x.generators_are_minimized()) x.minimize(); if (!y.constraints_are_minimized()) y.minimize(); #endif PPL_ASSERT_HEAVY(x.OK()); PPL_ASSERT_HEAVY(y.OK()); const Generator_System& gs = x.gen_sys; const Constraint_System& cs = y.con_sys; if (x.is_necessarily_closed()) // When working with necessarily closed polyhedra, // `x' is contained in `y' if and only if all the generators of `x' // satisfy all the inequalities and saturate all the equalities of `y'. // This comes from the definition of a polyhedron as the set of // vectors satisfying a constraint system and the fact that all // vectors in `x' can be obtained by suitably combining its generators. for (dimension_type i = cs.num_rows(); i-- > 0; ) { const Constraint& c = cs[i]; if (c.is_inequality()) { for (dimension_type j = gs.num_rows(); j-- > 0; ) { const Generator& g = gs[j]; const int sp_sign = Scalar_Products::sign(c, g); if (g.is_line()) { if (sp_sign != 0) return false; } else // `g' is a ray or a point. if (sp_sign < 0) return false; } } else { // `c' is an equality. for (dimension_type j = gs.num_rows(); j-- > 0; ) if (Scalar_Products::sign(c, gs[j]) != 0) return false; } } else { // Here we have an NNC polyhedron: using the reduced scalar product, // which ignores the epsilon coefficient. for (dimension_type i = cs.num_rows(); i-- > 0; ) { const Constraint& c = cs[i]; switch (c.type()) { case Constraint::NONSTRICT_INEQUALITY: for (dimension_type j = gs.num_rows(); j-- > 0; ) { const Generator& g = gs[j]; const int sp_sign = Scalar_Products::reduced_sign(c, g); if (g.is_line()) { if (sp_sign != 0) return false; } else // `g' is a ray or a point or a closure point. if (sp_sign < 0) return false; } break; case Constraint::EQUALITY: for (dimension_type j = gs.num_rows(); j-- > 0; ) if (Scalar_Products::reduced_sign(c, gs[j]) != 0) return false; break; case Constraint::STRICT_INEQUALITY: for (dimension_type j = gs.num_rows(); j-- > 0; ) { const Generator& g = gs[j]; const int sp_sign = Scalar_Products::reduced_sign(c, g); switch (g.type()) { case Generator::POINT: // If a point violates or saturates a strict inequality // (when ignoring the epsilon coefficients) then it is // not included in the polyhedron. if (sp_sign <= 0) return false; break; case Generator::LINE: // Lines have to saturate all constraints. if (sp_sign != 0) return false; break; case Generator::RAY: // Intentionally fall through. case Generator::CLOSURE_POINT: // The generator is a ray or closure point: usual test. if (sp_sign < 0) return false; break; } } break; } } } // Inclusion holds. return true; } bool PPL::Polyhedron::bounds(const Linear_Expression& expr, const bool from_above) const { // The dimension of `expr' should not be greater than the dimension // of `*this'. const dimension_type expr_space_dim = expr.space_dimension(); if (space_dim < expr_space_dim) throw_dimension_incompatible((from_above ? "bounds_from_above(e)" : "bounds_from_below(e)"), "e", expr); // A zero-dimensional or empty polyhedron bounds everything. if (space_dim == 0 || marked_empty() || (has_pending_constraints() && !process_pending_constraints()) || (!generators_are_up_to_date() && !update_generators())) return true; // The polyhedron has updated, possibly pending generators. for (dimension_type i = gen_sys.num_rows(); i-- > 0; ) { const Generator& g = gen_sys[i]; // Only lines and rays in `*this' can cause `expr' to be unbounded. if (g.is_line_or_ray()) { const int sp_sign = Scalar_Products::homogeneous_sign(expr, g); if (sp_sign != 0 && (g.is_line() || (from_above && sp_sign > 0) || (!from_above && sp_sign < 0))) // `*this' does not bound `expr'. return false; } } // No sources of unboundedness have been found for `expr' // in the given direction. return true; } bool PPL::Polyhedron::max_min(const Linear_Expression& expr, const bool maximize, Coefficient& ext_n, Coefficient& ext_d, bool& included, Generator& g) const { // The dimension of `expr' should not be greater than the dimension // of `*this'. const dimension_type expr_space_dim = expr.space_dimension(); if (space_dim < expr_space_dim) throw_dimension_incompatible((maximize ? "maximize(e, ...)" : "minimize(e, ...)"), "e", expr); // Deal with zero-dim polyhedra first. if (space_dim == 0) { if (marked_empty()) return false; else { ext_n = expr.inhomogeneous_term(); ext_d = 1; included = true; g = point(); return true; } } // For an empty polyhedron we simply return false. if (marked_empty() || (has_pending_constraints() && !process_pending_constraints()) || (!generators_are_up_to_date() && !update_generators())) return false; // The polyhedron has updated, possibly pending generators. // The following loop will iterate through the generator // to find the extremum. PPL_DIRTY_TEMP0(mpq_class, extremum); // True if we have no other candidate extremum to compare with. bool first_candidate = true; // To store the position of the current candidate extremum. PPL_UNINITIALIZED(dimension_type, ext_position); // Whether the current candidate extremum is included or not. PPL_UNINITIALIZED(bool, ext_included); PPL_DIRTY_TEMP_COEFFICIENT(sp); for (dimension_type i = gen_sys.num_rows(); i-- > 0; ) { const Generator& gen_sys_i = gen_sys[i]; Scalar_Products::homogeneous_assign(sp, expr, gen_sys_i); // Lines and rays in `*this' can cause `expr' to be unbounded. if (gen_sys_i.is_line_or_ray()) { const int sp_sign = sgn(sp); if (sp_sign != 0 && (gen_sys_i.is_line() || (maximize && sp_sign > 0) || (!maximize && sp_sign < 0))) // `expr' is unbounded in `*this'. return false; } else { // We have a point or a closure point. PPL_ASSERT(gen_sys_i.is_point() || gen_sys_i.is_closure_point()); // Notice that we are ignoring the constant term in `expr' here. // We will add it to the extremum as soon as we find it. PPL_DIRTY_TEMP0(mpq_class, candidate); assign_r(candidate.get_num(), sp, ROUND_NOT_NEEDED); assign_r(candidate.get_den(), gen_sys_i[0], ROUND_NOT_NEEDED); candidate.canonicalize(); const bool g_is_point = gen_sys_i.is_point(); if (first_candidate || (maximize && (candidate > extremum || (g_is_point && !ext_included && candidate == extremum))) || (!maximize && (candidate < extremum || (g_is_point && !ext_included && candidate == extremum)))) { // We have a (new) candidate extremum. first_candidate = false; extremum = candidate; ext_position = i; ext_included = g_is_point; } } } // Add in the constant term in `expr'. PPL_DIRTY_TEMP0(mpz_class, n); assign_r(n, expr.inhomogeneous_term(), ROUND_NOT_NEEDED); extremum += n; // The polyhedron is bounded in the right direction and we have // computed the extremum: write the result into the caller's structures. PPL_ASSERT(!first_candidate); // FIXME: avoid these temporaries, if possible. // This can be done adding an `assign' function working on native // and checked or an operator= that have on one side a checked and // on the other a native or checked. // The reason why now we can't use operator= is the fact that we // still can have Coefficient defined to mpz_class (and not // Checked_Number). ext_n = Coefficient(extremum.get_num()); ext_d = Coefficient(extremum.get_den()); included = ext_included; g = gen_sys[ext_position]; return true; } void PPL::Polyhedron::set_zero_dim_univ() { status.set_zero_dim_univ(); space_dim = 0; con_sys.clear(); gen_sys.clear(); } void PPL::Polyhedron::set_empty() { status.set_empty(); // The polyhedron is empty: we can thus throw away everything. con_sys.clear(); gen_sys.clear(); sat_c.clear(); sat_g.clear(); } bool PPL::Polyhedron::process_pending_constraints() const { PPL_ASSERT(space_dim > 0 && !marked_empty()); PPL_ASSERT(has_pending_constraints() && !has_pending_generators()); Polyhedron& x = const_cast(*this); // Integrate the pending part of the system of constraints and minimize. // We need `sat_c' up-to-date and `con_sys' sorted (together with `sat_c'). if (!x.sat_c_is_up_to_date()) x.sat_c.transpose_assign(x.sat_g); if (!x.con_sys.is_sorted()) x.obtain_sorted_constraints_with_sat_c(); // We sort in place the pending constraints, erasing those constraints // that also occur in the non-pending part of `con_sys'. x.con_sys.sort_pending_and_remove_duplicates(); if (x.con_sys.num_pending_rows() == 0) { // All pending constraints were duplicates. x.clear_pending_constraints(); PPL_ASSERT_HEAVY(OK(true)); return true; } const bool empty = add_and_minimize(true, x.con_sys, x.gen_sys, x.sat_c); PPL_ASSERT(x.con_sys.num_pending_rows() == 0); if (empty) x.set_empty(); else { x.clear_pending_constraints(); x.clear_sat_g_up_to_date(); x.set_sat_c_up_to_date(); } PPL_ASSERT_HEAVY(OK(!empty)); return !empty; } void PPL::Polyhedron::process_pending_generators() const { PPL_ASSERT(space_dim > 0 && !marked_empty()); PPL_ASSERT(has_pending_generators() && !has_pending_constraints()); Polyhedron& x = const_cast(*this); // Integrate the pending part of the system of generators and minimize. // We need `sat_g' up-to-date and `gen_sys' sorted (together with `sat_g'). if (!x.sat_g_is_up_to_date()) x.sat_g.transpose_assign(x.sat_c); if (!x.gen_sys.is_sorted()) x.obtain_sorted_generators_with_sat_g(); // We sort in place the pending generators, erasing those generators // that also occur in the non-pending part of `gen_sys'. x.gen_sys.sort_pending_and_remove_duplicates(); if (x.gen_sys.num_pending_rows() == 0) { // All pending generators were duplicates. x.clear_pending_generators(); PPL_ASSERT_HEAVY(OK(true)); return; } add_and_minimize(false, x.gen_sys, x.con_sys, x.sat_g); PPL_ASSERT(x.gen_sys.num_pending_rows() == 0); x.clear_pending_generators(); x.clear_sat_c_up_to_date(); x.set_sat_g_up_to_date(); } void PPL::Polyhedron::remove_pending_to_obtain_constraints() const { PPL_ASSERT(has_something_pending()); Polyhedron& x = const_cast(*this); // If the polyhedron has pending constraints, simply unset them. if (x.has_pending_constraints()) { // Integrate the pending constraints, which are possibly not sorted. x.con_sys.unset_pending_rows(); x.con_sys.set_sorted(false); x.clear_pending_constraints(); x.clear_constraints_minimized(); x.clear_generators_up_to_date(); } else { PPL_ASSERT(x.has_pending_generators()); // We must process the pending generators and obtain the // corresponding system of constraints. x.process_pending_generators(); } PPL_ASSERT_HEAVY(OK(true)); } bool PPL::Polyhedron::remove_pending_to_obtain_generators() const { PPL_ASSERT(has_something_pending()); Polyhedron& x = const_cast(*this); // If the polyhedron has pending generators, simply unset them. if (x.has_pending_generators()) { // Integrate the pending generators, which are possibly not sorted. x.gen_sys.unset_pending_rows(); x.gen_sys.set_sorted(false); x.clear_pending_generators(); x.clear_generators_minimized(); x.clear_constraints_up_to_date(); PPL_ASSERT_HEAVY(OK(true)); return true; } else { PPL_ASSERT(x.has_pending_constraints()); // We must integrate the pending constraints and obtain the // corresponding system of generators. return x.process_pending_constraints(); } } void PPL::Polyhedron::update_constraints() const { PPL_ASSERT(space_dim > 0); PPL_ASSERT(!marked_empty()); PPL_ASSERT(generators_are_up_to_date()); // We assume the polyhedron has no pending constraints or generators. PPL_ASSERT(!has_something_pending()); Polyhedron& x = const_cast(*this); minimize(false, x.gen_sys, x.con_sys, x.sat_c); // `sat_c' is the only saturation matrix up-to-date. x.set_sat_c_up_to_date(); x.clear_sat_g_up_to_date(); // The system of constraints and the system of generators // are minimized. x.set_constraints_minimized(); x.set_generators_minimized(); } bool PPL::Polyhedron::update_generators() const { PPL_ASSERT(space_dim > 0); PPL_ASSERT(!marked_empty()); PPL_ASSERT(constraints_are_up_to_date()); // We assume the polyhedron has no pending constraints or generators. PPL_ASSERT(!has_something_pending()); Polyhedron& x = const_cast(*this); // If the system of constraints is not consistent the // polyhedron is empty. const bool empty = minimize(true, x.con_sys, x.gen_sys, x.sat_g); if (empty) x.set_empty(); else { // `sat_g' is the only saturation matrix up-to-date. x.set_sat_g_up_to_date(); x.clear_sat_c_up_to_date(); // The system of constraints and the system of generators // are minimized. x.set_constraints_minimized(); x.set_generators_minimized(); } return !empty; } void PPL::Polyhedron::update_sat_c() const { PPL_ASSERT(constraints_are_minimized()); PPL_ASSERT(generators_are_minimized()); PPL_ASSERT(!sat_c_is_up_to_date()); // We only consider non-pending rows. const dimension_type csr = con_sys.first_pending_row(); const dimension_type gsr = gen_sys.first_pending_row(); Polyhedron& x = const_cast(*this); // The columns of `sat_c' represent the constraints and // its rows represent the generators: resize accordingly. x.sat_c.resize(gsr, csr); for (dimension_type i = gsr; i-- > 0; ) for (dimension_type j = csr; j-- > 0; ) { const int sp_sign = Scalar_Products::sign(con_sys[j], gen_sys[i]); // The negativity of this scalar product would mean // that the generator `gen_sys[i]' violates the constraint // `con_sys[j]' and it is not possible because both generators // and constraints are up-to-date. PPL_ASSERT(sp_sign >= 0); if (sp_sign > 0) // `gen_sys[i]' satisfies (without saturate) `con_sys[j]'. x.sat_c[i].set(j); else // `gen_sys[i]' saturates `con_sys[j]'. x.sat_c[i].clear(j); } x.set_sat_c_up_to_date(); } void PPL::Polyhedron::update_sat_g() const { PPL_ASSERT(constraints_are_minimized()); PPL_ASSERT(generators_are_minimized()); PPL_ASSERT(!sat_g_is_up_to_date()); // We only consider non-pending rows. const dimension_type csr = con_sys.first_pending_row(); const dimension_type gsr = gen_sys.first_pending_row(); Polyhedron& x = const_cast(*this); // The columns of `sat_g' represent generators and its // rows represent the constraints: resize accordingly. x.sat_g.resize(csr, gsr); for (dimension_type i = csr; i-- > 0; ) for (dimension_type j = gsr; j-- > 0; ) { const int sp_sign = Scalar_Products::sign(con_sys[i], gen_sys[j]); // The negativity of this scalar product would mean // that the generator `gen_sys[j]' violates the constraint // `con_sys[i]' and it is not possible because both generators // and constraints are up-to-date. PPL_ASSERT(sp_sign >= 0); if (sp_sign > 0) // `gen_sys[j]' satisfies (without saturate) `con_sys[i]'. x.sat_g[i].set(j); else // `gen_sys[j]' saturates `con_sys[i]'. x.sat_g[i].clear(j); } x.set_sat_g_up_to_date(); } void PPL::Polyhedron::obtain_sorted_constraints() const { PPL_ASSERT(constraints_are_up_to_date()); // `con_sys' will be sorted up to `index_first_pending'. Polyhedron& x = const_cast(*this); if (!x.con_sys.is_sorted()) { if (x.sat_g_is_up_to_date()) { // Sorting constraints keeping `sat_g' consistent. x.con_sys.sort_and_remove_with_sat(x.sat_g); // `sat_c' is not up-to-date anymore. x.clear_sat_c_up_to_date(); } else if (x.sat_c_is_up_to_date()) { // Using `sat_c' to obtain `sat_g', then it is like previous case. x.sat_g.transpose_assign(x.sat_c); x.con_sys.sort_and_remove_with_sat(x.sat_g); x.set_sat_g_up_to_date(); x.clear_sat_c_up_to_date(); } else // If neither `sat_g' nor `sat_c' are up-to-date, // we just sort the constraints. x.con_sys.sort_rows(); } PPL_ASSERT(con_sys.check_sorted()); } void PPL::Polyhedron::obtain_sorted_generators() const { PPL_ASSERT(generators_are_up_to_date()); // `gen_sys' will be sorted up to `index_first_pending'. Polyhedron& x = const_cast(*this); if (!x.gen_sys.is_sorted()) { if (x.sat_c_is_up_to_date()) { // Sorting generators keeping 'sat_c' consistent. x.gen_sys.sort_and_remove_with_sat(x.sat_c); // `sat_g' is not up-to-date anymore. x.clear_sat_g_up_to_date(); } else if (x.sat_g_is_up_to_date()) { // Obtaining `sat_c' from `sat_g' and proceeding like previous case. x.sat_c.transpose_assign(x.sat_g); x.gen_sys.sort_and_remove_with_sat(x.sat_c); x.set_sat_c_up_to_date(); x.clear_sat_g_up_to_date(); } else // If neither `sat_g' nor `sat_c' are up-to-date, we just sort // the generators. x.gen_sys.sort_rows(); } PPL_ASSERT(gen_sys.check_sorted()); } void PPL::Polyhedron::obtain_sorted_constraints_with_sat_c() const { PPL_ASSERT(constraints_are_up_to_date()); PPL_ASSERT(constraints_are_minimized()); // `con_sys' will be sorted up to `index_first_pending'. Polyhedron& x = const_cast(*this); // At least one of the saturation matrices must be up-to-date. if (!x.sat_c_is_up_to_date() && !x.sat_g_is_up_to_date()) x.update_sat_c(); if (x.con_sys.is_sorted()) { if (x.sat_c_is_up_to_date()) // If constraints are already sorted and sat_c is up to // date there is nothing to do. return; } else { if (!x.sat_g_is_up_to_date()) { // If constraints are not sorted and sat_g is not up-to-date // we obtain sat_g from sat_c (that has to be up-to-date)... x.sat_g.transpose_assign(x.sat_c); x.set_sat_g_up_to_date(); } // ... and sort it together with constraints. x.con_sys.sort_and_remove_with_sat(x.sat_g); } // Obtaining sat_c from sat_g. x.sat_c.transpose_assign(x.sat_g); x.set_sat_c_up_to_date(); // Constraints are sorted now. x.con_sys.set_sorted(true); PPL_ASSERT(con_sys.check_sorted()); } void PPL::Polyhedron::obtain_sorted_generators_with_sat_g() const { PPL_ASSERT(generators_are_up_to_date()); // `gen_sys' will be sorted up to `index_first_pending'. Polyhedron& x = const_cast(*this); // At least one of the saturation matrices must be up-to-date. if (!x.sat_c_is_up_to_date() && !x.sat_g_is_up_to_date()) x.update_sat_g(); if (x.gen_sys.is_sorted()) { if (x.sat_g_is_up_to_date()) // If generators are already sorted and sat_g is up to // date there is nothing to do. return; } else { if (!x.sat_c_is_up_to_date()) { // If generators are not sorted and sat_c is not up-to-date // we obtain sat_c from sat_g (that has to be up-to-date)... x.sat_c.transpose_assign(x.sat_g); x.set_sat_c_up_to_date(); } // ... and sort it together with generators. x.gen_sys.sort_and_remove_with_sat(x.sat_c); } // Obtaining sat_g from sat_c. x.sat_g.transpose_assign(sat_c); x.set_sat_g_up_to_date(); // Generators are sorted now. x.gen_sys.set_sorted(true); PPL_ASSERT(gen_sys.check_sorted()); } bool PPL::Polyhedron::minimize() const { // 0-dim space or empty polyhedra are already minimized. if (marked_empty()) return false; if (space_dim == 0) return true; // If the polyhedron has something pending, process it. if (has_something_pending()) { const bool not_empty = process_pending(); PPL_ASSERT_HEAVY(OK()); return not_empty; } // Here there are no pending constraints or generators. // Is the polyhedron already minimized? if (constraints_are_minimized() && generators_are_minimized()) return true; // If constraints or generators are up-to-date, invoking // update_generators() or update_constraints(), respectively, // minimizes both constraints and generators. // If both are up-to-date it does not matter whether we use // update_generators() or update_constraints(): // both minimize constraints and generators. if (constraints_are_up_to_date()) { // We may discover here that `*this' is empty. const bool ret = update_generators(); PPL_ASSERT_HEAVY(OK()); return ret; } else { PPL_ASSERT(generators_are_up_to_date()); update_constraints(); PPL_ASSERT_HEAVY(OK()); return true; } } bool PPL::Polyhedron::strongly_minimize_constraints() const { PPL_ASSERT(!is_necessarily_closed()); // From the user perspective, the polyhedron will not change. Polyhedron& x = const_cast(*this); // We need `con_sys' (weakly) minimized and `gen_sys' up-to-date. // `minimize()' will process any pending constraints or generators. if (!minimize()) return false; // If the polyhedron `*this' is zero-dimensional // at this point it must be a universe polyhedron. if (x.space_dim == 0) return true; // We also need `sat_g' up-to-date. if (!sat_g_is_up_to_date()) { PPL_ASSERT(sat_c_is_up_to_date()); x.sat_g.transpose_assign(sat_c); } // These Bit_Row's will be later used as masks in order to // check saturation conditions restricted to particular subsets of // the generator system. Bit_Row sat_all_but_rays; Bit_Row sat_all_but_points; Bit_Row sat_all_but_closure_points; const dimension_type gs_rows = gen_sys.num_rows(); const dimension_type n_lines = gen_sys.num_lines(); for (dimension_type i = gs_rows; i-- > n_lines; ) switch (gen_sys[i].type()) { case Generator::RAY: sat_all_but_rays.set(i); break; case Generator::POINT: sat_all_but_points.set(i); break; case Generator::CLOSURE_POINT: sat_all_but_closure_points.set(i); break; default: // Found a line with index i >= n_lines. throw std::runtime_error("PPL internal error: " "strongly_minimize_constraints."); } Bit_Row sat_lines_and_rays(sat_all_but_points, sat_all_but_closure_points); Bit_Row sat_lines_and_closure_points(sat_all_but_rays, sat_all_but_points); Bit_Row sat_lines(sat_lines_and_rays, sat_lines_and_closure_points); // These flags are maintained to later decide if we have to add the // eps_leq_one constraint and whether or not the constraint system // was changed. bool changed = false; bool found_eps_leq_one = false; // For all the strict inequalities in `con_sys', check for // eps-redundancy and eventually move them to the bottom part of the // system. Constraint_System& cs = x.con_sys; Bit_Matrix& sat = x.sat_g; dimension_type cs_rows = cs.num_rows(); const dimension_type eps_index = cs.num_columns() - 1; for (dimension_type i = 0; i < cs_rows; ) if (cs[i].is_strict_inequality()) { // First, check if it is saturated by no closure points Bit_Row sat_ci; set_union(sat[i], sat_lines_and_closure_points, sat_ci); if (sat_ci == sat_lines) { // It is saturated by no closure points. if (!found_eps_leq_one) { // Check if it is the eps_leq_one constraint. const Constraint& c = cs[i]; bool all_zeroes = true; for (dimension_type k = eps_index; k-- > 1; ) if (c[k] != 0) { all_zeroes = false; break; } if (all_zeroes && (c[0] + c[eps_index] == 0)) { // We found the eps_leq_one constraint. found_eps_leq_one = true; // Consider next constraint. ++i; continue; } } // Here `cs[i]' is not the eps_leq_one constraint, // so it is eps-redundant. // Move it to the bottom of the constraint system, // while keeping `sat_g' consistent. --cs_rows; std::swap(cs[i], cs[cs_rows]); std::swap(sat[i], sat[cs_rows]); // The constraint system is changed. changed = true; // Continue by considering next constraint, // which is already in place due to the swap. continue; } // Now we check if there exists another strict inequality // constraint having a superset of its saturators, // when disregarding points. sat_ci.clear(); set_union(sat[i], sat_all_but_points, sat_ci); bool eps_redundant = false; for (dimension_type j = 0; j < cs_rows; ++j) if (i != j && cs[j].is_strict_inequality() && subset_or_equal(sat[j], sat_ci)) { // Constraint `cs[i]' is eps-redundant: // move it to the bottom of the constraint system, // while keeping `sat_g' consistent. --cs_rows; std::swap(cs[i], cs[cs_rows]); std::swap(sat[i], sat[cs_rows]); eps_redundant = true; // The constraint system is changed. changed = true; break; } // Continue with next constraint, which is already in place // due to the swap if we have found an eps-redundant constraint. if (!eps_redundant) ++i; } else // `cs[i]' is not a strict inequality: consider next constraint. ++i; if (changed) { // If the constraint system has been changed, we have to erase // the epsilon-redundant constraints. PPL_ASSERT(cs_rows < cs.num_rows()); cs.erase_to_end(cs_rows); // The remaining constraints are not pending. cs.unset_pending_rows(); // The constraint system is no longer sorted. cs.set_sorted(false); // The generator system is no longer up-to-date. x.clear_generators_up_to_date(); // If we haven't found an upper bound for the epsilon dimension, // then we have to check whether such an upper bound is implied // by the remaining constraints (exploiting the simplex algorithm). if (!found_eps_leq_one) { MIP_Problem lp; // KLUDGE: temporarily mark the constraint system as if it was // necessarily closed, so that we can interpret the epsilon // dimension as a standard dimension. Be careful to reset the // topology of `cs' even on exceptional execution path. cs.set_necessarily_closed(); try { lp.add_space_dimensions_and_embed(cs.space_dimension()); lp.add_constraints(cs); cs.set_not_necessarily_closed(); } catch (...) { cs.set_not_necessarily_closed(); throw; } // The objective function is `epsilon'. lp.set_objective_function(Variable(x.space_dim)); lp.set_optimization_mode(MAXIMIZATION); MIP_Problem_Status status = lp.solve(); PPL_ASSERT(status != UNFEASIBLE_MIP_PROBLEM); // If the epsilon dimension is actually unbounded, // then add the eps_leq_one constraint. if (status == UNBOUNDED_MIP_PROBLEM) cs.insert(Constraint::epsilon_leq_one()); } } PPL_ASSERT_HEAVY(OK()); return true; } bool PPL::Polyhedron::strongly_minimize_generators() const { PPL_ASSERT(!is_necessarily_closed()); // From the user perspective, the polyhedron will not change. Polyhedron& x = const_cast(*this); // We need `gen_sys' (weakly) minimized and `con_sys' up-to-date. // `minimize()' will process any pending constraints or generators. if (!minimize()) return false; // If the polyhedron `*this' is zero-dimensional // at this point it must be a universe polyhedron. if (x.space_dim == 0) return true; // We also need `sat_c' up-to-date. if (!sat_c_is_up_to_date()) { PPL_ASSERT(sat_g_is_up_to_date()); x.sat_c.transpose_assign(sat_g); } // This Bit_Row will have all and only the indexes // of strict inequalities set to 1. Bit_Row sat_all_but_strict_ineq; const dimension_type cs_rows = con_sys.num_rows(); const dimension_type n_equals = con_sys.num_equalities(); for (dimension_type i = cs_rows; i-- > n_equals; ) if (con_sys[i].is_strict_inequality()) sat_all_but_strict_ineq.set(i); // Will record whether or not we changed the generator system. bool changed = false; // For all points in the generator system, check for eps-redundancy // and eventually move them to the bottom part of the system. Generator_System& gs = const_cast(gen_sys); Bit_Matrix& sat = const_cast(sat_c); dimension_type gs_rows = gs.num_rows(); const dimension_type n_lines = gs.num_lines(); const dimension_type eps_index = gs.num_columns() - 1; for (dimension_type i = n_lines; i < gs_rows; ) if (gs[i].is_point()) { // Compute the Bit_Row corresponding to the candidate point // when strict inequality constraints are ignored. Bit_Row sat_gi(sat[i], sat_all_but_strict_ineq); // Check if the candidate point is actually eps-redundant: // namely, if there exists another point that saturates // all the non-strict inequalities saturated by the candidate. bool eps_redundant = false; for (dimension_type j = n_lines; j < gs_rows; ++j) if (i != j && gs[j].is_point() && subset_or_equal(sat[j], sat_gi)) { // Point `gs[i]' is eps-redundant: // move it to the bottom of the generator system, // while keeping `sat_c' consistent. --gs_rows; std::swap(gs[i], gs[gs_rows]); std::swap(sat[i], sat[gs_rows]); eps_redundant = true; changed = true; break; } if (!eps_redundant) { // Let all point encodings have epsilon coordinate 1. Generator& gi = gs[i]; if (gi[eps_index] != gi[0]) { gi[eps_index] = gi[0]; // Enforce normalization. gi.normalize(); changed = true; } // Consider next generator. ++i; } } else // Consider next generator. ++i; // If needed, erase the eps-redundant generators (also updating // `index_first_pending'). if (gs_rows < gs.num_rows()) { gs.erase_to_end(gs_rows); gs.unset_pending_rows(); } if (changed) { // The generator system is no longer sorted. x.gen_sys.set_sorted(false); // The constraint system is no longer up-to-date. x.clear_constraints_up_to_date(); } PPL_ASSERT_HEAVY(OK()); return true; } void PPL::Polyhedron::refine_no_check(const Constraint& c) { PPL_ASSERT(!marked_empty()); PPL_ASSERT(space_dim >= c.space_dimension()); // Dealing with a zero-dimensional space polyhedron first. if (space_dim == 0) { if (c.is_inconsistent()) set_empty(); return; } // The constraints (possibly with pending rows) are required. if (has_pending_generators()) process_pending_generators(); else if (!constraints_are_up_to_date()) update_constraints(); const bool adding_pending = can_have_something_pending(); if (c.is_necessarily_closed() || !is_necessarily_closed()) // Since `con_sys' is not empty, the topology and space dimension // of the inserted constraint are automatically adjusted. if (adding_pending) con_sys.insert_pending(c); else con_sys.insert(c); else { // Here we know that the system of constraints has at least a row. // However, by barely invoking `con_sys.insert(c)' we would // cause a change in the topology of `con_sys', which is wrong. // Thus, we insert a "topology corrected" copy of `c'. Linear_Expression nc_expr = Linear_Expression(c); if (c.is_equality()) if (adding_pending) con_sys.insert_pending(nc_expr == 0); else con_sys.insert(nc_expr == 0); else if (adding_pending) con_sys.insert_pending(nc_expr >= 0); else con_sys.insert(nc_expr >= 0); } if (adding_pending) set_constraints_pending(); else { // Constraints are not minimized and generators are not up-to-date. clear_constraints_minimized(); clear_generators_up_to_date(); } // Note: the constraint system may have become unsatisfiable, thus // we do not check for satisfiability. PPL_ASSERT_HEAVY(OK()); } bool PPL::Polyhedron::BHZ09_poly_hull_assign_if_exact(const Polyhedron& y) { Polyhedron& x = *this; // Private method: the caller must ensure the following. PPL_ASSERT(x.topology() == y.topology()); PPL_ASSERT(x.space_dim == y.space_dim); // The zero-dim case is trivial. if (x.space_dim == 0) { x.upper_bound_assign(y); return true; } // If `x' or `y' are (known to be) empty, the upper bound is exact. if (x.marked_empty()) { x = y; return true; } else if (y.is_empty()) return true; else if (x.is_empty()) { x = y; return true; } if (x.is_necessarily_closed()) return x.BHZ09_C_poly_hull_assign_if_exact(y); else return x.BHZ09_NNC_poly_hull_assign_if_exact(y); } bool PPL::Polyhedron::BHZ09_C_poly_hull_assign_if_exact(const Polyhedron& y) { Polyhedron& x = *this; // Private method: the caller must ensure the following. PPL_ASSERT(x.is_necessarily_closed() && y.is_necessarily_closed()); PPL_ASSERT(x.space_dim > 0 && x.space_dim == y.space_dim); PPL_ASSERT(!x.is_empty() && !y.is_empty()); // Minimization is not really required, but it is probably the best // way of getting constraints, generators and saturation matrices // up-to-date; it also removes redundant constraints/generators. (void) x.minimize(); (void) y.minimize(); // Handle a special case: for topologically closed polyhedra P and Q, // if the affine dimension of P is greater than that of Q, then // their upper bound is exact if and only if P includes Q. const dimension_type x_affine_dim = x.affine_dimension(); const dimension_type y_affine_dim = y.affine_dimension(); if (x_affine_dim > y_affine_dim) return y.is_included_in(x); else if (x_affine_dim < y_affine_dim) { if (x.is_included_in(y)) { x = y; return true; } else return false; } const Constraint_System& x_cs = x.con_sys; const Generator_System& x_gs = x.gen_sys; const Generator_System& y_gs = y.gen_sys; const dimension_type x_gs_num_rows = x_gs.num_rows(); const dimension_type y_gs_num_rows = y_gs.num_rows(); // Step 1: generators of `x' that are redundant in `y', and vice versa. Bit_Row x_gs_red_in_y; dimension_type num_x_gs_red_in_y = 0; for (dimension_type i = x_gs_num_rows; i-- > 0; ) if (y.relation_with(x_gs[i]).implies(Poly_Gen_Relation::subsumes())) { x_gs_red_in_y.set(i); ++num_x_gs_red_in_y; } Bit_Row y_gs_red_in_x; dimension_type num_y_gs_red_in_x = 0; for (dimension_type i = y_gs_num_rows; i-- > 0; ) if (x.relation_with(y_gs[i]).implies(Poly_Gen_Relation::subsumes())) { y_gs_red_in_x.set(i); ++num_y_gs_red_in_x; } // Step 2: filter away special cases. // Step 2.1: inclusion tests. if (num_y_gs_red_in_x == y_gs_num_rows) // `y' is included into `x': upper bound `x' is exact. return true; if (num_x_gs_red_in_y == x_gs_num_rows) { // `x' is included into `y': upper bound `y' is exact. x = y; return true; } // Step 2.2: if no generator of `x' is redundant for `y', then // (as by 2.1 there exists a constraint of `x' non-redundant for `y') // the upper bound is not exact; the same if exchanging `x' and `y'. if (num_x_gs_red_in_y == 0 || num_y_gs_red_in_x == 0) return false; // Step 3: see if `x' has a non-redundant constraint `c_x' that is not // satisfied by `y' and a non-redundant generator in `y' (see Step 1) // saturating `c_x'. If so, the upper bound is not exact. // Make sure the saturation matrix for `x' is up to date. // Any sat matrix would do: we choose `sat_g' because it matches // the two nested loops (constraints on rows and generators on columns). if (!x.sat_g_is_up_to_date()) x.update_sat_g(); const Bit_Matrix& x_sat = x.sat_g; Bit_Row all_ones; all_ones.set_until(x_gs_num_rows); Bit_Row row_union; for (dimension_type i = x_cs.num_rows(); i-- > 0; ) { const bool included = y.relation_with(x_cs[i]).implies(Poly_Con_Relation::is_included()); if (!included) { set_union(x_gs_red_in_y, x_sat[i], row_union); if (row_union != all_ones) return false; } } // Here we know that the upper bound is exact: compute it. for (dimension_type j = y_gs_num_rows; j-- > 0; ) if (!y_gs_red_in_x[j]) add_generator(y_gs[j]); PPL_ASSERT_HEAVY(OK()); return true; } bool PPL::Polyhedron::BHZ09_NNC_poly_hull_assign_if_exact(const Polyhedron& y) { const Polyhedron& x = *this; // Private method: the caller must ensure the following. PPL_ASSERT(!x.is_necessarily_closed() && !y.is_necessarily_closed()); PPL_ASSERT(x.space_dim > 0 && x.space_dim == y.space_dim); PPL_ASSERT(!x.is_empty() && !y.is_empty()); // Minimization is not really required, but it is probably the best // way of getting constraints, generators and saturation matrices // up-to-date; it also removes redundant constraints/generators. (void) x.minimize(); (void) y.minimize(); const Generator_System& x_gs = x.gen_sys; const Generator_System& y_gs = y.gen_sys; const dimension_type x_gs_num_rows = x_gs.num_rows(); const dimension_type y_gs_num_rows = y_gs.num_rows(); // Compute generators of `x' that are non-redundant in `y' ... Bit_Row x_gs_nonred_in_y; Bit_Row x_points_nonred_in_y; Bit_Row x_closure_points; dimension_type num_x_gs_nonred_in_y = 0; for (dimension_type i = x_gs_num_rows; i-- > 0; ) { const Generator& x_gs_i = x_gs[i]; if (x_gs_i.is_closure_point()) x_closure_points.set(i); if (y.relation_with(x_gs[i]).implies(Poly_Gen_Relation::subsumes())) continue; x_gs_nonred_in_y.set(i); ++num_x_gs_nonred_in_y; if (x_gs_i.is_point()) x_points_nonred_in_y.set(i); } // If `x' is included into `y', the upper bound `y' is exact. if (num_x_gs_nonred_in_y == 0) { *this = y; return true; } // ... and vice versa, generators of `y' that are non-redundant in `x'. Bit_Row y_gs_nonred_in_x; Bit_Row y_points_nonred_in_x; Bit_Row y_closure_points; dimension_type num_y_gs_nonred_in_x = 0; for (dimension_type i = y_gs_num_rows; i-- > 0; ) { const Generator& y_gs_i = y_gs[i]; if (y_gs_i.is_closure_point()) y_closure_points.set(i); if (x.relation_with(y_gs_i).implies(Poly_Gen_Relation::subsumes())) continue; y_gs_nonred_in_x.set(i); ++num_y_gs_nonred_in_x; if (y_gs_i.is_point()) y_points_nonred_in_x.set(i); } // If `y' is included into `x', the upper bound `x' is exact. if (num_y_gs_nonred_in_x == 0) return true; Bit_Row x_nonpoints_nonred_in_y; set_difference(x_gs_nonred_in_y, x_points_nonred_in_y, x_nonpoints_nonred_in_y); const Constraint_System& x_cs = x.con_sys; const Constraint_System& y_cs = y.con_sys; const dimension_type x_cs_num_rows = x_cs.num_rows(); const dimension_type y_cs_num_rows = y_cs.num_rows(); // Filter away the points of `x_gs' that would be redundant // in the topological closure of `y'. Bit_Row x_points_nonred_in_y_closure; for (dimension_type i = x_points_nonred_in_y.first(); i != ULONG_MAX; i = x_points_nonred_in_y.next(i)) { const Generator& x_p = x_gs[i]; PPL_ASSERT(x_p.is_point()); // NOTE: we cannot use Constraint_System::relation_with() // as we need to treat strict inequalities as if they were nonstrict. for (dimension_type j = y_cs_num_rows; j-- > 0; ) { const Constraint& y_c = y_cs[j]; const int sp_sign = Scalar_Products::reduced_sign(y_c, x_p); if (sp_sign < 0 || (y_c.is_equality() && sp_sign > 0)) { x_points_nonred_in_y_closure.set(i); break; } } } // Make sure the saturation matrix for `x' is up to date. // Any sat matrix would do: we choose `sat_g' because it matches // the two nested loops (constraints on rows and generators on columns). if (!x.sat_g_is_up_to_date()) x.update_sat_g(); const Bit_Matrix& x_sat = x.sat_g; Bit_Row x_cs_condition_3; Bit_Row x_gs_condition_3; Bit_Row all_ones; all_ones.set_until(x_gs_num_rows); Bit_Row saturators; Bit_Row tmp_set; for (dimension_type i = x_cs_num_rows; i-- > 0; ) { const Constraint& x_c = x_cs[i]; // Skip constraint if it is not violated by `y'. if (y.relation_with(x_c).implies(Poly_Con_Relation::is_included())) continue; set_difference(all_ones, x_sat[i], saturators); // Check condition 1. set_intersection(x_nonpoints_nonred_in_y, saturators, tmp_set); if (!tmp_set.empty()) return false; if (x_c.is_strict_inequality()) { // Postpone check for condition 3. x_cs_condition_3.set(i); set_intersection(x_closure_points, saturators, tmp_set); set_union(x_gs_condition_3, tmp_set, x_gs_condition_3); } else { // Check condition 2. set_intersection(x_points_nonred_in_y_closure, saturators, tmp_set); if (!tmp_set.empty()) return false; } } // Now exchange the roles of `x' and `y' // (the statement of the NNC theorem in BHZ09 is symmetric). Bit_Row y_nonpoints_nonred_in_x; set_difference(y_gs_nonred_in_x, y_points_nonred_in_x, y_nonpoints_nonred_in_x); // Filter away the points of `y_gs' that would be redundant // in the topological closure of `x'. Bit_Row y_points_nonred_in_x_closure; for (dimension_type i = y_points_nonred_in_x.first(); i != ULONG_MAX; i = y_points_nonred_in_x.next(i)) { const Generator& y_p = y_gs[i]; PPL_ASSERT(y_p.is_point()); // NOTE: we cannot use Constraint_System::relation_with() // as we need to treat strict inequalities as if they were nonstrict. for (dimension_type j = x_cs_num_rows; j-- > 0; ) { const Constraint& x_c = x_cs[j]; const int sp_sign = Scalar_Products::reduced_sign(x_c, y_p); if (sp_sign < 0 || (x_c.is_equality() && sp_sign > 0)) { y_points_nonred_in_x_closure.set(i); break; } } } // Make sure the saturation matrix `sat_g' for `y' is up to date. if (!y.sat_g_is_up_to_date()) y.update_sat_g(); const Bit_Matrix& y_sat = y.sat_g; Bit_Row y_cs_condition_3; Bit_Row y_gs_condition_3; all_ones.clear(); all_ones.set_until(y_gs_num_rows); for (dimension_type i = y_cs_num_rows; i-- > 0; ) { const Constraint& y_c = y_cs[i]; // Skip constraint if it is not violated by `x'. if (x.relation_with(y_c).implies(Poly_Con_Relation::is_included())) continue; set_difference(all_ones, y_sat[i], saturators); // Check condition 1. set_intersection(y_nonpoints_nonred_in_x, saturators, tmp_set); if (!tmp_set.empty()) return false; if (y_c.is_strict_inequality()) { // Postpone check for condition 3. y_cs_condition_3.set(i); set_intersection(y_closure_points, saturators, tmp_set); set_union(y_gs_condition_3, tmp_set, y_gs_condition_3); } else { // Check condition 2. set_intersection(y_points_nonred_in_x_closure, saturators, tmp_set); if (!tmp_set.empty()) return false; } } // Now considering condition 3. if (x_cs_condition_3.empty() && y_cs_condition_3.empty()) { // No test for condition 3 is needed. // The hull is exact: compute it. for (dimension_type j = y_gs_num_rows; j-- > 0; ) if (y_gs_nonred_in_x[j]) add_generator(y_gs[j]); return true; } // We have anyway to compute the upper bound and its constraints too. Polyhedron ub(x); for (dimension_type j = y_gs_num_rows; j-- > 0; ) if (y_gs_nonred_in_x[j]) ub.add_generator(y_gs[j]); (void) ub.minimize(); PPL_ASSERT(!ub.is_empty()); // NOTE: the following computation of x_gs_condition_3_not_in_y // (resp., y_gs_condition_3_not_in_x) is not required for correctness. // It is done so as to later apply a speculative test // (i.e., a non-conclusive but computationally lighter test). // Filter away from `x_gs_condition_3' those closure points // that, when considered as points, would belong to `y', // i.e., those that violate no strict constraint in `y_cs'. Bit_Row x_gs_condition_3_not_in_y; for (dimension_type i = y_cs_num_rows; i-- > 0; ) { const Constraint& y_c = y_cs[i]; if (y_c.is_strict_inequality()) { for (dimension_type j = x_gs_condition_3.first(); j != ULONG_MAX; j = x_gs_condition_3.next(j)) { const Generator& x_cp = x_gs[j]; PPL_ASSERT(x_cp.is_closure_point()); const int sp_sign = Scalar_Products::reduced_sign(y_c, x_cp); PPL_ASSERT(sp_sign >= 0); if (sp_sign == 0) { x_gs_condition_3.clear(j); x_gs_condition_3_not_in_y.set(j); } } if (x_gs_condition_3.empty()) break; } } // Symmetrically, filter away from `y_gs_condition_3' those // closure points that, when considered as points, would belong to `x', // i.e., those that violate no strict constraint in `x_cs'. Bit_Row y_gs_condition_3_not_in_x; for (dimension_type i = x_cs_num_rows; i-- > 0; ) { if (x_cs[i].is_strict_inequality()) { const Constraint& x_c = x_cs[i]; for (dimension_type j = y_gs_condition_3.first(); j != ULONG_MAX; j = y_gs_condition_3.next(j)) { const Generator& y_cp = y_gs[j]; PPL_ASSERT(y_cp.is_closure_point()); const int sp_sign = Scalar_Products::reduced_sign(x_c, y_cp); PPL_ASSERT(sp_sign >= 0); if (sp_sign == 0) { y_gs_condition_3.clear(j); y_gs_condition_3_not_in_x.set(j); } } if (y_gs_condition_3.empty()) break; } } // NOTE: here we apply the speculative test. // Check if there exists a closure point in `x_gs_condition_3_not_in_y' // or `y_gs_condition_3_not_in_x' that belongs (as point) to the hull. // If so, the hull is not exact. const Constraint_System& ub_cs = ub.constraints(); for (dimension_type i = ub_cs.num_rows(); i-- > 0; ) { if (ub_cs[i].is_strict_inequality()) { const Constraint& ub_c = ub_cs[i]; for (dimension_type j = x_gs_condition_3_not_in_y.first(); j != ULONG_MAX; j = x_gs_condition_3_not_in_y.next(j)) { const Generator& x_cp = x_gs[j]; PPL_ASSERT(x_cp.is_closure_point()); const int sp_sign = Scalar_Products::reduced_sign(ub_c, x_cp); PPL_ASSERT(sp_sign >= 0); if (sp_sign == 0) x_gs_condition_3_not_in_y.clear(j); } for (dimension_type j = y_gs_condition_3_not_in_x.first(); j != ULONG_MAX; j = y_gs_condition_3_not_in_x.next(j)) { const Generator& y_cp = y_gs[j]; PPL_ASSERT(y_cp.is_closure_point()); const int sp_sign = Scalar_Products::reduced_sign(ub_c, y_cp); PPL_ASSERT(sp_sign >= 0); if (sp_sign == 0) y_gs_condition_3_not_in_x.clear(j); } } } if (!(x_gs_condition_3_not_in_y.empty() && y_gs_condition_3_not_in_x.empty())) // There exist a closure point satisfying condition 3, // hence the hull is not exact. return false; // The speculative test was not successful: // apply the expensive (but conclusive) test for condition 3. // Consider strict inequalities in `x' violated by `y'. for (dimension_type i = x_cs_condition_3.first(); i != ULONG_MAX; i = x_cs_condition_3.next(i)) { const Constraint& x_cs_i = x_cs[i]; PPL_ASSERT(x_cs_i.is_strict_inequality()); // Build the equality constraint induced by x_cs_i. Constraint eq_i(Linear_Expression(x_cs_i) == 0); PPL_ASSERT(!(ub.relation_with(eq_i) .implies(Poly_Con_Relation::is_disjoint()))); Polyhedron ub_inters_hyperplane(ub); ub_inters_hyperplane.add_constraint(eq_i); Polyhedron y_inters_hyperplane(y); y_inters_hyperplane.add_constraint(eq_i); if (!y_inters_hyperplane.contains(ub_inters_hyperplane)) // The hull is not exact. return false; } // Consider strict inequalities in `y' violated by `x'. for (dimension_type i = y_cs_condition_3.first(); i != ULONG_MAX; i = y_cs_condition_3.next(i)) { const Constraint& y_cs_i = y_cs[i]; PPL_ASSERT(y_cs_i.is_strict_inequality()); // Build the equality constraint induced by y_cs_i. Constraint eq_i(Linear_Expression(y_cs_i) == 0); PPL_ASSERT(!(ub.relation_with(eq_i) .implies(Poly_Con_Relation::is_disjoint()))); Polyhedron ub_inters_hyperplane(ub); ub_inters_hyperplane.add_constraint(eq_i); Polyhedron x_inters_hyperplane(x); x_inters_hyperplane.add_constraint(eq_i); if (!x_inters_hyperplane.contains(ub_inters_hyperplane)) // The hull is not exact. return false; } // The hull is exact. swap(ub); return true; } bool PPL::Polyhedron::BFT00_poly_hull_assign_if_exact(const Polyhedron& y) { // Declare a const reference to *this (to avoid accidental modifications). const Polyhedron& x = *this; // Private method: the caller must ensure the following. PPL_ASSERT(x.is_necessarily_closed()); PPL_ASSERT(x.topology() == y.topology()); PPL_ASSERT(x.space_dim == y.space_dim); // The zero-dim case is trivial. if (x.space_dim == 0) { upper_bound_assign(y); return true; } // If `x' or `y' is (known to be) empty, the convex union is exact. if (x.marked_empty()) { *this = y; return true; } else if (y.is_empty()) return true; else if (x.is_empty()) { *this = y; return true; } // Here both `x' and `y' are known to be non-empty. // Implementation based on Algorithm 8.1 (page 15) in [BemporadFT00TR], // generalized so as to also allow for unbounded polyhedra. // The extension to unbounded polyhedra is obtained by mimicking // what done in Algorithm 8.2 (page 19) wrt Algorithm 6.2 (page 13). // We also apply a couple of improvements (see steps 2.1, 3.1, 6.1, 7.1) // so as to quickly handle special cases and avoid the splitting // of equalities/lines into pairs of inequalities/rays. (void) x.minimize(); (void) y.minimize(); const Constraint_System& x_cs = x.con_sys; const Constraint_System& y_cs = y.con_sys; const Generator_System& x_gs = x.gen_sys; const Generator_System& y_gs = y.gen_sys; const dimension_type x_gs_num_rows = x_gs.num_rows(); const dimension_type y_gs_num_rows = y_gs.num_rows(); // Step 1: generators of `x' that are redundant in `y', and vice versa. std::vector x_gs_red_in_y(x_gs_num_rows, false); dimension_type num_x_gs_red_in_y = 0; for (dimension_type i = x_gs_num_rows; i-- > 0; ) if (y.relation_with(x_gs[i]).implies(Poly_Gen_Relation::subsumes())) { x_gs_red_in_y[i] = true; ++num_x_gs_red_in_y; } std::vector y_gs_red_in_x(y_gs_num_rows, false); dimension_type num_y_gs_red_in_x = 0; for (dimension_type i = y_gs_num_rows; i-- > 0; ) if (x.relation_with(y_gs[i]).implies(Poly_Gen_Relation::subsumes())) { y_gs_red_in_x[i] = true; ++num_y_gs_red_in_x; } // Step 2: if no redundant generator has been identified, // then the union is not convex. CHECKME: why? if (num_x_gs_red_in_y == 0 && num_y_gs_red_in_x == 0) return false; // Step 2.1: while at it, also perform quick inclusion tests. if (num_y_gs_red_in_x == y_gs_num_rows) // `y' is included into `x': union is convex. return true; if (num_x_gs_red_in_y == x_gs_num_rows) { // `x' is included into `y': union is convex. *this = y; return true; } // Here we know that `x' is not included in `y', and vice versa. // Step 3: constraints of `x' that are satisfied by `y', and vice versa. const dimension_type x_cs_num_rows = x_cs.num_rows(); std::vector x_cs_red_in_y(x_cs_num_rows, false); for (dimension_type i = x_cs_num_rows; i-- > 0; ) { const Constraint& x_cs_i = x_cs[i]; if (y.relation_with(x_cs_i).implies(Poly_Con_Relation::is_included())) x_cs_red_in_y[i] = true; else if (x_cs_i.is_equality()) // Step 3.1: `x' has an equality not satified by `y': // union is not convex (recall that `y' does not contain `x'). // NOTE: this would be false for NNC polyhedra. // Example: x = { A == 0 }, y = { 0 < A <= 1 }. return false; } const dimension_type y_cs_num_rows = y_cs.num_rows(); std::vector y_cs_red_in_x(y_cs_num_rows, false); for (dimension_type i = y_cs_num_rows; i-- > 0; ) { const Constraint& y_cs_i = y_cs[i]; if (x.relation_with(y_cs_i).implies(Poly_Con_Relation::is_included())) y_cs_red_in_x[i] = true; else if (y_cs_i.is_equality()) // Step 3.1: `y' has an equality not satified by `x': // union is not convex (see explanation above). return false; } // Loop in steps 5-9: for each pair of non-redundant generators, // compute their "mid-point" and check if it is both in `x' and `y'. // Note: reasoning at the polyhedral cone level. // CHECKME, FIXME: Polyhedron is a (deprecated) friend of Generator. // Here below we systematically exploit such a friendship, so as to // freely reinterpret a Generator as a Linear_Row and vice versa. Linear_Row mid_row; const Generator& mid_g = static_cast(mid_row); for (dimension_type i = x_gs_num_rows; i-- > 0; ) { if (x_gs_red_in_y[i]) continue; const Linear_Row& x_row = static_cast(x_gs[i]); const dimension_type row_sz = x_row.size(); const bool x_row_is_line = x_row.is_line_or_equality(); for (dimension_type j = y_gs_num_rows; j-- > 0; ) { if (y_gs_red_in_x[j]) continue; const Linear_Row& y_row = static_cast(y_gs[j]); const bool y_row_is_line = y_row.is_line_or_equality(); // Step 6: compute mid_row = x_row + y_row. // NOTE: no need to actually compute the "mid-point", // since any strictly positive combination would do. mid_row = x_row; for (dimension_type k = row_sz; k-- > 0; ) mid_row[k] += y_row[k]; // A zero ray is not a well formed generator. const bool illegal_ray = (mid_row[0] == 0 && mid_row.all_homogeneous_terms_are_zero()); // A zero ray cannot be generated from a line: this holds // because x_row (resp., y_row) is not subsumed by y (resp., x). PPL_ASSERT(!(illegal_ray && (x_row_is_line || y_row_is_line))); if (illegal_ray) continue; if (x_row_is_line) { mid_row.normalize(); if (y_row_is_line) // mid_row is a line too: sign normalization is needed. mid_row.sign_normalize(); else // mid_row is a ray/point. mid_row.set_is_ray_or_point_or_inequality(); } // Step 7: check if mid_g is in the union of x and y. if (x.relation_with(mid_g) == Poly_Gen_Relation::nothing() && y.relation_with(mid_g) == Poly_Gen_Relation::nothing()) return false; // If either x_row or y_row is a line, we should use its // negation to produce another generator to be tested too. // NOTE: exclusive-or is meant. if (!x_row_is_line && y_row_is_line) { // Step 6.1: (re-)compute mid_row = x_row - y_row. mid_row = x_row; for (dimension_type k = row_sz; k-- > 0; ) mid_row[k] -= y_row[k]; mid_row.normalize(); // Step 7.1: check if mid_g is in the union of x and y. if (x.relation_with(mid_g) == Poly_Gen_Relation::nothing() && y.relation_with(mid_g) == Poly_Gen_Relation::nothing()) return false; } else if (x_row_is_line && !y_row_is_line) { // Step 6.1: (re-)compute mid_row = - x_row + y_row. mid_row = y_row; for (dimension_type k = row_sz; k-- > 0; ) mid_row[k] -= x_row[k]; mid_row.normalize(); // Step 7.1: check if mid_g is in the union of x and y. if (x.relation_with(mid_g) == Poly_Gen_Relation::nothing() && y.relation_with(mid_g) == Poly_Gen_Relation::nothing()) return false; } } } // Here we know that the union of x and y is convex. // TODO: exploit knowledge on the cardinality of non-redudnant // constraints/generators to improve the convex-hull computation. // Using generators allows for exploiting incrementality. for (dimension_type j = 0; j < y_gs_num_rows; ++j) { if (!y_gs_red_in_x[j]) add_generator(y_gs[j]); } PPL_ASSERT_HEAVY(OK()); return true; } void PPL::Polyhedron::drop_some_non_integer_points(const Variables_Set* pvars, Complexity_Class complexity) { // There is nothing to do for an empty set of variables. if (pvars != 0 && pvars->empty()) return; // Any empty polyhedron does not contain integer points. if (marked_empty()) return; // A zero-dimensional, universe polyhedron has, by convention, an // integer point. if (space_dim == 0) { set_empty(); return; } // The constraints (possibly with pending rows) are required. if (has_pending_generators()) { // Processing of pending generators is exponential in the worst case. if (complexity != ANY_COMPLEXITY) return; else process_pending_generators(); } if (!constraints_are_up_to_date()) { // Constraints update is exponential in the worst case. if (complexity != ANY_COMPLEXITY) return; else update_constraints(); } // For NNC polyhedra we need to process any pending constraints. if (!is_necessarily_closed() && has_pending_constraints()) { if (complexity != ANY_COMPLEXITY) return; else if (!process_pending_constraints()) // We just discovered the polyhedron is empty. return; } PPL_ASSERT(!has_pending_generators() && constraints_are_up_to_date()); PPL_ASSERT(is_necessarily_closed() || !has_pending_constraints()); bool changed = false; const dimension_type eps_index = space_dim + 1; PPL_DIRTY_TEMP_COEFFICIENT(gcd); for (dimension_type j = con_sys.num_rows(); j-- > 0; ) { Constraint& c = con_sys[j]; if (c.is_tautological()) goto next_constraint; if (pvars != 0) { for (dimension_type i = space_dim; i-- > 0; ) if (c[i+1] != 0 && pvars->find(i) == pvars->end()) goto next_constraint; } if (!is_necessarily_closed()) { // Transform all strict inequalities into non-strict ones, // with the inhomogeneous term incremented by 1. if (c[eps_index] < 0) { c[eps_index] = 0; --c[0]; // Enforce normalization. // FIXME: is this really necessary? c.normalize(); changed = true; } } { // Compute the GCD of all the homogeneous terms. dimension_type i = space_dim+1; while (i > 1) { const Coefficient& c_i = c[--i]; if (const int c_i_sign = sgn(c_i)) { gcd = c_i; if (c_i_sign < 0) neg_assign(gcd); goto compute_gcd; } } // We reach this point only if all the coefficients were zero. goto next_constraint; compute_gcd: if (gcd == 1) goto next_constraint; while (i > 1) { const Coefficient& c_i = c[--i]; if (c_i != 0) { // See the comment in Row::normalize(). gcd_assign(gcd, c_i, gcd); if (gcd == 1) goto next_constraint; } } PPL_ASSERT(gcd != 1); PPL_ASSERT(c[0] % gcd != 0); // If we have an equality, the polyhedron becomes empty. if (c.is_equality()) { set_empty(); return; } // Divide the inhomogeneous coefficients by the GCD. for (dimension_type k = space_dim+1; --k > 0; ) { Coefficient& c_k = c[k]; exact_div_assign(c_k, c_k, gcd); } Coefficient& c_0 = c[0]; const int c_0_sign = sgn(c_0); c_0 /= gcd; if (c_0_sign < 0) --c_0; changed = true; } next_constraint: ; } if (changed) { if (!is_necessarily_closed()) { con_sys.insert(Constraint::epsilon_leq_one()); // FIXME: make sure that the following line really can stay here // and should not be moved below the brace. con_sys.set_sorted(false); } // After changing the system of constraints, the generators // are no longer up-to-date and the constraints are no longer // minimized. clear_generators_up_to_date(); clear_constraints_minimized(); } PPL_ASSERT_HEAVY(OK()); } void PPL::Polyhedron::throw_runtime_error(const char* method) const { std::ostringstream s; s << "PPL::"; if (is_necessarily_closed()) s << "C_"; else s << "NNC_"; s << "Polyhedron::" << method << "." << std::endl; throw std::runtime_error(s.str()); } void PPL::Polyhedron::throw_invalid_argument(const char* method, const char* reason) const { std::ostringstream s; s << "PPL::"; if (is_necessarily_closed()) s << "C_"; else s << "NNC_"; s << "Polyhedron::" << method << ":" << std::endl << reason << "."; throw std::invalid_argument(s.str()); } void PPL::Polyhedron::throw_topology_incompatible(const char* method, const char* ph_name, const Polyhedron& ph) const { std::ostringstream s; s << "PPL::"; if (is_necessarily_closed()) s << "C_"; else s << "NNC_"; s << "Polyhedron::" << method << ":" << std::endl << ph_name << " is a "; if (ph.is_necessarily_closed()) s << "C_"; else s << "NNC_"; s << "Polyhedron." << std::endl; throw std::invalid_argument(s.str()); } void PPL::Polyhedron::throw_topology_incompatible(const char* method, const char* c_name, const Constraint&) const { PPL_ASSERT(is_necessarily_closed()); std::ostringstream s; s << "PPL::C_Polyhedron::" << method << ":" << std::endl << c_name << " is a strict inequality."; throw std::invalid_argument(s.str()); } void PPL::Polyhedron::throw_topology_incompatible(const char* method, const char* g_name, const Generator&) const { PPL_ASSERT(is_necessarily_closed()); std::ostringstream s; s << "PPL::C_Polyhedron::" << method << ":" << std::endl << g_name << " is a closure point."; throw std::invalid_argument(s.str()); } void PPL::Polyhedron::throw_topology_incompatible(const char* method, const char* cs_name, const Constraint_System&) const { PPL_ASSERT(is_necessarily_closed()); std::ostringstream s; s << "PPL::C_Polyhedron::" << method << ":" << std::endl << cs_name << " contains strict inequalities."; throw std::invalid_argument(s.str()); } void PPL::Polyhedron::throw_topology_incompatible(const char* method, const char* gs_name, const Generator_System&) const { std::ostringstream s; s << "PPL::C_Polyhedron::" << method << ":" << std::endl << gs_name << " contains closure points."; throw std::invalid_argument(s.str()); } void PPL::Polyhedron::throw_dimension_incompatible(const char* method, const char* other_name, dimension_type other_dim) const { std::ostringstream s; s << "PPL::" << (is_necessarily_closed() ? "C_" : "NNC_") << "Polyhedron::" << method << ":\n" << "this->space_dimension() == " << space_dimension() << ", " << other_name << ".space_dimension() == " << other_dim << "."; throw std::invalid_argument(s.str()); } void PPL::Polyhedron::throw_dimension_incompatible(const char* method, const char* ph_name, const Polyhedron& ph) const { throw_dimension_incompatible(method, ph_name, ph.space_dimension()); } void PPL::Polyhedron::throw_dimension_incompatible(const char* method, const char* e_name, const Linear_Expression& e) const { throw_dimension_incompatible(method, e_name, e.space_dimension()); } void PPL::Polyhedron::throw_dimension_incompatible(const char* method, const char* c_name, const Constraint& c) const { throw_dimension_incompatible(method, c_name, c.space_dimension()); } void PPL::Polyhedron::throw_dimension_incompatible(const char* method, const char* g_name, const Generator& g) const { throw_dimension_incompatible(method, g_name, g.space_dimension()); } void PPL::Polyhedron::throw_dimension_incompatible(const char* method, const char* cg_name, const Congruence& cg) const { throw_dimension_incompatible(method, cg_name, cg.space_dimension()); } void PPL::Polyhedron::throw_dimension_incompatible(const char* method, const char* cs_name, const Constraint_System& cs) const { throw_dimension_incompatible(method, cs_name, cs.space_dimension()); } void PPL::Polyhedron::throw_dimension_incompatible(const char* method, const char* gs_name, const Generator_System& gs) const { throw_dimension_incompatible(method, gs_name, gs.space_dimension()); } void PPL::Polyhedron::throw_dimension_incompatible(const char* method, const char* cgs_name, const Congruence_System& cgs) const { throw_dimension_incompatible(method, cgs_name, cgs.space_dimension()); } void PPL::Polyhedron::throw_dimension_incompatible(const char* method, const char* var_name, const Variable var) const { std::ostringstream s; s << "PPL::"; if (is_necessarily_closed()) s << "C_"; else s << "NNC_"; s << "Polyhedron::" << method << ":" << std::endl << "this->space_dimension() == " << space_dimension() << ", " << var_name << ".space_dimension() == " << var.space_dimension() << "."; throw std::invalid_argument(s.str()); } void PPL::Polyhedron:: throw_dimension_incompatible(const char* method, dimension_type required_space_dim) const { std::ostringstream s; s << "PPL::"; if (is_necessarily_closed()) s << "C_"; else s << "NNC_"; s << "Polyhedron::" << method << ":" << std::endl << "this->space_dimension() == " << space_dimension() << ", required space dimension == " << required_space_dim << "."; throw std::invalid_argument(s.str()); } void PPL::Polyhedron::throw_space_dimension_overflow(const Topology topol, const char* method, const char* reason) { std::ostringstream s; s << "PPL::"; if (topol == NECESSARILY_CLOSED) s << "C_"; else s << "NNC_"; s << "Polyhedron::" << method << ":" << std::endl << reason << "."; throw std::length_error(s.str()); } void PPL::Polyhedron::throw_invalid_generator(const char* method, const char* g_name) const { std::ostringstream s; s << "PPL::"; if (is_necessarily_closed()) s << "C_"; else s << "NNC_"; s << "Polyhedron::" << method << ":" << std::endl << "*this is an empty polyhedron and " << g_name << " is not a point."; throw std::invalid_argument(s.str()); } void PPL::Polyhedron::throw_invalid_generators(const char* method, const char* gs_name) const { std::ostringstream s; s << "PPL::"; if (is_necessarily_closed()) s << "C_"; else s << "NNC_"; s << "Polyhedron::" << method << ":" << std::endl << "*this is an empty polyhedron and" << std::endl << "the non-empty generator system " << gs_name << " contains no points."; throw std::invalid_argument(s.str()); }