/* Constraint_System class declaration. Copyright (C) 2001-2010 Roberto Bagnara Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com) This file is part of the Parma Polyhedra Library (PPL). The PPL is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The PPL is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA. For the most up-to-date information see the Parma Polyhedra Library site: http://www.cs.unipr.it/ppl/ . */ #ifndef PPL_Constraint_System_defs_hh #define PPL_Constraint_System_defs_hh 1 #include "Constraint_System.types.hh" #include "Linear_Expression.types.hh" #include "Linear_System.defs.hh" #include "Generator.types.hh" #include "Polyhedron.types.hh" #include "Constraint.types.hh" #include "Congruence_System.types.hh" #include #include #include namespace Parma_Polyhedra_Library { namespace IO_Operators { //! Output operator. /*! \relates Parma_Polyhedra_Library::Constraint_System Writes true if \p cs is empty. Otherwise, writes on \p s the constraints of \p cs, all in one row and separated by ", ". */ std::ostream& operator<<(std::ostream& s, const Constraint_System& cs); } // namespace IO_Operators // Put it in the namespace here to declare it friend later. /*! \relates Polyhedron */ bool operator==(const Polyhedron& x, const Polyhedron& y); } // namespace Parma_Polyhedra_Library namespace std { //! Specializes std::swap. /*! \relates Parma_Polyhedra_Library::Constraint_System */ void swap(Parma_Polyhedra_Library::Constraint_System& x, Parma_Polyhedra_Library::Constraint_System& y); } // namespace std //! A system of constraints. /*! \ingroup PPL_CXX_interface An object of the class Constraint_System is a system of constraints, i.e., a multiset of objects of the class Constraint. When inserting constraints in a system, space dimensions are automatically adjusted so that all the constraints in the system are defined on the same vector space. \par In all the examples it is assumed that variables x and y are defined as follows: \code Variable x(0); Variable y(1); \endcode \par Example 1 The following code builds a system of constraints corresponding to a square in \f$\Rset^2\f$: \code Constraint_System cs; cs.insert(x >= 0); cs.insert(x <= 3); cs.insert(y >= 0); cs.insert(y <= 3); \endcode Note that: the constraint system is created with space dimension zero; the first and third constraint insertions increase the space dimension to \f$1\f$ and \f$2\f$, respectively. \par Example 2 By adding four strict inequalities to the constraint system of the previous example, we can remove just the four vertices from the square defined above. \code cs.insert(x + y > 0); cs.insert(x + y < 6); cs.insert(x - y < 3); cs.insert(y - x < 3); \endcode \par Example 3 The following code builds a system of constraints corresponding to a half-strip in \f$\Rset^2\f$: \code Constraint_System cs; cs.insert(x >= 0); cs.insert(x - y <= 0); cs.insert(x - y + 1 >= 0); \endcode \note After inserting a multiset of constraints in a constraint system, there are no guarantees that an exact copy of them can be retrieved: in general, only an equivalent constraint system will be available, where original constraints may have been reordered, removed (if they are trivial, duplicate or implied by other constraints), linearly combined, etc. */ class Parma_Polyhedra_Library::Constraint_System : private Linear_System { public: //! Default constructor: builds an empty system of constraints. Constraint_System(); //! Builds the singleton system containing only constraint \p c. explicit Constraint_System(const Constraint& c); //! Builds a system containing copies of any equalities in \p cgs. explicit Constraint_System(const Congruence_System& cgs); //! Ordinary copy constructor. Constraint_System(const Constraint_System& cs); //! Destructor. ~Constraint_System(); //! Assignment operator. Constraint_System& operator=(const Constraint_System& y); //! Returns the maximum space dimension a Constraint_System can handle. static dimension_type max_space_dimension(); //! Returns the dimension of the vector space enclosing \p *this. dimension_type space_dimension() const; /*! \brief Returns true if and only if \p *this contains one or more equality constraints. */ bool has_equalities() const; /*! \brief Returns true if and only if \p *this contains one or more strict inequality constraints. */ bool has_strict_inequalities() const; /*! \brief Removes all the constraints from the constraint system and sets its space dimension to 0. */ void clear(); /*! \brief Inserts in \p *this a copy of the constraint \p c, increasing the number of space dimensions if needed. */ void insert(const Constraint& c); //! Initializes the class. static void initialize(); //! Finalizes the class. static void finalize(); /*! \brief Returns the singleton system containing only Constraint::zero_dim_false(). */ static const Constraint_System& zero_dim_empty(); //! An iterator over a system of constraints. /*! \ingroup PPL_CXX_interface A const_iterator is used to provide read-only access to each constraint contained in a Constraint_System object. \par Example The following code prints the system of constraints defining the polyhedron ph: \code const Constraint_System& cs = ph.constraints(); for (Constraint_System::const_iterator i = cs.begin(), cs_end = cs.end(); i != cs_end; ++i) cout << *i << endl; \endcode */ class const_iterator : public std::iterator { public: //! Default constructor. const_iterator(); //! Ordinary copy constructor. const_iterator(const const_iterator& y); //! Destructor. ~const_iterator(); //! Assignment operator. const_iterator& operator=(const const_iterator& y); //! Dereference operator. const Constraint& operator*() const; //! Indirect member selector. const Constraint* operator->() const; //! Prefix increment operator. const_iterator& operator++(); //! Postfix increment operator. const_iterator operator++(int); /*! \brief Returns true if and only if \p *this and \p y are identical. */ bool operator==(const const_iterator& y) const; /*! \brief Returns true if and only if \p *this and \p y are different. */ bool operator!=(const const_iterator& y) const; private: friend class Constraint_System; //! The const iterator over the matrix of constraints. Linear_System::const_iterator i; //! A const pointer to the matrix of constraints. const Linear_System* csp; //! Constructor. const_iterator(const Linear_System::const_iterator& iter, const Constraint_System& csys); //! \p *this skips to the next non-trivial constraint. void skip_forward(); }; //! Returns true if and only if \p *this has no constraints. bool empty() const; /*! \brief Returns the const_iterator pointing to the first constraint, if \p *this is not empty; otherwise, returns the past-the-end const_iterator. */ const_iterator begin() const; //! Returns the past-the-end const_iterator. const_iterator end() const; //! Checks if all the invariants are satisfied. #ifdef PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS /*! Returns true if and only if \p *this is a valid Linear_System and each row in the system is a valid Constraint. */ #endif // defined(PPL_DOXYGEN_INCLUDE_IMPLEMENTATION_DETAILS) bool OK() const; PPL_OUTPUT_DECLARATIONS /*! \brief Loads from \p s an ASCII representation (as produced by ascii_dump(std::ostream&) const) and sets \p *this accordingly. Returns true if successful, false otherwise. */ bool ascii_load(std::istream& s); //! Returns the total size in bytes of the memory occupied by \p *this. memory_size_type total_memory_in_bytes() const; //! Returns the size in bytes of the memory managed by \p *this. memory_size_type external_memory_in_bytes() const; //! Swaps \p *this with \p y. void swap(Constraint_System& y); private: /*! \brief Holds (between class initialization and finalization) a pointer to the singleton system containing only Constraint::zero_dim_false(). */ static const Constraint_System* zero_dim_empty_p; friend class const_iterator; friend class Parma_Polyhedra_Library::Polyhedron; friend bool operator==(const Polyhedron& x, const Polyhedron& y); //! Builds an empty system of constraints having the specified topology. explicit Constraint_System(Topology topol); /*! \brief Builds a system of \p n_rows constraints on a \p n_columns - 1 dimensional space (including the \f$\epsilon\f$ dimension, if \p topol is NOT_NECESSARILY_CLOSED). */ Constraint_System(Topology topol, dimension_type n_rows, dimension_type n_columns); /*! \brief Adjusts \p *this so that it matches the topology and the number of space dimensions given as parameters (adding or removing columns if needed). Returns false if and only if \p topol is equal to NECESSARILY_CLOSED and \p *this contains strict inequalities. */ bool adjust_topology_and_space_dimension(Topology topol, dimension_type num_dimensions); //! Returns the \p k- th constraint of the system. Constraint& operator[](dimension_type k); //! Returns a constant reference to the \p k- th constraint of the system. const Constraint& operator[](dimension_type k) const; //! Returns true if \p g satisfies all the constraints. bool satisfies_all_constraints(const Generator& g) const; //! Substitutes a given column of coefficients by a given affine expression. /*! \param v Index of the column to which the affine transformation is substituted. \param expr The numerator of the affine transformation: \f$\sum_{i = 0}^{n - 1} a_i x_i + b\f$; \param denominator The denominator of the affine transformation. We want to allow affine transformations (see Section \ref Images_and_Preimages_of_Affine_Transfer_Relations) having any rational coefficients. Since the coefficients of the constraints are integers we must also provide an integer \p denominator that will be used as denominator of the affine transformation. The denominator is required to be a positive integer. The affine transformation substitutes the matrix of constraints by a new matrix whose elements \f${a'}_{ij}\f$ are built from the old one \f$a_{ij}\f$ as follows: \f[ {a'}_{ij} = \begin{cases} a_{ij} * \mathrm{denominator} + a_{iv} * \mathrm{expr}[j] \quad \text{for } j \neq v; \\ \mathrm{expr}[v] * a_{iv} \quad \text{for } j = v. \end{cases} \f] \p expr is a constant parameter and unaltered by this computation. */ void affine_preimage(dimension_type v, const Linear_Expression& expr, Coefficient_traits::const_reference denominator); //! Returns the number of equality constraints. dimension_type num_equalities() const; //! Returns the number of inequality constraints. dimension_type num_inequalities() const; /*! \brief Applies Gaussian elimination and back-substitution so as to provide a partial simplification of the system of constraints. It is assumed that the system has no pending constraints. */ void simplify(); /*! \brief Inserts in \p *this a copy of the constraint \p c, increasing the number of space dimensions if needed. It is a pending constraint. */ void insert_pending(const Constraint& c); //! Adds low-level constraints to the constraint system. void add_low_level_constraints(); }; // Constraint_System.inlines.hh is not included here on purpose. #endif // !defined(PPL_Constraint_System_defs_hh)