diff options
Diffstat (limited to 'doc/definitions.dox')
-rw-r--r-- | doc/definitions.dox | 39 |
1 files changed, 21 insertions, 18 deletions
diff --git a/doc/definitions.dox b/doc/definitions.dox index 1594a9d28..b5c600777 100644 --- a/doc/definitions.dox +++ b/doc/definitions.dox @@ -530,7 +530,7 @@ One possibility for precisely approximating the semantics of programs that operate on bounded integer variables is to follow the approach described in \ref SK07 "[SK07]". The idea is to associate space dimensions to the <EM>unwrapped values</EM> of bounded variables. Suppose <CODE>j</CODE> -is a \f$w\textrm{-bit}\f$, unsigned program variable associated to a space +is a \f$w\textrm{-bit}\f$, unsigned program variable associated to a space dimension labeled by the variable \f$x\f$. If \f$x\f$ is constrained by some numerical abstraction to take values in a set \f$S \sseq \Rset\f$, then @@ -1483,25 +1483,25 @@ is defined as \f] \subsection affine_form_relation Affine Form Relations. -Let \f$\mathbb{F}_{\mathrm{f}}\f$ be the set of floating point numbers -representables in a certain -format \f$\mathrm{f}\f$ and let \f$\mathbb{I}_\mathrm{f}\f$ be the set of +Let \f$\mathbb{F}_{\mathrm{f}}\f$ be the set of floating point numbers +representables in a certain +format \f$\mathrm{f}\f$ and let \f$\mathbb{I}_\mathrm{f}\f$ be the set of real intervals with bounds in \f$\mathbb{F}_{\mathrm{f}}\f$. -We can define a <EM>floating-point interval linear form</EM> +We can define a <EM>floating-point interval linear form</EM> \f$\langle\vect{\alpha}, \vect{x}\rangle - + \beta\f$ + + \beta\f$ as: - \f[\left<\vect{\alpha}, \vect{x}\right> + \beta = - \alpha_0x_0 + \ldots + + \f[\left<\vect{\alpha}, \vect{x}\right> + \beta = + \alpha_0x_0 + \ldots + \alpha_{n-1}x_{n-1} + \beta,\f] -where \f$\beta\f$, \f$\vect{\alpha}_k \in \mathbb{I}_{\mathrm{f}}\f$ -for each \f$k = 0, \ldots, n - 1\f$. +where \f$\beta\f$, \f$\vect{\alpha}_k \in \mathbb{I}_{\mathrm{f}}\f$ +for each \f$k = 0, \ldots, n - 1\f$. -Given a such linear form \f$\mathrm{lf}\f$ and a primed variable \f$x'_k\f$ the -<EM>affine form image</EM> operator computes the bounded affine image of a +Given a such linear form \f$\mathrm{lf}\f$ and a primed variable \f$x'_k\f$ the +<EM>affine form image</EM> operator computes the bounded affine image of a polyhedron \f$\cP\f$ under \f$\mathrm{lb} \leq x'_k \leq \mathrm{ub}\f$, where -\f$\mathrm{lb}\f$ and \f$\mathrm{ub}\f$ are the upper and lower bound +\f$\mathrm{lb}\f$ and \f$\mathrm{ub}\f$ are the upper and lower bound of \f$\mathrm{lf}\f$ respectively. \subsection Generalized_Affine_Relations Generalized Affine Relations. @@ -1585,15 +1585,18 @@ Note that the above set might not be an NNC polyhedron. \subsection Positive_Time_Elapse_Operator Positive Time-Elapse Operator -The <EM>positive time-elapse</EM> operator has been defined in \ref BFM11 "[BFM11," -\ref BFM12 "BFM12]". +The <EM>positive time-elapse</EM> operator has been defined in +\ref BFM11 "[BFM11,BFM12]". The operator provided by the library works on NNC polyhedra. For any two NNC polyhedra \f$\cP, \cQ \in \Pset_n\f$, the positive time-elapse between \f$\cP\f$ and \f$\cQ\f$, denoted \f$ \cP \nearrow_{>0} \cQ\f$, is the NNC polyhedron containing exactly the set -\f[ -\bigl\{\, \vect{p} + \lambda \vect{q} \in \Rset^n \bigm| \vect{p} -\in \cP, \vect{q} \in \cQ, \lambda \in \Rset^{>0} \,\bigr\}, +\f[ + \bigl\{\, + \vect{p} + \lambda \vect{q} \in \Rset^n + \bigm| + \vect{p} \in \cP, \vect{q} \in \cQ, \lambda \in \Rset^{>0} + \,\bigr\}, \f] where \f$\Rset^{>0}\f$ denotes the set of strictly positive reals. Notice that, differently from the case of the time-elapse |