/* BHRZ03_Certificate class implementation (non-inline member functions). Copyright (C) 2001-2010 Roberto Bagnara Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com) This file is part of the Parma Polyhedra Library (PPL). The PPL is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The PPL is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA. For the most up-to-date information see the Parma Polyhedra Library site: http://www.cs.unipr.it/ppl/ . */ #include #include "BHRZ03_Certificate.defs.hh" #include "Polyhedron.defs.hh" #include "assert.hh" #include namespace PPL = Parma_Polyhedra_Library; PPL::BHRZ03_Certificate::BHRZ03_Certificate(const Polyhedron& ph) : affine_dim(0), lin_space_dim(0), num_constraints(0), num_points(0), num_rays_null_coord(ph.space_dimension(), 0) { // TODO: provide a correct and reasonably efficient // implementation for NNC polyhedra. // The computation of the certificate requires both the // constraint and the generator systems in minimal form. ph.minimize(); // It is assumed that `ph' is not an empty polyhedron. PPL_ASSERT(!ph.marked_empty()); // The dimension of the polyhedron is obtained by subtracting // the number of equalities from the space dimension. // When counting constraints, for a correct reasoning, we have // to disregard the low-level constraints (i.e., the positivity // constraint and epsilon bounds). const dimension_type space_dim = ph.space_dimension(); affine_dim = space_dim; PPL_ASSERT(num_constraints == 0); const Constraint_System& cs = ph.minimized_constraints(); for (Constraint_System::const_iterator i = cs.begin(), cs_end = cs.end(); i != cs_end; ++i) { ++num_constraints; if (i->is_equality()) --affine_dim; } PPL_ASSERT(lin_space_dim == 0); PPL_ASSERT(num_points == 0); const Generator_System& gs = ph.minimized_generators(); for (Generator_System::const_iterator i = gs.begin(), gs_end = gs.end(); i != gs_end; ++i) switch (i->type()) { case Generator::POINT: // Intentionally fall through. case Generator::CLOSURE_POINT: ++num_points; break; case Generator::RAY: // For each i such that 0 <= j < space_dim, // `num_rays_null_coord[j]' will be the number of rays // having exactly `j' coordinates equal to 0. { const Generator& r = *i; dimension_type num_zeroes = 0; for (dimension_type j = space_dim; j-- > 0; ) if (r.coefficient(Variable(j)) == 0) ++num_zeroes; ++num_rays_null_coord[num_zeroes]; } break; case Generator::LINE: // Since the generator systems is minimized, the dimension of // the lineality space is equal to the number of lines. ++lin_space_dim; break; } PPL_ASSERT(OK()); // TODO: this is an inefficient workaround. // For NNC polyhedra, constraints might be no longer up-to-date // (and hence, neither minimized) due to the strong minimization // process applied to generators when constructing the certificate. // We have to reinforce the (normal) minimization of the constraint // system. The future, lazy implementation of the strong minimization // process will solve this problem. if (!ph.is_necessarily_closed()) ph.minimize(); } int PPL::BHRZ03_Certificate::compare(const BHRZ03_Certificate& y) const { PPL_ASSERT(OK() && y.OK()); if (affine_dim != y.affine_dim) return affine_dim > y.affine_dim ? 1 : -1; if (lin_space_dim != y.lin_space_dim) return lin_space_dim > y.lin_space_dim ? 1 : -1; if (num_constraints != y.num_constraints) return num_constraints > y.num_constraints ? 1 : -1; if (num_points != y.num_points) return num_points > y.num_points ? 1 : -1; const dimension_type space_dim = num_rays_null_coord.size(); PPL_ASSERT(num_rays_null_coord.size() == y.num_rays_null_coord.size()); // Note: iterating upwards, because we have to check first // the number of rays having more NON-zero coordinates. for (dimension_type i = 0; i < space_dim; i++) if (num_rays_null_coord[i] != y.num_rays_null_coord[i]) return num_rays_null_coord[i] > y.num_rays_null_coord[i] ? 1 : -1; // All components are equal. return 0; } int PPL::BHRZ03_Certificate::compare(const Polyhedron& ph) const { PPL_ASSERT(ph.space_dimension() == num_rays_null_coord.size()); // TODO: provide a correct and reasonably efficient // implementation for NNC polyhedra. // The computation of the certificate requires both the // constraint and the generator systems in minimal form. ph.minimize(); // It is assumed that `ph' is a polyhedron containing the // polyhedron described by `*this': hence, it cannot be empty. PPL_ASSERT(!ph.marked_empty()); // The dimension of the polyhedron is obtained by subtracting // the number of equalities from the space dimension. // When counting constraints, for a correct reasoning, we have // to disregard the low-level constraints (i.e., the positivity // constraint and epsilon bounds). const dimension_type space_dim = ph.space_dimension(); dimension_type ph_affine_dim = space_dim; dimension_type ph_num_constraints = 0; const Constraint_System& cs = ph.minimized_constraints(); for (Constraint_System::const_iterator i = cs.begin(), cs_end = cs.end(); i != cs_end; ++i) { ++ph_num_constraints; if (i->is_equality()) --ph_affine_dim; } // TODO: this is an inefficient workaround. // For NNC polyhedra, constraints might be no longer up-to-date // (and hence, neither minimized) due to the strong minimization // process applied to generators when constructing the certificate. // We have to reinforce the (normal) minimization of the constraint // system. The future, lazy implementation of the strong minimization // process will solve this problem. if (!ph.is_necessarily_closed()) ph.minimize(); // If the dimension of `ph' is increasing, the chain is stabilizing. if (ph_affine_dim > affine_dim) return 1; // At this point the two polyhedra must have the same dimension. PPL_ASSERT(ph_affine_dim == affine_dim); // Speculative optimization: in order to better exploit the incrementality // of the comparison, we do not compute information about rays here, // hoping that the other components will be enough. dimension_type ph_lin_space_dim = 0; dimension_type ph_num_points = 0; const Generator_System& gs = ph.minimized_generators(); for (Generator_System::const_iterator i = gs.begin(), gs_end = gs.end(); i != gs_end; ++i) switch (i->type()) { case Generator::POINT: // Intentionally fall through. case Generator::CLOSURE_POINT: ++ph_num_points; break; case Generator::RAY: break; case Generator::LINE: // Since the generator systems is minimized, the dimension of // the lineality space is equal to the number of lines. ++ph_lin_space_dim; break; } // TODO: this is an inefficient workaround. // For NNC polyhedra, constraints might be no longer up-to-date // (and hence, neither minimized) due to the strong minimization // process applied to generators when constructing the certificate. // We have to reinforce the (normal) minimization of the constraint // system. The future, lazy implementation of the strong minimization // process will solve this problem. if (!ph.is_necessarily_closed()) ph.minimize(); // If the dimension of the lineality space is increasing, // then the chain is stabilizing. if (ph_lin_space_dim > lin_space_dim) return 1; // At this point the lineality space of the two polyhedra must have // the same dimension. PPL_ASSERT(ph_lin_space_dim == lin_space_dim); // If the number of constraints of `ph' is decreasing, then the chain // is stabilizing. If it is increasing, the chain is not stabilizing. // If they are equal, further investigation is needed. if (ph_num_constraints != num_constraints) return ph_num_constraints < num_constraints ? 1 : -1; // If the number of points of `ph' is decreasing, then the chain // is stabilizing. If it is increasing, the chain is not stabilizing. // If they are equal, further investigation is needed. if (ph_num_points != num_points) return ph_num_points < num_points ? 1 : -1; // The speculative optimization was not worth: // compute information about rays. std::vector ph_num_rays_null_coord(ph.space_dim, 0); for (Generator_System::const_iterator i = gs.begin(), gs_end = gs.end(); i != gs_end; ++i) if (i->is_ray()) { const Generator& r = *i; dimension_type num_zeroes = 0; for (dimension_type j = space_dim; j-- > 0; ) if (r.coefficient(Variable(j)) == 0) ++num_zeroes; ++ph_num_rays_null_coord[num_zeroes]; } // Compare (lexicographically) the two vectors: // if ph_num_rays_null_coord < num_rays_null_coord the chain is stabilizing. for (dimension_type i = 0; i < space_dim; i++) if (ph_num_rays_null_coord[i] != num_rays_null_coord[i]) return ph_num_rays_null_coord[i] < num_rays_null_coord[i] ? 1 : -1; // All components are equal. return 0; } bool PPL::BHRZ03_Certificate::OK() const { #ifndef NDEBUG using std::endl; using std::cerr; #endif // The dimension of the vector space. const dimension_type space_dim = num_rays_null_coord.size(); if (affine_dim > space_dim) { #ifndef NDEBUG cerr << "In the BHRZ03 certificate about a non-empty polyhedron:" << endl << "the affine dimension is greater than the space dimension!" << endl; #endif return false; } if (lin_space_dim > affine_dim) { #ifndef NDEBUG cerr << "In the BHRZ03 certificate about a non-empty polyhedron:" << endl << "the lineality space dimension is greater than " << "the affine dimension!" << endl; #endif return false; } if (num_constraints < space_dim - affine_dim) { #ifndef NDEBUG cerr << "In the BHRZ03 certificate about a non-empty polyhedron:" << endl << "in a vector space of dimension `n'," << "any polyhedron of affine dimension `k'" << endl << "should have `n-k' non-redundant constraints at least." << endl << "Here space_dim = " << space_dim << ", " << "affine_dim = " << affine_dim << ", " << "but num_constraints = " << num_constraints << "!" << endl; #endif return false; } if (num_points == 0) { #ifndef NDEBUG cerr << "In the BHRZ03 certificate about a non-empty polyhedron:" << endl << "the generator system has no points!" << endl; #endif return false; } if (lin_space_dim == space_dim) { // This was a universe polyhedron. if (num_constraints > 0) { #ifndef NDEBUG cerr << "In the BHRZ03 certificate about a non-empty polyhedron:" << endl << "a universe polyhedron has non-redundant constraints!" << endl; #endif return false; } if (num_points != 1) { #ifndef NDEBUG cerr << "In the BHRZ03 certificate about a non-empty polyhedron:" << endl << "a universe polyhedron has more than one non-redundant point!" << endl; #endif return false; } } // All tests passed. return true; }