summaryrefslogtreecommitdiff
path: root/reference/zgemmf.f
blob: 65cd317503050f45a2b5a2d61e13e6df308dff7a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
      SUBROUTINE ZGEMMF(TRANA,TRANB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
*     .. Scalar Arguments ..
      DOUBLE COMPLEX ALPHA,BETA
      INTEGER K,LDA,LDB,LDC,M,N
      CHARACTER TRANA,TRANB
*     ..
*     .. Array Arguments ..
      DOUBLE COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)
*     ..
*
*  Purpose
*  =======
*
*  ZGEMM  performs one of the matrix-matrix operations
*
*     C := alpha*op( A )*op( B ) + beta*C,
*
*  where  op( X ) is one of
*
*     op( X ) = X   or   op( X ) = X'   or   op( X ) = conjg( X' ),
*
*  alpha and beta are scalars, and A, B and C are matrices, with op( A )
*  an m by k matrix,  op( B )  a  k by n matrix and  C an m by n matrix.
*
*  Arguments
*  ==========
*
*  TRANA - CHARACTER*1.
*           On entry, TRANA specifies the form of op( A ) to be used in
*           the matrix multiplication as follows:
*
*              TRANA = 'N' or 'n',  op( A ) = A.
*
*              TRANA = 'T' or 't',  op( A ) = A'.
*
*              TRANA = 'C' or 'c',  op( A ) = conjg( A' ).
*
*           Unchanged on exit.
*
*  TRANB - CHARACTER*1.
*           On entry, TRANB specifies the form of op( B ) to be used in
*           the matrix multiplication as follows:
*
*              TRANB = 'N' or 'n',  op( B ) = B.
*
*              TRANB = 'T' or 't',  op( B ) = B'.
*
*              TRANB = 'C' or 'c',  op( B ) = conjg( B' ).
*
*           Unchanged on exit.
*
*  M      - INTEGER.
*           On entry,  M  specifies  the number  of rows  of the  matrix
*           op( A )  and of the  matrix  C.  M  must  be at least  zero.
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry,  N  specifies the number  of columns of the matrix
*           op( B ) and the number of columns of the matrix C. N must be
*           at least zero.
*           Unchanged on exit.
*
*  K      - INTEGER.
*           On entry,  K  specifies  the number of columns of the matrix
*           op( A ) and the number of rows of the matrix op( B ). K must
*           be at least  zero.
*           Unchanged on exit.
*
*  ALPHA  - COMPLEX*16      .
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  A      - COMPLEX*16       array of DIMENSION ( LDA, ka ), where ka is
*           k  when  TRANA = 'N' or 'n',  and is  m  otherwise.
*           Before entry with  TRANA = 'N' or 'n',  the leading  m by k
*           part of the array  A  must contain the matrix  A,  otherwise
*           the leading  k by m  part of the array  A  must contain  the
*           matrix A.
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program. When  TRANA = 'N' or 'n' then
*           LDA must be at least  max( 1, m ), otherwise  LDA must be at
*           least  max( 1, k ).
*           Unchanged on exit.
*
*  B      - COMPLEX*16       array of DIMENSION ( LDB, kb ), where kb is
*           n  when  TRANB = 'N' or 'n',  and is  k  otherwise.
*           Before entry with  TRANB = 'N' or 'n',  the leading  k by n
*           part of the array  B  must contain the matrix  B,  otherwise
*           the leading  n by k  part of the array  B  must contain  the
*           matrix B.
*           Unchanged on exit.
*
*  LDB    - INTEGER.
*           On entry, LDB specifies the first dimension of B as declared
*           in the calling (sub) program. When  TRANB = 'N' or 'n' then
*           LDB must be at least  max( 1, k ), otherwise  LDB must be at
*           least  max( 1, n ).
*           Unchanged on exit.
*
*  BETA   - COMPLEX*16      .
*           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
*           supplied as zero then C need not be set on input.
*           Unchanged on exit.
*
*  C      - COMPLEX*16       array of DIMENSION ( LDC, n ).
*           Before entry, the leading  m by n  part of the array  C must
*           contain the matrix  C,  except when  beta  is zero, in which
*           case C need not be set on entry.
*           On exit, the array  C  is overwritten by the  m by n  matrix
*           ( alpha*op( A )*op( B ) + beta*C ).
*
*  LDC    - INTEGER.
*           On entry, LDC specifies the first dimension of C as declared
*           in  the  calling  (sub)  program.   LDC  must  be  at  least
*           max( 1, m ).
*           Unchanged on exit.
*
*
*  Level 3 Blas routine.
*
*  -- Written on 8-February-1989.
*     Jack Dongarra, Argonne National Laboratory.
*     Iain Duff, AERE Harwell.
*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
*     Sven Hammarling, Numerical Algorithms Group Ltd.
*
*
*     .. External Functions ..
      LOGICAL LSAME
      EXTERNAL LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC DCONJG,MAX
*     ..
*     .. Local Scalars ..
      DOUBLE COMPLEX TEMP
      INTEGER I,INFO,J,L,NCOLA,NROWA,NROWB
      LOGICAL CONJA,CONJB,NOTA,NOTB
*     ..
*     .. Parameters ..
      DOUBLE COMPLEX ONE
      PARAMETER (ONE= (1.0D+0,0.0D+0))
      DOUBLE COMPLEX ZERO
      PARAMETER (ZERO= (0.0D+0,0.0D+0))
*     ..
*
*     Set  NOTA  and  NOTB  as  true if  A  and  B  respectively are not
*     conjugated or transposed, set  CONJA and CONJB  as true if  A  and
*     B  respectively are to be  transposed but  not conjugated  and set
*     NROWA, NCOLA and  NROWB  as the number of rows and  columns  of  A
*     and the number of rows of  B  respectively.
*
      NOTA = LSAME(TRANA,'N')
      NOTB = LSAME(TRANB,'N')
      CONJA = LSAME(TRANA,'C')
      CONJB = LSAME(TRANB,'C')
      IF (NOTA) THEN
          NROWA = M
          NCOLA = K
      ELSE
          NROWA = K
          NCOLA = M
      END IF
      IF (NOTB) THEN
          NROWB = K
      ELSE
          NROWB = N
      END IF
*
*     Test the input parameters.
*
      INFO = 0
      IF ((.NOT.NOTA) .AND. (.NOT.CONJA) .AND.
     +    (.NOT.LSAME(TRANA,'T'))) THEN
          INFO = 1
      ELSE IF ((.NOT.NOTB) .AND. (.NOT.CONJB) .AND.
     +         (.NOT.LSAME(TRANB,'T'))) THEN
          INFO = 2
      ELSE IF (M.LT.0) THEN
          INFO = 3
      ELSE IF (N.LT.0) THEN
          INFO = 4
      ELSE IF (K.LT.0) THEN
          INFO = 5
      ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
          INFO = 8
      ELSE IF (LDB.LT.MAX(1,NROWB)) THEN
          INFO = 10
      ELSE IF (LDC.LT.MAX(1,M)) THEN
          INFO = 13
      END IF
      IF (INFO.NE.0) THEN
          CALL XERBLA('ZGEMM ',INFO)
          RETURN
      END IF
*
*     Quick return if possible.
*
      IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
     +    (((ALPHA.EQ.ZERO).OR. (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN
*
*     And when  alpha.eq.zero.
*
      IF (ALPHA.EQ.ZERO) THEN
          IF (BETA.EQ.ZERO) THEN
              DO 20 J = 1,N
                  DO 10 I = 1,M
                      C(I,J) = ZERO
   10             CONTINUE
   20         CONTINUE
          ELSE
              DO 40 J = 1,N
                  DO 30 I = 1,M
                      C(I,J) = BETA*C(I,J)
   30             CONTINUE
   40         CONTINUE
          END IF
          RETURN
      END IF
*
*     Start the operations.
*
      IF (NOTB) THEN
          IF (NOTA) THEN
*
*           Form  C := alpha*A*B + beta*C.
*
              DO 90 J = 1,N
                  IF (BETA.EQ.ZERO) THEN
                      DO 50 I = 1,M
                          C(I,J) = ZERO
   50                 CONTINUE
                  ELSE IF (BETA.NE.ONE) THEN
                      DO 60 I = 1,M
                          C(I,J) = BETA*C(I,J)
   60                 CONTINUE
                  END IF
                  DO 80 L = 1,K
                      IF (B(L,J).NE.ZERO) THEN
                          TEMP = ALPHA*B(L,J)
                          DO 70 I = 1,M
                              C(I,J) = C(I,J) + TEMP*A(I,L)
   70                     CONTINUE
                      END IF
   80             CONTINUE
   90         CONTINUE
          ELSE IF (CONJA) THEN
*
*           Form  C := alpha*conjg( A' )*B + beta*C.
*
              DO 120 J = 1,N
                  DO 110 I = 1,M
                      TEMP = ZERO
                      DO 100 L = 1,K
                          TEMP = TEMP + DCONJG(A(L,I))*B(L,J)
  100                 CONTINUE
                      IF (BETA.EQ.ZERO) THEN
                          C(I,J) = ALPHA*TEMP
                      ELSE
                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)
                      END IF
  110             CONTINUE
  120         CONTINUE
          ELSE
*
*           Form  C := alpha*A'*B + beta*C
*
              DO 150 J = 1,N
                  DO 140 I = 1,M
                      TEMP = ZERO
                      DO 130 L = 1,K
                          TEMP = TEMP + A(L,I)*B(L,J)
  130                 CONTINUE
                      IF (BETA.EQ.ZERO) THEN
                          C(I,J) = ALPHA*TEMP
                      ELSE
                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)
                      END IF
  140             CONTINUE
  150         CONTINUE
          END IF
      ELSE IF (NOTA) THEN
          IF (CONJB) THEN
*
*           Form  C := alpha*A*conjg( B' ) + beta*C.
*
              DO 200 J = 1,N
                  IF (BETA.EQ.ZERO) THEN
                      DO 160 I = 1,M
                          C(I,J) = ZERO
  160                 CONTINUE
                  ELSE IF (BETA.NE.ONE) THEN
                      DO 170 I = 1,M
                          C(I,J) = BETA*C(I,J)
  170                 CONTINUE
                  END IF
                  DO 190 L = 1,K
                      IF (B(J,L).NE.ZERO) THEN
                          TEMP = ALPHA*DCONJG(B(J,L))
                          DO 180 I = 1,M
                              C(I,J) = C(I,J) + TEMP*A(I,L)
  180                     CONTINUE
                      END IF
  190             CONTINUE
  200         CONTINUE
          ELSE
*
*           Form  C := alpha*A*B'          + beta*C
*
              DO 250 J = 1,N
                  IF (BETA.EQ.ZERO) THEN
                      DO 210 I = 1,M
                          C(I,J) = ZERO
  210                 CONTINUE
                  ELSE IF (BETA.NE.ONE) THEN
                      DO 220 I = 1,M
                          C(I,J) = BETA*C(I,J)
  220                 CONTINUE
                  END IF
                  DO 240 L = 1,K
                      IF (B(J,L).NE.ZERO) THEN
                          TEMP = ALPHA*B(J,L)
                          DO 230 I = 1,M
                              C(I,J) = C(I,J) + TEMP*A(I,L)
  230                     CONTINUE
                      END IF
  240             CONTINUE
  250         CONTINUE
          END IF
      ELSE IF (CONJA) THEN
          IF (CONJB) THEN
*
*           Form  C := alpha*conjg( A' )*conjg( B' ) + beta*C.
*
              DO 280 J = 1,N
                  DO 270 I = 1,M
                      TEMP = ZERO
                      DO 260 L = 1,K
                          TEMP = TEMP + DCONJG(A(L,I))*DCONJG(B(J,L))
  260                 CONTINUE
                      IF (BETA.EQ.ZERO) THEN
                          C(I,J) = ALPHA*TEMP
                      ELSE
                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)
                      END IF
  270             CONTINUE
  280         CONTINUE
          ELSE
*
*           Form  C := alpha*conjg( A' )*B' + beta*C
*
              DO 310 J = 1,N
                  DO 300 I = 1,M
                      TEMP = ZERO
                      DO 290 L = 1,K
                          TEMP = TEMP + DCONJG(A(L,I))*B(J,L)
  290                 CONTINUE
                      IF (BETA.EQ.ZERO) THEN
                          C(I,J) = ALPHA*TEMP
                      ELSE
                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)
                      END IF
  300             CONTINUE
  310         CONTINUE
          END IF
      ELSE
          IF (CONJB) THEN
*
*           Form  C := alpha*A'*conjg( B' ) + beta*C
*
              DO 340 J = 1,N
                  DO 330 I = 1,M
                      TEMP = ZERO
                      DO 320 L = 1,K
                          TEMP = TEMP + A(L,I)*DCONJG(B(J,L))
  320                 CONTINUE
                      IF (BETA.EQ.ZERO) THEN
                          C(I,J) = ALPHA*TEMP
                      ELSE
                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)
                      END IF
  330             CONTINUE
  340         CONTINUE
          ELSE
*
*           Form  C := alpha*A'*B' + beta*C
*
              DO 370 J = 1,N
                  DO 360 I = 1,M
                      TEMP = ZERO
                      DO 350 L = 1,K
                          TEMP = TEMP + A(L,I)*B(J,L)
  350                 CONTINUE
                      IF (BETA.EQ.ZERO) THEN
                          C(I,J) = ALPHA*TEMP
                      ELSE
                          C(I,J) = ALPHA*TEMP + BETA*C(I,J)
                      END IF
  360             CONTINUE
  370         CONTINUE
          END IF
      END IF
*
      RETURN
*
*     End of ZGEMM .
*
      END