diff options
author | Roberto Bagnara <bagnara@cs.unipr.it> | 2012-03-09 18:57:39 +0100 |
---|---|---|
committer | Roberto Bagnara <bagnara@cs.unipr.it> | 2012-03-09 18:57:39 +0100 |
commit | 9c44e7ac3e0247d174ddfa43ebbe4a77c55f3adc (patch) | |
tree | a494fb9343abec5368659aaa4353e0bca459d68a | |
parent | bfe9db5473e2d4958bebb4cc28380a46ecbd6967 (diff) | |
download | ppl-9c44e7ac3e0247d174ddfa43ebbe4a77c55f3adc.tar.gz ppl-9c44e7ac3e0247d174ddfa43ebbe4a77c55f3adc.tar.bz2 ppl-9c44e7ac3e0247d174ddfa43ebbe4a77c55f3adc.zip |
Do use the notation "[l, u]" to denote the closed interval with boundaries `l' and `u'.
-rw-r--r-- | src/BD_Shape.templates.hh | 24 | ||||
-rw-r--r-- | src/Cast_Floating_Point_Expression.defs.hh | 2 | ||||
-rw-r--r-- | src/Constant_Floating_Point_Expression.defs.hh | 2 | ||||
-rw-r--r-- | src/Difference_Floating_Point_Expression.defs.hh | 2 | ||||
-rw-r--r-- | src/Division_Floating_Point_Expression.defs.hh | 12 | ||||
-rw-r--r-- | src/Float.defs.hh | 2 | ||||
-rw-r--r-- | src/Floating_Point_Expression.defs.hh | 10 | ||||
-rw-r--r-- | src/Linear_Form.defs.hh | 6 | ||||
-rw-r--r-- | src/Multiplication_Floating_Point_Expression.defs.hh | 20 | ||||
-rw-r--r-- | src/Octagonal_Shape.templates.hh | 38 | ||||
-rw-r--r-- | src/Sum_Floating_Point_Expression.defs.hh | 2 | ||||
-rw-r--r-- | src/Variable_Floating_Point_Expression.defs.hh | 2 | ||||
-rw-r--r-- | src/linearize.hh | 36 |
13 files changed, 79 insertions, 79 deletions
diff --git a/src/BD_Shape.templates.hh b/src/BD_Shape.templates.hh index f9f517a77..22d719bb8 100644 --- a/src/BD_Shape.templates.hh +++ b/src/BD_Shape.templates.hh @@ -4255,7 +4255,7 @@ void BD_Shape<T> if (w_id == var_id) { // True if `b' is in [b_mlb, b_ub] and that is [0, 0]. bool is_b_zero = (b_mlb == 0 && b_ub == 0); - // Here `lf' is of the form: [+/-1;+/-1] * v + b. + // Here `lf' is of the form: [+/-1, +/-1] * v + b. if (is_w_coeff_one) { if (is_b_zero) // The transformation is the identity function. @@ -4274,7 +4274,7 @@ void BD_Shape<T> } } else { - // Here `w_coeff = [-1;-1]. + // Here `w_coeff = [-1, -1]. // Remove the binary constraints on `var'. forget_binary_dbm_constraints(var_id); using std::swap; @@ -4293,7 +4293,7 @@ void BD_Shape<T> } else { // Here `w != var', so that `lf' is of the form - // [+/-1;+/-1] * w + b. + // [+/-1, +/-1] * w + b. // Remove all constraints on `var'. forget_all_dbm_constraints(var_id); // Shortest-path closure is preserved, but not reduction. @@ -4328,7 +4328,7 @@ void BD_Shape<T> // General case. // Either t == 2, so that // lf == i_1*x_1 + i_2*x_2 + ... + i_n*x_n + b, where n >= 2, -// or t == 1, lf == i*w + b, but i <> [+/-1;+/-1]. +// or t == 1, lf == i*w + b, but i <> [+/-1, +/-1]. template <typename T> template <typename Interval_Info> void BD_Shape<T> @@ -4514,8 +4514,8 @@ BD_Shape<T>::left_inhomogeneous_refine(const dimension_type& right_t, typedef Interval<T, Interval_Info> FP_Interval_Type; if (right_t == 1) { - // The constraint has the form [a-;a+] <= [b-;b+] + [c-;c+] * x. - // Reduce it to the constraint +/-x <= b+ - a- if [c-;c+] = +/-[1;1]. + // The constraint has the form [a-, a+] <= [b-, b+] + [c-, c+] * x. + // Reduce it to the constraint +/-x <= b+ - a- if [c-, c+] = +/-[1, 1]. const FP_Interval_Type& right_w_coeff = right.coefficient(Variable(right_w_id)); if (right_w_coeff == 1) { @@ -4554,8 +4554,8 @@ BD_Shape<T> typedef Interval<T, Interval_Info> FP_Interval_Type; if (right_t == 0) { - // The constraint has the form [b-;b+] + [c-;c+] * x <= [a-;a+] - // Reduce it to the constraint +/-x <= a+ - b- if [c-;c+] = +/-[1;1]. + // The constraint has the form [b-, b+] + [c-, c+] * x <= [a-, a+] + // Reduce it to the constraint +/-x <= a+ - b- if [c-, c+] = +/-[1, 1]. const FP_Interval_Type& left_w_coeff = left.coefficient(Variable(left_w_id)); @@ -4580,10 +4580,10 @@ BD_Shape<T> } } else if (right_t == 1) { - // The constraint has the form: - // [a-;a+] + [b-;b+] * x <= [c-;c+] + [d-;d+] * y. + // The constraint has the form + // [a-, a+] + [b-, b+] * x <= [c-, c+] + [d-, d+] * y. // Reduce it to the constraint +/-x +/-y <= c+ - a- - // if [b-;b+] = +/-[1;1] and [d-;d+] = +/-[1;1]. + // if [b-, b+] = +/-[1, 1] and [d-, d+] = +/-[1, 1]. const FP_Interval_Type& left_w_coeff = left.coefficient(Variable(left_w_id)); @@ -4844,7 +4844,7 @@ linear_form_upper_bound(const Linear_Form< Interval<T, Interval_Info> >& lf, if (curr_lb != 0 || curr_ub != 0) { assign_r(curr_var_ub, dbm[0][n_var], ROUND_NOT_NEEDED); neg_assign_r(curr_minus_var_ub, dbm[n_var][0], ROUND_NOT_NEEDED); - // Optimize the most commons cases: curr = +/-[1;1] + // Optimize the most commons cases: curr = +/-[1, 1]. if (curr_lb == 1 && curr_ub == 1) { add_assign_r(result, result, std::max(curr_var_ub, curr_minus_var_ub), ROUND_UP); diff --git a/src/Cast_Floating_Point_Expression.defs.hh b/src/Cast_Floating_Point_Expression.defs.hh index cc171e9db..bb5186177 100644 --- a/src/Cast_Floating_Point_Expression.defs.hh +++ b/src/Cast_Floating_Point_Expression.defs.hh @@ -79,7 +79,7 @@ swap(Cast_Floating_Point_Expression<FP_Interval_Type, FP_Format>& x, \varepsilon_{\mathbf{f}}\left(\linexprenv{e}{\rho^{\#}}{\rho^{\#}_l} \right) \aslf - mf_{\mathbf{f}}[-1;1] + mf_{\mathbf{f}}[-1, 1] \f] where \f$\varepsilon_{\mathbf{f}}(l)\f$ is the linear form computed by calling method <CODE>Floating_Point_Expression::relative_error</CODE> diff --git a/src/Constant_Floating_Point_Expression.defs.hh b/src/Constant_Floating_Point_Expression.defs.hh index 4726aaba0..7dfa8b4ba 100644 --- a/src/Constant_Floating_Point_Expression.defs.hh +++ b/src/Constant_Floating_Point_Expression.defs.hh @@ -54,7 +54,7 @@ void swap(Constant_Floating_Point_Expression<FP_Interval_Type, FP_Format>& x, The linearization of a constant floating point expression results in a linear form consisting of only the inhomogeneous term - \f$\left[ l;u \right]\f$, where \f$l\f$ and \f$u\f$ are the lower + \f$[l, u]\f$, where \f$l\f$ and \f$u\f$ are the lower and upper bounds of the constant value given to the class constructor. */ template <typename FP_Interval_Type, typename FP_Format> diff --git a/src/Difference_Floating_Point_Expression.defs.hh b/src/Difference_Floating_Point_Expression.defs.hh index e49188ac6..00cfa2457 100644 --- a/src/Difference_Floating_Point_Expression.defs.hh +++ b/src/Difference_Floating_Point_Expression.defs.hh @@ -90,7 +90,7 @@ swap(Difference_Floating_Point_Expression<FP_Interval_Type, FP_Format>& x, \varepsilon_{\mathbf{f}}\left(\linexprenv{e_{2}}{\rho^{\#}}{\rho^{\#}_l} \right) \aslf - mf_{\mathbf{f}}[-1;1] + mf_{\mathbf{f}}[-1, 1] \f] where \f$\varepsilon_{\mathbf{f}}(l)\f$ is the linear form computed by calling method <CODE>Floating_Point_Expression::relative_error</CODE> diff --git a/src/Division_Floating_Point_Expression.defs.hh b/src/Division_Floating_Point_Expression.defs.hh index 5caba4ce9..623b9e67e 100644 --- a/src/Division_Floating_Point_Expression.defs.hh +++ b/src/Division_Floating_Point_Expression.defs.hh @@ -72,28 +72,28 @@ void swap(Division_Floating_Point_Expression<FP_Interval_Type, FP_Format>& x, \left(i \adivifp i'\right) + \sum_{v \in \cV}\left(i_{v} \adivifp i'\right)v. \f] - Given an expression \f$e_{1} \oslash [a;b]\f$ and a composite + Given an expression \f$e_{1} \oslash [a, b]\f$ and a composite abstract store \f$\left \llbracket \rho^{\#}, \rho^{\#}_l \right \rrbracket\f$, we construct the interval linear form \f$ - \linexprenv{e_{1} \oslash [a;b]}{\rho^{\#}}{\rho^{\#}_l} + \linexprenv{e_{1} \oslash [a, b]}{\rho^{\#}}{\rho^{\#}_l} \f$ as follows: \f[ - \linexprenv{e_{1} \oslash [a;b]}{\rho^{\#}}{\rho^{\#}_l} + \linexprenv{e_{1} \oslash [a, b]}{\rho^{\#}}{\rho^{\#}_l} = \left(\linexprenv{e_{1}}{\rho^{\#}}{\rho^{\#}_l} \adivlf - [a;b]\right) + [a, b]\right) \aslf \left(\varepsilon_{\mathbf{f}}\left( \linexprenv{e_{1}}{\rho^{\#}}{\rho^{\#}_l} \right) \adivlf - [a;b]\right) + [a, b]\right) \aslf - mf_{\mathbf{f}}[-1;1], + mf_{\mathbf{f}}[-1, 1], \f] given an expression \f$e_{1} \oslash e_{2}\f$ and a composite abstract store \f$\left \llbracket \rho^{\#}, \rho^{\#}_l \right diff --git a/src/Float.defs.hh b/src/Float.defs.hh index 9d177c47d..5a3c54d6e 100644 --- a/src/Float.defs.hh +++ b/src/Float.defs.hh @@ -468,7 +468,7 @@ bool is_less_precise_than(Floating_Point_Format f1, Floating_Point_Format f2); \param analyzed_format The floating point format used by the analyzed program. - \return The interval \f$[-\omega; \omega]\f$ where \f$\omega\f$ is the + \return The interval \f$[-\omega, \omega]\f$ where \f$\omega\f$ is the smallest non-zero positive number in the less precise floating point format between the analyzer format and the analyzed format. */ diff --git a/src/Floating_Point_Expression.defs.hh b/src/Floating_Point_Expression.defs.hh index 7250089a5..1ed58c533 100644 --- a/src/Floating_Point_Expression.defs.hh +++ b/src/Floating_Point_Expression.defs.hh @@ -119,7 +119,7 @@ public: /*! \brief Absolute error. - Represents the interval \f$[-\omega; \omega]\f$ where \f$\omega\f$ is the + Represents the interval \f$[-\omega, \omega]\f$ where \f$\omega\f$ is the smallest non-zero positive number in the less precise floating point format between the analyzer format and the analyzed format. @@ -150,13 +150,13 @@ public: on the linear form \p lf. This function is defined such as: \f[ - \varepsilon_{\mathbf{f}}\left([a;b]+\sum_{v \in \cV}[a_{v};b_{v}]v\right) + \varepsilon_{\mathbf{f}}\left([a, b]+\sum_{v \in \cV}[a_{v}, b_{v}]v\right) \defeq - (\textrm{max}(|a|,|b|) \amifp [-\beta^{-\textrm{p}};\beta^{-\textrm{p}}]) + (\textrm{max}(|a|, |b|) \amifp [-\beta^{-\textrm{p}}, \beta^{-\textrm{p}}]) + \sum_{v \in \cV}(\textrm{max}(|a_{v}|,|b_{v}|) \amifp - [-\beta^{-\textrm{p}};\beta^{-\textrm{p}}])v + [-\beta^{-\textrm{p}}, \beta^{-\textrm{p}}])v \f] where p is the fraction size in bits for the format \f$\mathbf{f}\f$ and \f$\beta\f$ the base. @@ -193,7 +193,7 @@ private: Static helper method that is used to compute the value of the public static field <CODE>absolute_error</CODE>. - \return The interval \f$[-\omega; \omega]\f$ corresponding to the value + \return The interval \f$[-\omega, \omega]\f$ corresponding to the value of <CODE>absolute_error</CODE> */ static FP_Interval_Type compute_absolute_error(); diff --git a/src/Linear_Form.defs.hh b/src/Linear_Form.defs.hh index 8c10b71e3..ec64ef7d5 100644 --- a/src/Linear_Form.defs.hh +++ b/src/Linear_Form.defs.hh @@ -348,13 +348,13 @@ public: obtained by evaluating the function \f$\varepsilon_{\mathbf{f}}(l)\f$ on the linear form. This function is defined as: \f[ - \varepsilon_{\mathbf{f}}\left([a;b]+\sum_{v \in \cV}[a_{v};b_{v}]v\right) + \varepsilon_{\mathbf{f}}\left([a, b]+\sum_{v \in \cV}[a_{v}, b_{v}]v\right) \defeq - (\textrm{max}(|a|,|b|) \amifp [-\beta^{-\textrm{p}};\beta^{-\textrm{p}}]) + (\textrm{max}(|a|, |b|) \amifp [-\beta^{-\textrm{p}}, \beta^{-\textrm{p}}]) + \sum_{v \in \cV}(\textrm{max}(|a_{v}|,|b_{v}|) \amifp - [-\beta^{-\textrm{p}};\beta^{-\textrm{p}}])v + [-\beta^{-\textrm{p}}, \beta^{-\textrm{p}}])v \f] where p is the fraction size in bits for the format \f$\mathbf{f}\f$ and \f$\beta\f$ the base. diff --git a/src/Multiplication_Floating_Point_Expression.defs.hh b/src/Multiplication_Floating_Point_Expression.defs.hh index f5b744b2b..fde4c27eb 100644 --- a/src/Multiplication_Floating_Point_Expression.defs.hh +++ b/src/Multiplication_Floating_Point_Expression.defs.hh @@ -73,35 +73,35 @@ swap(Multiplication_Floating_Point_Expression<FP_Interval_Type, FP_Format>& x, \left(i \amifp i'\right) + \sum_{v \in \cV}\left(i \amifp i'_{v}\right)v. \f] - Given an expression \f$[a;b] \otimes e_{2}\f$ and a composite + Given an expression \f$[a, b] \otimes e_{2}\f$ and a composite abstract store \f$\left \llbracket \rho^{\#}, \rho^{\#}_l \right \rrbracket\f$, we construct the interval linear form - \f$\linexprenv{[a;b] \otimes e_{2}}{\rho^{\#}}{\rho^{\#}_l}\f$ + \f$\linexprenv{[a, b] \otimes e_{2}}{\rho^{\#}}{\rho^{\#}_l}\f$ as follows: \f[ - \linexprenv{[a;b] \otimes e_{2}}{\rho^{\#}}{\rho^{\#}_l} + \linexprenv{[a, b] \otimes e_{2}}{\rho^{\#}}{\rho^{\#}_l} = - \left([a;b] + \left([a, b] \amlf \linexprenv{e_{2}}{\rho^{\#}}{\rho^{\#}_l}\right) \aslf - \left([a;b] + \left([a, b] \amlf \varepsilon_{\mathbf{f}}\left(\linexprenv{e_{2}}{\rho^{\#}}{\rho^{\#}_l} \right)\right) \aslf - mf_{\mathbf{f}}[-1;1]. + mf_{\mathbf{f}}[-1, 1]. \f]. - Given an expression \f$e_{1} \otimes [a;b]\f$ and a composite + Given an expression \f$e_{1} \otimes [a, b]\f$ and a composite abstract store \f$\left \llbracket \rho^{\#}, \rho^{\#}_l \right \rrbracket\f$, we construct the interval linear form - \f$\linexprenv{e_{1} \otimes [a;b]}{\rho^{\#}}{\rho^{\#}_l}\f$ + \f$\linexprenv{e_{1} \otimes [a, b]}{\rho^{\#}}{\rho^{\#}_l}\f$ as follows: \f[ - \linexprenv{e_{1} \otimes [a;b]}{\rho^{\#}}{\rho^{\#}_l} + \linexprenv{e_{1} \otimes [a, b]}{\rho^{\#}}{\rho^{\#}_l} = - \linexprenv{[a;b] \otimes e_{1}}{\rho^{\#}}{\rho^{\#}_l}. + \linexprenv{[a, b] \otimes e_{1}}{\rho^{\#}}{\rho^{\#}_l}. \f] Given an expression \f$e_{1} \otimes e_{2}\f$ and a composite diff --git a/src/Octagonal_Shape.templates.hh b/src/Octagonal_Shape.templates.hh index 11da999de..1544ab9b5 100644 --- a/src/Octagonal_Shape.templates.hh +++ b/src/Octagonal_Shape.templates.hh @@ -557,8 +557,8 @@ Octagonal_Shape<T>::refine_with_linear_form_inequality( } if (right_t == 1) { - // The constraint has the form [a-;a+] <= [b-;b+] + [c-;c+] * x. - // Reduce it to the constraint +/-x <= b+ - a- if [c-;c+] = +/-[1;1]. + // The constraint has the form [a-, a+] <= [b-, b+] + [c-, c+] * x. + // Reduce it to the constraint +/-x <= b+ - a- if [c-, c+] = +/-[1, 1]. const FP_Interval_Type& right_w_coeff = right.coefficient(Variable(right_w_id)); if (right_w_coeff == 1) { @@ -592,8 +592,8 @@ Octagonal_Shape<T>::refine_with_linear_form_inequality( } else if (left_t == 1) { if (right_t == 0) { - // The constraint has the form [b-;b+] + [c-;c+] * x <= [a-;a+] - // Reduce it to the constraint +/-x <= a+ - b- if [c-;c+] = +/-[1;1]. + // The constraint has the form [b-, b+] + [c-, c+] * x <= [a-, a+] + // Reduce it to the constraint +/-x <= a+ - b- if [c-, c+] = +/-[1, 1]. const FP_Interval_Type& left_w_coeff = left.coefficient(Variable(left_w_id)); if (left_w_coeff == 1) { @@ -626,10 +626,10 @@ Octagonal_Shape<T>::refine_with_linear_form_inequality( } if (right_t == 1) { - // The constraint has the form: - // [a-;a+] + [b-;b+] * x <= [c-;c+] + [d-;d+] * y. + // The constraint has the form + // [a-, a+] + [b-, b+] * x <= [c-, c+] + [d-, d+] * y. // Reduce it to the constraint +/-x +/-y <= c+ - a- - // if [b-;b+] = +/-[1;1] and [d-;d+] = +/-[1;1]. + // if [b-, b+] = +/-[1, 1] and [d-, d+] = +/-[1, 1]. const FP_Interval_Type& left_w_coeff = left.coefficient(Variable(left_w_id)); const FP_Interval_Type& right_w_coeff = @@ -2131,8 +2131,8 @@ Octagonal_Shape<T>::relation_with(const Generator& g) const { : g.coefficient(x); if (is_additive_inverse(m_i_ii, m_ii_i)) { // The constraint has form ax = b. - // To satisfy the constraint it's necessary that the scalar product - // is not zero. The scalar product has the form: + // To satisfy the constraint it is necessary that the scalar product + // is not zero. The scalar product has the form // 'denom * g_coeff_x - numer * g.divisor()'. numer_denom(m_ii_i, numer, denom); denom *= 2; @@ -2166,7 +2166,7 @@ Octagonal_Shape<T>::relation_with(const Generator& g) const { else // If the generator is not a line it's necessary to check // that the scalar product sign is not positive and the scalar - // product has the form: + // product has the form // '-denom * g.coeff_x - numer * g.divisor()'. if (product > 0) return Poly_Gen_Relation::nothing(); @@ -2187,7 +2187,7 @@ Octagonal_Shape<T>::relation_with(const Generator& g) const { else // If the generator is not a line it's necessary to check // that the scalar product sign is not positive and the scalar - // product has the form: + // product has the form // 'denom * g_coeff_x - numer * g.divisor()'. if (product > 0) return Poly_Gen_Relation::nothing(); @@ -5227,8 +5227,8 @@ Octagonal_Shape<T>::affine_form_image(const Variable var, // `w' is the variable with index `w_id'. // Now we know the form of `lf': - // - If t == 0, then lf == [lb;ub]; - // - If t == 1, then lf == a*w + [lb;ub], where `w' can be `v' or another + // - If t == 0, then lf == [lb, ub]; + // - If t == 1, then lf == a*w + [lb, ub], where `w' can be `v' or another // variable; // - If t == 2, the `lf' is of the general form. @@ -5238,7 +5238,7 @@ Octagonal_Shape<T>::affine_form_image(const Variable var, neg_assign_r(b_mlb, b.lower(), ROUND_NOT_NEEDED); if (t == 0) { - // Case 1: lf = [lb;ub]; + // Case 1: lf = [lb, ub]. forget_all_octagonal_constraints(var_id); mul_2exp_assign_r(b_mlb, b_mlb, 1, ROUND_UP); mul_2exp_assign_r(b_ub, b_ub, 1, ROUND_UP); @@ -5260,9 +5260,9 @@ Octagonal_Shape<T>::affine_form_image(const Variable var, // True if `w_coeff' is in [-1, -1]. bool is_w_coeff_minus_one = (w_coeff == -1); if (is_w_coeff_one || is_w_coeff_minus_one) { - // Case 2: lf = w_coeff*w + b, with w_coeff = [+/-1;+/-1]. + // Case 2: lf = w_coeff*w + b, with w_coeff = [+/-1, +/-1]. if (w_id == var_id) { - // Here lf = w_coeff*v + b, with w_coeff = [+/-1;+/-1]. + // Here lf = w_coeff*v + b, with w_coeff = [+/-1, +/-1]. if (is_w_coeff_one && is_b_zero) // The transformation is the identity function. return; @@ -5308,7 +5308,7 @@ Octagonal_Shape<T>::affine_form_image(const Variable var, } else { // Here `w != var', so that `lf' is of the form - // [+/-1;+/-1] * w + b. + // [+/-1, +/-1] * w + b. // Remove all constraints on `var'. forget_all_octagonal_constraints(var_id); const dimension_type n_w = 2*w_id; @@ -5344,7 +5344,7 @@ Octagonal_Shape<T>::affine_form_image(const Variable var, // General case. // Either t == 2, so that // expr == i_1*x_1 + i_2*x_2 + ... + i_n*x_n + b, where n >= 2, - // or t == 1, expr == i*w + b, but i <> [+/-1;+/-1]. + // or t == 1, expr == i*w + b, but i <> [+/-1, +/-1]. // In the following, strong closure will be definitely lost. reset_strongly_closed(); @@ -5446,7 +5446,7 @@ linear_form_upper_bound(const Linear_Form< Interval<T, Interval_Info> >& lf, div_2exp_assign_r(curr_var_ub, curr_var_ub, 1, ROUND_UP); neg_assign_r(curr_minus_var_ub, matrix[n_var][n_var + 1], ROUND_NOT_NEEDED); div_2exp_assign_r(curr_minus_var_ub, curr_minus_var_ub, 1, ROUND_DOWN); - // Optimize the most common case: curr = +/-[1;1]. + // Optimize the most common case: curr = +/-[1, 1]. if (curr_lb == 1 && curr_ub == 1) { add_assign_r(result, result, std::max(curr_var_ub, curr_minus_var_ub), ROUND_UP); diff --git a/src/Sum_Floating_Point_Expression.defs.hh b/src/Sum_Floating_Point_Expression.defs.hh index 2704d8270..fd0d4113a 100644 --- a/src/Sum_Floating_Point_Expression.defs.hh +++ b/src/Sum_Floating_Point_Expression.defs.hh @@ -84,7 +84,7 @@ void swap(Sum_Floating_Point_Expression<FP_Interval_Type, FP_Format>& x, \varepsilon_{\mathbf{f}}\left(\linexprenv{e_{2}}{\rho^{\#}}{\rho^{\#}_l} \right) \aslf - mf_{\mathbf{f}}[-1;1] + mf_{\mathbf{f}}[-1, 1] \f] where \f$\varepsilon_{\mathbf{f}}(l)\f$ is the linear form computed by calling method <CODE>Floating_Point_Expression::relative_error</CODE> diff --git a/src/Variable_Floating_Point_Expression.defs.hh b/src/Variable_Floating_Point_Expression.defs.hh index 53491fb20..9c7c8d1b0 100644 --- a/src/Variable_Floating_Point_Expression.defs.hh +++ b/src/Variable_Floating_Point_Expression.defs.hh @@ -58,7 +58,7 @@ void swap(Variable_Floating_Point_Expression<FP_Interval_Type, FP_Format>& x, \rrbracket\f$, we construct the interval linear form \f$\linexprenv{v}{\rho^{\#}}{\rho^{\#}_l}\f$ as \f$\rho^{\#}_l(v)\f$ if it is defined; otherwise we construct it as - \f$[-1;1]v\f$. + \f$[-1, 1]v\f$. */ template <typename FP_Interval_Type, typename FP_Format> class Variable_Floating_Point_Expression diff --git a/src/linearize.hh b/src/linearize.hh index ec24bb566..9e8de89a3 100644 --- a/src/linearize.hh +++ b/src/linearize.hh @@ -90,7 +90,7 @@ namespace Parma_Polyhedra_Library { \varepsilon_{\mathbf{f}}\left(\linexprenv{e_{2}}{\rho^{\#}}{\rho^{\#}_l} \right) \aslf - mf_{\mathbf{f}}[-1;1] + mf_{\mathbf{f}}[-1, 1] \f] where \f$\varepsilon_{\mathbf{f}}(l)\f$ is the relative error associated to \f$l\f$ (see method <CODE>relative_error</CODE> of @@ -196,7 +196,7 @@ add_linearize(const Binary_Operator<Target>& bop_expr, \varepsilon_{\mathbf{f}}\left(\linexprenv{e_{2}}{\rho^{\#}}{\rho^{\#}_l} \right) \aslf - mf_{\mathbf{f}}[-1;1] + mf_{\mathbf{f}}[-1, 1] \f] where \f$\varepsilon_{\mathbf{f}}(l)\f$ is the relative error associated to \f$l\f$ (see method <CODE>relative_error</CODE> of @@ -284,35 +284,35 @@ sub_linearize(const Binary_Operator<Target>& bop_expr, \left(i \amifp i'\right) + \sum_{v \in \cV}\left(i \amifp i'_{v}\right)v. \f] - Given an expression \f$[a;b] \otimes e_{2}\f$ and a composite + Given an expression \f$[a, b] \otimes e_{2}\f$ and a composite abstract store \f$\left \llbracket \rho^{\#}, \rho^{\#}_l \right \rrbracket\f$, we construct the interval linear form - \f$\linexprenv{[a;b] \otimes e_{2}}{\rho^{\#}}{\rho^{\#}_l}\f$ + \f$\linexprenv{[a, b] \otimes e_{2}}{\rho^{\#}}{\rho^{\#}_l}\f$ as follows: \f[ - \linexprenv{[a;b] \otimes e_{2}}{\rho^{\#}}{\rho^{\#}_l} + \linexprenv{[a, b] \otimes e_{2}}{\rho^{\#}}{\rho^{\#}_l} = - \left([a;b] + \left([a, b] \amlf \linexprenv{e_{2}}{\rho^{\#}}{\rho^{\#}_l}\right) \aslf - \left([a;b] + \left([a, b] \amlf \varepsilon_{\mathbf{f}}\left(\linexprenv{e_{2}}{\rho^{\#}}{\rho^{\#}_l} \right)\right) \aslf - mf_{\mathbf{f}}[-1;1]. + mf_{\mathbf{f}}[-1, 1]. \f]. - Given an expression \f$e_{1} \otimes [a;b]\f$ and a composite + Given an expression \f$e_{1} \otimes [a, b]\f$ and a composite abstract store \f$\left \llbracket \rho^{\#}, \rho^{\#}_l \right \rrbracket\f$, we construct the interval linear form - \f$\linexprenv{e_{1} \otimes [a;b]}{\rho^{\#}}{\rho^{\#}_l}\f$ + \f$\linexprenv{e_{1} \otimes [a, b]}{\rho^{\#}}{\rho^{\#}_l}\f$ as follows: \f[ - \linexprenv{e_{1} \otimes [a;b]}{\rho^{\#}}{\rho^{\#}_l} + \linexprenv{e_{1} \otimes [a, b]}{\rho^{\#}}{\rho^{\#}_l} = - \linexprenv{[a;b] \otimes e_{1}}{\rho^{\#}}{\rho^{\#}_l}. + \linexprenv{[a, b] \otimes e_{1}}{\rho^{\#}}{\rho^{\#}_l}. \f] Given an expression \f$e_{1} \otimes e_{2}\f$ and a composite @@ -474,28 +474,28 @@ mul_linearize(const Binary_Operator<Target>& bop_expr, \left(i \adivifp i'\right) + \sum_{v \in \cV}\left(i_{v} \adivifp i'\right)v. \f] - Given an expression \f$e_{1} \oslash [a;b]\f$ and a composite + Given an expression \f$e_{1} \oslash [a, b]\f$ and a composite abstract store \f$\left \llbracket \rho^{\#}, \rho^{\#}_l \right \rrbracket\f$, we construct the interval linear form \f$ - \linexprenv{e_{1} \oslash [a;b]}{\rho^{\#}}{\rho^{\#}_l} + \linexprenv{e_{1} \oslash [a, b]}{\rho^{\#}}{\rho^{\#}_l} \f$ as follows: \f[ - \linexprenv{e_{1} \oslash [a;b]}{\rho^{\#}}{\rho^{\#}_l} + \linexprenv{e_{1} \oslash [a, b]}{\rho^{\#}}{\rho^{\#}_l} = \left(\linexprenv{e_{1}}{\rho^{\#}}{\rho^{\#}_l} \adivlf - [a;b]\right) + [a, b]\right) \aslf \left(\varepsilon_{\mathbf{f}}\left( \linexprenv{e_{1}}{\rho^{\#}}{\rho^{\#}_l} \right) \adivlf - [a;b]\right) + [a, b]\right) \aslf - mf_{\mathbf{f}}[-1;1], + mf_{\mathbf{f}}[-1, 1], \f] given an expression \f$e_{1} \oslash e_{2}\f$ and a composite abstract store \f$\left \llbracket \rho^{\#}, \rho^{\#}_l \right |