summaryrefslogtreecommitdiff
path: root/glib/glib/gatomic.c
diff options
context:
space:
mode:
authorAnas Nashif <anas.nashif@intel.com>2012-11-05 16:34:48 -0800
committerAnas Nashif <anas.nashif@intel.com>2012-11-05 16:34:48 -0800
commit9c4f79674d4d1face69542083273bd1e395bf062 (patch)
treecc53e903198c886f1cc40aef93b71a2695b690b6 /glib/glib/gatomic.c
downloadpkg-config-9c4f79674d4d1face69542083273bd1e395bf062.tar.gz
pkg-config-9c4f79674d4d1face69542083273bd1e395bf062.tar.bz2
pkg-config-9c4f79674d4d1face69542083273bd1e395bf062.zip
Imported Upstream version 0.27.1upstream/0.27.1
Diffstat (limited to 'glib/glib/gatomic.c')
-rw-r--r--glib/glib/gatomic.c871
1 files changed, 871 insertions, 0 deletions
diff --git a/glib/glib/gatomic.c b/glib/glib/gatomic.c
new file mode 100644
index 0000000..2df2bcc
--- /dev/null
+++ b/glib/glib/gatomic.c
@@ -0,0 +1,871 @@
+/*
+ * Copyright © 2011 Ryan Lortie
+ *
+ * This library is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as
+ * published by the Free Software Foundation; either version 2 of the
+ * licence, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
+ * USA.
+ *
+ * Author: Ryan Lortie <desrt@desrt.ca>
+ */
+
+#include "config.h"
+
+#include "gatomic.h"
+
+/**
+ * SECTION:atomic_operations
+ * @title: Atomic Operations
+ * @short_description: basic atomic integer and pointer operations
+ * @see_also: #GMutex
+ *
+ * The following is a collection of compiler macros to provide atomic
+ * access to integer and pointer-sized values.
+ *
+ * The macros that have 'int' in the name will operate on pointers to
+ * #gint and #guint. The macros with 'pointer' in the name will operate
+ * on pointers to any pointer-sized value, including #gsize. There is
+ * no support for 64bit operations on platforms with 32bit pointers
+ * because it is not generally possible to perform these operations
+ * atomically.
+ *
+ * The get, set and exchange operations for integers and pointers
+ * nominally operate on #gint and #gpointer, respectively. Of the
+ * arithmetic operations, the 'add' operation operates on (and returns)
+ * signed integer values (#gint and #gssize) and the 'and', 'or', and
+ * 'xor' operations operate on (and return) unsigned integer values
+ * (#guint and #gsize).
+ *
+ * All of the operations act as a full compiler and (where appropriate)
+ * hardware memory barrier. Acquire and release or producer and
+ * consumer barrier semantics are not available through this API.
+ *
+ * It is very important that all accesses to a particular integer or
+ * pointer be performed using only this API and that different sizes of
+ * operation are not mixed or used on overlapping memory regions. Never
+ * read or assign directly from or to a value -- always use this API.
+ *
+ * For simple reference counting purposes you should use
+ * g_atomic_int_inc() and g_atomic_int_dec_and_test(). Other uses that
+ * fall outside of simple reference counting patterns are prone to
+ * subtle bugs and occasionally undefined behaviour. It is also worth
+ * noting that since all of these operations require global
+ * synchronisation of the entire machine, they can be quite slow. In
+ * the case of performing multiple atomic operations it can often be
+ * faster to simply acquire a mutex lock around the critical area,
+ * perform the operations normally and then release the lock.
+ **/
+
+/**
+ * G_ATOMIC_LOCK_FREE:
+ *
+ * This macro is defined if the atomic operations of GLib are
+ * implemented using real hardware atomic operations. This means that
+ * the GLib atomic API can be used between processes and safely mixed
+ * with other (hardware) atomic APIs.
+ *
+ * If this macro is not defined, the atomic operations may be
+ * emulated using a mutex. In that case, the GLib atomic operations are
+ * only atomic relative to themselves and within a single process.
+ **/
+
+/* NOTE CAREFULLY:
+ *
+ * This file is the lowest-level part of GLib.
+ *
+ * Other lowlevel parts of GLib (threads, slice allocator, g_malloc,
+ * messages, etc) call into these functions and macros to get work done.
+ *
+ * As such, these functions can not call back into any part of GLib
+ * without risking recursion.
+ */
+
+#ifdef G_ATOMIC_LOCK_FREE
+
+/* if G_ATOMIC_LOCK_FREE was defined by ./configure then we MUST
+ * implement the atomic operations in a lock-free manner.
+ */
+
+#if defined (__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4)
+/**
+ * g_atomic_int_get:
+ * @atomic: a pointer to a #gint or #guint
+ *
+ * Gets the current value of @atomic.
+ *
+ * This call acts as a full compiler and hardware
+ * memory barrier (before the get).
+ *
+ * Returns: the value of the integer
+ *
+ * Since: 2.4
+ **/
+gint
+(g_atomic_int_get) (volatile gint *atomic)
+{
+ return g_atomic_int_get (atomic);
+}
+
+/**
+ * g_atomic_int_set:
+ * @atomic: a pointer to a #gint or #guint
+ * @newval: a new value to store
+ *
+ * Sets the value of @atomic to @newval.
+ *
+ * This call acts as a full compiler and hardware
+ * memory barrier (after the set).
+ *
+ * Since: 2.4
+ */
+void
+(g_atomic_int_set) (volatile gint *atomic,
+ gint newval)
+{
+ g_atomic_int_set (atomic, newval);
+}
+
+/**
+ * g_atomic_int_inc:
+ * @atomic: a pointer to a #gint or #guint
+ *
+ * Increments the value of @atomic by 1.
+ *
+ * Think of this operation as an atomic version of
+ * <literal>{ *@atomic += 1; }</literal>
+ *
+ * This call acts as a full compiler and hardware memory barrier.
+ *
+ * Since: 2.4
+ **/
+void
+(g_atomic_int_inc) (volatile gint *atomic)
+{
+ g_atomic_int_inc (atomic);
+}
+
+/**
+ * g_atomic_int_dec_and_test:
+ * @atomic: a pointer to a #gint or #guint
+ *
+ * Decrements the value of @atomic by 1.
+ *
+ * Think of this operation as an atomic version of
+ * <literal>{ *@atomic -= 1; return (*@atomic == 0); }</literal>
+ *
+ * This call acts as a full compiler and hardware memory barrier.
+ *
+ * Returns: %TRUE if the resultant value is zero
+ *
+ * Since: 2.4
+ **/
+gboolean
+(g_atomic_int_dec_and_test) (volatile gint *atomic)
+{
+ return g_atomic_int_dec_and_test (atomic);
+}
+
+/**
+ * g_atomic_int_compare_and_exchange:
+ * @atomic: a pointer to a #gint or #guint
+ * @oldval: the value to compare with
+ * @newval: the value to conditionally replace with
+ *
+ * Compares @atomic to @oldval and, if equal, sets it to @newval.
+ * If @atomic was not equal to @oldval then no change occurs.
+ *
+ * This compare and exchange is done atomically.
+ *
+ * Think of this operation as an atomic version of
+ * <literal>{ if (*@atomic == @oldval) { *@atomic = @newval; return TRUE; } else return FALSE; }</literal>
+ *
+ * This call acts as a full compiler and hardware memory barrier.
+ *
+ * Returns: %TRUE if the exchange took place
+ *
+ * Since: 2.4
+ **/
+gboolean
+(g_atomic_int_compare_and_exchange) (volatile gint *atomic,
+ gint oldval,
+ gint newval)
+{
+ return g_atomic_int_compare_and_exchange (atomic, oldval, newval);
+}
+
+/**
+ * g_atomic_int_add:
+ * @atomic: a pointer to a #gint or #guint
+ * @val: the value to add
+ *
+ * Atomically adds @val to the value of @atomic.
+ *
+ * Think of this operation as an atomic version of
+ * <literal>{ tmp = *atomic; *@atomic += @val; return tmp; }</literal>
+ *
+ * This call acts as a full compiler and hardware memory barrier.
+ *
+ * Before version 2.30, this function did not return a value
+ * (but g_atomic_int_exchange_and_add() did, and had the same meaning).
+ *
+ * Returns: the value of @atomic before the add, signed
+ *
+ * Since: 2.4
+ **/
+gint
+(g_atomic_int_add) (volatile gint *atomic,
+ gint val)
+{
+ return g_atomic_int_add (atomic, val);
+}
+
+/**
+ * g_atomic_int_and:
+ * @atomic: a pointer to a #gint or #guint
+ * @val: the value to 'and'
+ *
+ * Performs an atomic bitwise 'and' of the value of @atomic and @val,
+ * storing the result back in @atomic.
+ *
+ * This call acts as a full compiler and hardware memory barrier.
+ *
+ * Think of this operation as an atomic version of
+ * <literal>{ tmp = *atomic; *@atomic &= @val; return tmp; }</literal>
+ *
+ * Returns: the value of @atomic before the operation, unsigned
+ *
+ * Since: 2.30
+ **/
+guint
+(g_atomic_int_and) (volatile guint *atomic,
+ guint val)
+{
+ return g_atomic_int_and (atomic, val);
+}
+
+/**
+ * g_atomic_int_or:
+ * @atomic: a pointer to a #gint or #guint
+ * @val: the value to 'or'
+ *
+ * Performs an atomic bitwise 'or' of the value of @atomic and @val,
+ * storing the result back in @atomic.
+ *
+ * Think of this operation as an atomic version of
+ * <literal>{ tmp = *atomic; *@atomic |= @val; return tmp; }</literal>
+ *
+ * This call acts as a full compiler and hardware memory barrier.
+ *
+ * Returns: the value of @atomic before the operation, unsigned
+ *
+ * Since: 2.30
+ **/
+guint
+(g_atomic_int_or) (volatile guint *atomic,
+ guint val)
+{
+ return g_atomic_int_or (atomic, val);
+}
+
+/**
+ * g_atomic_int_xor:
+ * @atomic: a pointer to a #gint or #guint
+ * @val: the value to 'xor'
+ *
+ * Performs an atomic bitwise 'xor' of the value of @atomic and @val,
+ * storing the result back in @atomic.
+ *
+ * Think of this operation as an atomic version of
+ * <literal>{ tmp = *atomic; *@atomic ^= @val; return tmp; }</literal>
+ *
+ * This call acts as a full compiler and hardware memory barrier.
+ *
+ * Returns: the value of @atomic before the operation, unsigned
+ *
+ * Since: 2.30
+ **/
+guint
+(g_atomic_int_xor) (volatile guint *atomic,
+ guint val)
+{
+ return g_atomic_int_xor (atomic, val);
+}
+
+
+/**
+ * g_atomic_pointer_get:
+ * @atomic: a pointer to a #gpointer-sized value
+ *
+ * Gets the current value of @atomic.
+ *
+ * This call acts as a full compiler and hardware
+ * memory barrier (before the get).
+ *
+ * Returns: the value of the pointer
+ *
+ * Since: 2.4
+ **/
+gpointer
+(g_atomic_pointer_get) (volatile void *atomic)
+{
+ return g_atomic_pointer_get ((volatile gpointer *) atomic);
+}
+
+/**
+ * g_atomic_pointer_set:
+ * @atomic: a pointer to a #gpointer-sized value
+ * @newval: a new value to store
+ *
+ * Sets the value of @atomic to @newval.
+ *
+ * This call acts as a full compiler and hardware
+ * memory barrier (after the set).
+ *
+ * Since: 2.4
+ **/
+void
+(g_atomic_pointer_set) (volatile void *atomic,
+ gpointer newval)
+{
+ g_atomic_pointer_set ((volatile gpointer *) atomic, newval);
+}
+
+/**
+ * g_atomic_pointer_compare_and_exchange:
+ * @atomic: a pointer to a #gpointer-sized value
+ * @oldval: the value to compare with
+ * @newval: the value to conditionally replace with
+ *
+ * Compares @atomic to @oldval and, if equal, sets it to @newval.
+ * If @atomic was not equal to @oldval then no change occurs.
+ *
+ * This compare and exchange is done atomically.
+ *
+ * Think of this operation as an atomic version of
+ * <literal>{ if (*@atomic == @oldval) { *@atomic = @newval; return TRUE; } else return FALSE; }</literal>
+ *
+ * This call acts as a full compiler and hardware memory barrier.
+ *
+ * Returns: %TRUE if the exchange took place
+ *
+ * Since: 2.4
+ **/
+gboolean
+(g_atomic_pointer_compare_and_exchange) (volatile void *atomic,
+ gpointer oldval,
+ gpointer newval)
+{
+ return g_atomic_pointer_compare_and_exchange ((volatile gpointer *) atomic,
+ oldval, newval);
+}
+
+/**
+ * g_atomic_pointer_add:
+ * @atomic: a pointer to a #gpointer-sized value
+ * @val: the value to add
+ *
+ * Atomically adds @val to the value of @atomic.
+ *
+ * Think of this operation as an atomic version of
+ * <literal>{ tmp = *atomic; *@atomic += @val; return tmp; }</literal>
+ *
+ * This call acts as a full compiler and hardware memory barrier.
+ *
+ * Returns: the value of @atomic before the add, signed
+ *
+ * Since: 2.30
+ **/
+gssize
+(g_atomic_pointer_add) (volatile void *atomic,
+ gssize val)
+{
+ return g_atomic_pointer_add ((volatile gpointer *) atomic, val);
+}
+
+/**
+ * g_atomic_pointer_and:
+ * @atomic: a pointer to a #gpointer-sized value
+ * @val: the value to 'and'
+ *
+ * Performs an atomic bitwise 'and' of the value of @atomic and @val,
+ * storing the result back in @atomic.
+ *
+ * Think of this operation as an atomic version of
+ * <literal>{ tmp = *atomic; *@atomic &= @val; return tmp; }</literal>
+ *
+ * This call acts as a full compiler and hardware memory barrier.
+ *
+ * Returns: the value of @atomic before the operation, unsigned
+ *
+ * Since: 2.30
+ **/
+gsize
+(g_atomic_pointer_and) (volatile void *atomic,
+ gsize val)
+{
+ return g_atomic_pointer_and ((volatile gpointer *) atomic, val);
+}
+
+/**
+ * g_atomic_pointer_or:
+ * @atomic: a pointer to a #gpointer-sized value
+ * @val: the value to 'or'
+ *
+ * Performs an atomic bitwise 'or' of the value of @atomic and @val,
+ * storing the result back in @atomic.
+ *
+ * Think of this operation as an atomic version of
+ * <literal>{ tmp = *atomic; *@atomic |= @val; return tmp; }</literal>
+ *
+ * This call acts as a full compiler and hardware memory barrier.
+ *
+ * Returns: the value of @atomic before the operation, unsigned
+ *
+ * Since: 2.30
+ **/
+gsize
+(g_atomic_pointer_or) (volatile void *atomic,
+ gsize val)
+{
+ return g_atomic_pointer_or ((volatile gpointer *) atomic, val);
+}
+
+/**
+ * g_atomic_pointer_xor:
+ * @atomic: a pointer to a #gpointer-sized value
+ * @val: the value to 'xor'
+ *
+ * Performs an atomic bitwise 'xor' of the value of @atomic and @val,
+ * storing the result back in @atomic.
+ *
+ * Think of this operation as an atomic version of
+ * <literal>{ tmp = *atomic; *@atomic ^= @val; return tmp; }</literal>
+ *
+ * This call acts as a full compiler and hardware memory barrier.
+ *
+ * Returns: the value of @atomic before the operation, unsigned
+ *
+ * Since: 2.30
+ **/
+gsize
+(g_atomic_pointer_xor) (volatile void *atomic,
+ gsize val)
+{
+ return g_atomic_pointer_xor ((volatile gpointer *) atomic, val);
+}
+
+#elif defined (G_PLATFORM_WIN32)
+
+#include <windows.h>
+#if !defined(_M_AMD64) && !defined (_M_IA64) && !defined(_M_X64)
+#define InterlockedAnd _InterlockedAnd
+#define InterlockedOr _InterlockedOr
+#define InterlockedXor _InterlockedXor
+#endif
+
+/*
+ * http://msdn.microsoft.com/en-us/library/ms684122(v=vs.85).aspx
+ */
+gint
+(g_atomic_int_get) (volatile gint *atomic)
+{
+ MemoryBarrier ();
+ return *atomic;
+}
+
+void
+(g_atomic_int_set) (volatile gint *atomic,
+ gint newval)
+{
+ *atomic = newval;
+ MemoryBarrier ();
+}
+
+void
+(g_atomic_int_inc) (volatile gint *atomic)
+{
+ InterlockedIncrement (atomic);
+}
+
+gboolean
+(g_atomic_int_dec_and_test) (volatile gint *atomic)
+{
+ return InterlockedDecrement (atomic) == 0;
+}
+
+gboolean
+(g_atomic_int_compare_and_exchange) (volatile gint *atomic,
+ gint oldval,
+ gint newval)
+{
+ return InterlockedCompareExchange (atomic, newval, oldval) == oldval;
+}
+
+gint
+(g_atomic_int_add) (volatile gint *atomic,
+ gint val)
+{
+ return InterlockedExchangeAdd (atomic, val);
+}
+
+guint
+(g_atomic_int_and) (volatile guint *atomic,
+ guint val)
+{
+ return InterlockedAnd (atomic, val);
+}
+
+guint
+(g_atomic_int_or) (volatile guint *atomic,
+ guint val)
+{
+ return InterlockedOr (atomic, val);
+}
+
+guint
+(g_atomic_int_xor) (volatile guint *atomic,
+ guint val)
+{
+ return InterlockedXor (atomic, val);
+}
+
+
+gpointer
+(g_atomic_pointer_get) (volatile void *atomic)
+{
+ volatile gpointer *ptr = atomic;
+
+ MemoryBarrier ();
+ return *ptr;
+}
+
+void
+(g_atomic_pointer_set) (volatile void *atomic,
+ gpointer newval)
+{
+ volatile gpointer *ptr = atomic;
+
+ *ptr = newval;
+ MemoryBarrier ();
+}
+
+gboolean
+(g_atomic_pointer_compare_and_exchange) (volatile void *atomic,
+ gpointer oldval,
+ gpointer newval)
+{
+ return InterlockedCompareExchangePointer (atomic, newval, oldval) == oldval;
+}
+
+gssize
+(g_atomic_pointer_add) (volatile void *atomic,
+ gssize val)
+{
+#if GLIB_SIZEOF_VOID_P == 8
+ return InterlockedExchangeAdd64 (atomic, val);
+#else
+ return InterlockedExchangeAdd (atomic, val);
+#endif
+}
+
+gsize
+(g_atomic_pointer_and) (volatile void *atomic,
+ gsize val)
+{
+#if GLIB_SIZEOF_VOID_P == 8
+ return InterlockedAnd64 (atomic, val);
+#else
+ return InterlockedAnd (atomic, val);
+#endif
+}
+
+gsize
+(g_atomic_pointer_or) (volatile void *atomic,
+ gsize val)
+{
+#if GLIB_SIZEOF_VOID_P == 8
+ return InterlockedOr64 (atomic, val);
+#else
+ return InterlockedOr (atomic, val);
+#endif
+}
+
+gsize
+(g_atomic_pointer_xor) (volatile void *atomic,
+ gsize val)
+{
+#if GLIB_SIZEOF_VOID_P == 8
+ return InterlockedXor64 (atomic, val);
+#else
+ return InterlockedXor (atomic, val);
+#endif
+}
+#else
+
+/* This error occurs when ./configure decided that we should be capable
+ * of lock-free atomics but we find at compile-time that we are not.
+ */
+#error G_ATOMIC_LOCK_FREE defined, but incapable of lock-free atomics.
+
+#endif /* defined (__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4) */
+
+#else /* G_ATOMIC_LOCK_FREE */
+
+/* We are not permitted to call into any GLib functions from here, so we
+ * can not use GMutex.
+ *
+ * Fortunately, we already take care of the Windows case above, and all
+ * non-Windows platforms on which glib runs have pthreads. Use those.
+ */
+#include <pthread.h>
+
+static pthread_mutex_t g_atomic_lock = PTHREAD_MUTEX_INITIALIZER;
+
+gint
+(g_atomic_int_get) (volatile gint *atomic)
+{
+ gint value;
+
+ pthread_mutex_lock (&g_atomic_lock);
+ value = *atomic;
+ pthread_mutex_unlock (&g_atomic_lock);
+
+ return value;
+}
+
+void
+(g_atomic_int_set) (volatile gint *atomic,
+ gint value)
+{
+ pthread_mutex_lock (&g_atomic_lock);
+ *atomic = value;
+ pthread_mutex_unlock (&g_atomic_lock);
+}
+
+void
+(g_atomic_int_inc) (volatile gint *atomic)
+{
+ pthread_mutex_lock (&g_atomic_lock);
+ (*atomic)++;
+ pthread_mutex_unlock (&g_atomic_lock);
+}
+
+gboolean
+(g_atomic_int_dec_and_test) (volatile gint *atomic)
+{
+ gboolean is_zero;
+
+ pthread_mutex_lock (&g_atomic_lock);
+ is_zero = --(*atomic) == 0;
+ pthread_mutex_unlock (&g_atomic_lock);
+
+ return is_zero;
+}
+
+gboolean
+(g_atomic_int_compare_and_exchange) (volatile gint *atomic,
+ gint oldval,
+ gint newval)
+{
+ gboolean success;
+
+ pthread_mutex_lock (&g_atomic_lock);
+
+ if ((success = (*atomic == oldval)))
+ *atomic = newval;
+
+ pthread_mutex_unlock (&g_atomic_lock);
+
+ return success;
+}
+
+gint
+(g_atomic_int_add) (volatile gint *atomic,
+ gint val)
+{
+ gint oldval;
+
+ pthread_mutex_lock (&g_atomic_lock);
+ oldval = *atomic;
+ *atomic = oldval + val;
+ pthread_mutex_unlock (&g_atomic_lock);
+
+ return oldval;
+}
+
+guint
+(g_atomic_int_and) (volatile guint *atomic,
+ guint val)
+{
+ guint oldval;
+
+ pthread_mutex_lock (&g_atomic_lock);
+ oldval = *atomic;
+ *atomic = oldval & val;
+ pthread_mutex_unlock (&g_atomic_lock);
+
+ return oldval;
+}
+
+guint
+(g_atomic_int_or) (volatile guint *atomic,
+ guint val)
+{
+ guint oldval;
+
+ pthread_mutex_lock (&g_atomic_lock);
+ oldval = *atomic;
+ *atomic = oldval | val;
+ pthread_mutex_unlock (&g_atomic_lock);
+
+ return oldval;
+}
+
+guint
+(g_atomic_int_xor) (volatile guint *atomic,
+ guint val)
+{
+ guint oldval;
+
+ pthread_mutex_lock (&g_atomic_lock);
+ oldval = *atomic;
+ *atomic = oldval ^ val;
+ pthread_mutex_unlock (&g_atomic_lock);
+
+ return oldval;
+}
+
+
+gpointer
+(g_atomic_pointer_get) (volatile void *atomic)
+{
+ volatile gpointer *ptr = atomic;
+ gpointer value;
+
+ pthread_mutex_lock (&g_atomic_lock);
+ value = *ptr;
+ pthread_mutex_unlock (&g_atomic_lock);
+
+ return value;
+}
+
+void
+(g_atomic_pointer_set) (volatile void *atomic,
+ gpointer newval)
+{
+ volatile gpointer *ptr = atomic;
+
+ pthread_mutex_lock (&g_atomic_lock);
+ *ptr = newval;
+ pthread_mutex_unlock (&g_atomic_lock);
+}
+
+gboolean
+(g_atomic_pointer_compare_and_exchange) (volatile void *atomic,
+ gpointer oldval,
+ gpointer newval)
+{
+ volatile gpointer *ptr = atomic;
+ gboolean success;
+
+ pthread_mutex_lock (&g_atomic_lock);
+
+ if ((success = (*ptr == oldval)))
+ *ptr = newval;
+
+ pthread_mutex_unlock (&g_atomic_lock);
+
+ return success;
+}
+
+gssize
+(g_atomic_pointer_add) (volatile void *atomic,
+ gssize val)
+{
+ volatile gssize *ptr = atomic;
+ gssize oldval;
+
+ pthread_mutex_lock (&g_atomic_lock);
+ oldval = *ptr;
+ *ptr = oldval + val;
+ pthread_mutex_unlock (&g_atomic_lock);
+
+ return oldval;
+}
+
+gsize
+(g_atomic_pointer_and) (volatile void *atomic,
+ gsize val)
+{
+ volatile gsize *ptr = atomic;
+ gsize oldval;
+
+ pthread_mutex_lock (&g_atomic_lock);
+ oldval = *ptr;
+ *ptr = oldval & val;
+ pthread_mutex_unlock (&g_atomic_lock);
+
+ return oldval;
+}
+
+gsize
+(g_atomic_pointer_or) (volatile void *atomic,
+ gsize val)
+{
+ volatile gsize *ptr = atomic;
+ gsize oldval;
+
+ pthread_mutex_lock (&g_atomic_lock);
+ oldval = *ptr;
+ *ptr = oldval | val;
+ pthread_mutex_unlock (&g_atomic_lock);
+
+ return oldval;
+}
+
+gsize
+(g_atomic_pointer_xor) (volatile void *atomic,
+ gsize val)
+{
+ volatile gsize *ptr = atomic;
+ gsize oldval;
+
+ pthread_mutex_lock (&g_atomic_lock);
+ oldval = *ptr;
+ *ptr = oldval ^ val;
+ pthread_mutex_unlock (&g_atomic_lock);
+
+ return oldval;
+}
+
+#endif
+
+/**
+ * g_atomic_int_exchange_and_add:
+ * @atomic: a pointer to a #gint
+ * @val: the value to add
+ *
+ * This function existed before g_atomic_int_add() returned the prior
+ * value of the integer (which it now does). It is retained only for
+ * compatibility reasons. Don't use this function in new code.
+ *
+ * Returns: the value of @atomic before the add, signed
+ * Since: 2.4
+ * Deprecated: 2.30: Use g_atomic_int_add() instead.
+ **/
+gint
+g_atomic_int_exchange_and_add (volatile gint *atomic,
+ gint val)
+{
+ return (g_atomic_int_add) (atomic, val);
+}