/* Grid_Certificate class implementation (non-inline member functions). Copyright (C) 2001-2010 Roberto Bagnara Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com) This file is part of the Parma Polyhedra Library (PPL). The PPL is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The PPL is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA. For the most up-to-date information see the Parma Polyhedra Library site: http://www.cs.unipr.it/ppl/ . */ #include #include "Grid_Certificate.defs.hh" #include "Grid.defs.hh" #include "assert.hh" #include namespace PPL = Parma_Polyhedra_Library; PPL::Grid_Certificate::Grid_Certificate(const Grid& cgr) : num_equalities(0), num_proper_congruences(0) { Grid& gr = const_cast(cgr); // As in Polyhedron assume that gr contains at least one point. PPL_ASSERT(!gr.marked_empty()); if (gr.space_dimension() == 0) return; // One of the systems must be in minimal form. if (gr.congruences_are_up_to_date()) if (gr.congruences_are_minimized()) { num_proper_congruences = gr.con_sys.num_proper_congruences(); num_equalities = gr.con_sys.num_equalities(); } else if (gr.generators_are_up_to_date() && gr.generators_are_minimized()) { // Calculate number of congruences from generators. num_proper_congruences = gr.gen_sys.num_parameters() + 1 /* Integrality cg. */; num_equalities = gr.space_dimension() + 1 - gr.gen_sys.num_rows(); } else { // Minimize gr congruence system. As in Polyhedron assume // that gr contains at least one point. #ifndef NDEBUG Grid::simplify(gr.con_sys, gr.dim_kinds); #else bool contains_points = Grid::simplify(gr.con_sys, gr.dim_kinds); used(contains_points); // Quiet compiler warning. PPL_ASSERT(contains_points); #endif gr.set_congruences_minimized(); num_proper_congruences = gr.con_sys.num_proper_congruences(); num_equalities = gr.con_sys.num_equalities(); } else { if (!gr.generators_are_minimized()) { // Minimize gr generator system. As in Polyhedron assume that // gr contains at least one point. Grid::simplify(gr.gen_sys, gr.dim_kinds); // If gen_sys contained rows before being reduced, it should // contain at least a single point afterward. PPL_ASSERT(!gr.gen_sys.empty()); gr.set_generators_minimized(); } // Calculate number of congruences from generators. num_proper_congruences = gr.gen_sys.num_parameters() + 1 /* Integrality cg. */; num_equalities = gr.space_dimension() + 1 - gr.gen_sys.num_rows(); } } int PPL::Grid_Certificate::compare(const Grid_Certificate& y) const { PPL_ASSERT(OK() && y.OK()); if (num_equalities == y.num_equalities) { if (num_proper_congruences == y.num_proper_congruences) return 0; else return num_proper_congruences > y.num_proper_congruences ? 1 : -1; } return num_equalities > y.num_equalities ? 1 : -1; } int PPL::Grid_Certificate::compare(const Grid& gr) const { Grid_Certificate gc(gr); return compare(gc); } bool PPL::Grid_Certificate::OK() const { #ifndef NDEBUG using std::endl; using std::cerr; #endif // All tests passed. return true; }