/* Constraint class implementation (non-inline functions). Copyright (C) 2001-2010 Roberto Bagnara Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com) This file is part of the Parma Polyhedra Library (PPL). The PPL is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The PPL is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA. For the most up-to-date information see the Parma Polyhedra Library site: http://www.cs.unipr.it/ppl/ . */ #include #include "Constraint.defs.hh" #include "Variable.defs.hh" #include "Congruence.defs.hh" #include #include #include namespace PPL = Parma_Polyhedra_Library; void PPL::Constraint::throw_invalid_argument(const char* method, const char* message) const { std::ostringstream s; s << "PPL::Constraint::" << method << ":" << std::endl << message; throw std::invalid_argument(s.str()); } void PPL::Constraint::throw_dimension_incompatible(const char* method, const char* name_var, const Variable v) const { std::ostringstream s; s << "PPL::Constraint::" << method << ":" << std::endl << "this->space_dimension() == " << space_dimension() << ", " << name_var << ".space_dimension() == " << v.space_dimension() << "."; throw std::invalid_argument(s.str()); } PPL::Constraint PPL::Constraint::construct_epsilon_geq_zero() { Linear_Expression e = Variable(0); Constraint c(e, NONSTRICT_INEQUALITY, NOT_NECESSARILY_CLOSED); return c; } PPL::Constraint::Constraint(const Congruence& cg) : Linear_Row(cg.is_equality() // Size includes extra column for the inhomogeneous term. ? cg.space_dimension() + 1 : (throw_invalid_argument("Constraint(cg)", "congruence cg must be an equality."), 0), // Capacity also includes a column for the epsilon coefficient. compute_capacity(cg.space_dimension() + 2, Row::max_size()), Flags(NECESSARILY_CLOSED, LINE_OR_EQUALITY)) { Constraint& c = *this; // Copy coefficients and inhomogeneous term. for (dimension_type i = cg.space_dimension() + 1; i-- > 0; ) c[i] = cg[i]; // Enforce normalization. strong_normalize(); } PPL::Constraint::Constraint(const Congruence& cg, dimension_type sz, dimension_type capacity) : Linear_Row(cg.is_equality() ? sz : (throw_invalid_argument("Constraint(cg, sz, c)", "congruence cg must be an equality."), 0), capacity, Flags(NECESSARILY_CLOSED, LINE_OR_EQUALITY)) { Constraint& c = *this; // Copy coefficients. PPL_ASSERT(sz > 0); while (sz-- > 0) c[sz] = cg[sz]; } bool PPL::Constraint::is_tautological() const { PPL_ASSERT(size() > 0); const Constraint& x = *this; if (x.all_homogeneous_terms_are_zero()) if (is_equality()) return x[0] == 0; else // Non-strict inequality constraint. return x[0] >= 0; else // There is a non-zero homogeneous coefficient. if (is_necessarily_closed()) return false; else { // The constraint is NOT necessarily closed. const dimension_type eps_index = size() - 1; const int eps_sign = sgn(x[eps_index]); if (eps_sign > 0) // We have found the constraint epsilon >= 0. return true; if (eps_sign == 0) // One of the `true' dimensions has a non-zero coefficient. return false; else { // Here the epsilon coefficient is negative: strict inequality. if (x[0] <= 0) // A strict inequality such as `lhs - k > 0', // where k is a non negative integer, cannot be trivially true. return false; // Checking for another non-zero coefficient. for (dimension_type i = eps_index; --i > 0; ) if (x[i] != 0) return false; // We have the inequality `k > 0', // where k is a positive integer. return true; } } } bool PPL::Constraint::is_inconsistent() const { PPL_ASSERT(size() > 0); const Constraint& x = *this; if (x.all_homogeneous_terms_are_zero()) // The inhomogeneous term is the only non-zero coefficient. if (is_equality()) return x[0] != 0; else // Non-strict inequality constraint. return x[0] < 0; else // There is a non-zero homogeneous coefficient. if (is_necessarily_closed()) return false; else { // The constraint is NOT necessarily closed. const dimension_type eps_index = size() - 1; if (x[eps_index] >= 0) // If positive, we have found the constraint epsilon >= 0. // If zero, one of the `true' dimensions has a non-zero coefficient. // In both cases, it is not trivially false. return false; else { // Here the epsilon coefficient is negative: strict inequality. if (x[0] > 0) // A strict inequality such as `lhs + k > 0', // where k is a positive integer, cannot be trivially false. return false; // Checking for another non-zero coefficient. for (dimension_type i = eps_index; --i > 0; ) if (x[i] != 0) return false; // We have the inequality `k > 0', // where k is zero or a negative integer. return true; } } } bool PPL::Constraint::is_equivalent_to(const Constraint& y) const { const Constraint& x = *this; const dimension_type x_space_dim = x.space_dimension(); if (x_space_dim != y.space_dimension()) return false; const Type x_type = x.type(); if (x_type != y.type()) { // Check for special cases. if (x.is_tautological()) return y.is_tautological(); else return x.is_inconsistent() && y.is_inconsistent(); } if (x_type == STRICT_INEQUALITY) { // Due to the presence of epsilon-coefficients, syntactically // different strict inequalities may actually encode the same // topologically open half-space. // First, drop the epsilon-coefficient ... Linear_Expression x_expr(x); Linear_Expression y_expr(y); // ... then, re-normalize ... x_expr.normalize(); y_expr.normalize(); // ... and finally check for syntactic equality. for (dimension_type i = x_space_dim + 1; i-- > 0; ) if (x_expr[i] != y_expr[i]) return false; return true; } // `x' and 'y' are of the same type and they are not strict inequalities; // thus, the epsilon-coefficient, if present, is zero. // It is sufficient to check for syntactic equality. for (dimension_type i = x_space_dim + 1; i-- > 0; ) if (x[i] != y[i]) return false; return true; } const PPL::Constraint* PPL::Constraint::zero_dim_false_p = 0; const PPL::Constraint* PPL::Constraint::zero_dim_positivity_p = 0; const PPL::Constraint* PPL::Constraint::epsilon_geq_zero_p = 0; const PPL::Constraint* PPL::Constraint::epsilon_leq_one_p = 0; void PPL::Constraint::initialize() { PPL_ASSERT(zero_dim_false_p == 0); zero_dim_false_p = new Constraint(Linear_Expression::zero() == Coefficient_one()); PPL_ASSERT(zero_dim_positivity_p == 0); zero_dim_positivity_p = new Constraint(Linear_Expression::zero() <= Coefficient_one()); PPL_ASSERT(epsilon_geq_zero_p == 0); epsilon_geq_zero_p = new Constraint(construct_epsilon_geq_zero()); PPL_ASSERT(epsilon_leq_one_p == 0); epsilon_leq_one_p = new Constraint(Linear_Expression::zero() < Coefficient_one()); } void PPL::Constraint::finalize() { PPL_ASSERT(zero_dim_false_p != 0); delete zero_dim_false_p; zero_dim_false_p = 0; PPL_ASSERT(zero_dim_positivity_p != 0); delete zero_dim_positivity_p; zero_dim_positivity_p = 0; PPL_ASSERT(epsilon_geq_zero_p != 0); delete epsilon_geq_zero_p; epsilon_geq_zero_p = 0; PPL_ASSERT(epsilon_leq_one_p != 0); delete epsilon_leq_one_p; epsilon_leq_one_p = 0; } /*! \relates Parma_Polyhedra_Library::Constraint */ std::ostream& PPL::IO_Operators::operator<<(std::ostream& s, const Constraint& c) { const dimension_type num_variables = c.space_dimension(); PPL_DIRTY_TEMP_COEFFICIENT(cv); bool first = true; for (dimension_type v = 0; v < num_variables; ++v) { cv = c.coefficient(Variable(v)); if (cv != 0) { if (!first) { if (cv > 0) s << " + "; else { s << " - "; neg_assign(cv); } } else first = false; if (cv == -1) s << "-"; else if (cv != 1) s << cv << "*"; s << PPL::Variable(v); } } if (first) s << Coefficient_zero(); const char* relation_symbol = 0; switch (c.type()) { case Constraint::EQUALITY: relation_symbol = " = "; break; case Constraint::NONSTRICT_INEQUALITY: relation_symbol = " >= "; break; case Constraint::STRICT_INEQUALITY: relation_symbol = " > "; break; } s << relation_symbol << -c.inhomogeneous_term(); return s; } /*! \relates Parma_Polyhedra_Library::Constraint */ std::ostream& PPL::IO_Operators::operator<<(std::ostream& s, const Constraint::Type& t) { const char* n = 0; switch (t) { case Constraint::EQUALITY: n = "EQUALITY"; break; case Constraint::NONSTRICT_INEQUALITY: n = "NONSTRICT_INEQUALITY"; break; case Constraint::STRICT_INEQUALITY: n = "STRICT_INEQUALITY"; break; } s << n; return s; } PPL_OUTPUT_DEFINITIONS(Constraint) bool PPL::Constraint::OK() const { // Check the underlying Linear_Row object. if (!Linear_Row::OK()) return false; // Topology consistency checks. const dimension_type min_size = is_necessarily_closed() ? 1 : 2; if (size() < min_size) { #ifndef NDEBUG std::cerr << "Constraint has fewer coefficients than the minimum " << "allowed by its topology:" << std::endl << "size is " << size() << ", minimum is " << min_size << "." << std::endl; #endif return false; } if (is_equality() && !is_necessarily_closed() && (*this)[size() - 1] != 0) { #ifndef NDEBUG std::cerr << "Illegal constraint: an equality cannot be strict." << std::endl; #endif return false; } // Normalization check. Constraint tmp = *this; tmp.strong_normalize(); if (tmp != *this) { #ifndef NDEBUG std::cerr << "Constraint is not strongly normalized as it should be." << std::endl; #endif return false; } // All tests passed. return true; }