#include "relapack.h" #include "stdlib.h" static void RELAPACK_sgbtrf_rec(const blasint *, const blasint *, const blasint *, const blasint *, float *, const blasint *, blasint *, float *, const blasint *, float *, const blasint *, blasint *); /** SGBTRF computes an LU factorization of a real m-by-n band matrix A using partial pivoting with row interchanges. * * This routine is functionally equivalent to LAPACK's sgbtrf. * For details on its interface, see * http://www.netlib.org/lapack/explore-html/d5/d72/sgbtrf_8f.html * */ void RELAPACK_sgbtrf( const blasint *m, const blasint *n, const blasint *kl, const blasint *ku, float *Ab, const blasint *ldAb, blasint *ipiv, blasint *info ) { // Check arguments *info = 0; if (*m < 0) *info = -1; else if (*n < 0) *info = -2; else if (*kl < 0) *info = -3; else if (*ku < 0) *info = -4; else if (*ldAb < 2 * *kl + *ku + 1) *info = -6; if (*info) { const blasint minfo = -*info; LAPACK(xerbla)("SGBTRF", &minfo, strlen("SGBTRF")); return; } // Constant const float ZERO[] = { 0. }; // Result upper band width const blasint kv = *ku + *kl; // Unskewg A const blasint ldA[] = { *ldAb - 1 }; float *const A = Ab + kv; // Zero upper diagonal fill-in elements blasint i, j; for (j = 0; j < *n; j++) { float *const A_j = A + *ldA * j; for (i = MAX(0, j - kv); i < j - *ku; i++) A_j[i] = 0.; } // Allocate work space const blasint n1 = SREC_SPLIT(*n); const blasint mWorkl = abs( (kv > n1) ? MAX(1, *m - *kl) : kv ); const blasint nWorkl = abs( (kv > n1) ? n1 : kv ); const blasint mWorku = abs( (*kl > n1) ? n1 : *kl ); const blasint nWorku = abs( (*kl > n1) ? MAX(0, *n - *kl) : *kl ); float *Workl = malloc(mWorkl * nWorkl * sizeof(float)); float *Worku = malloc(mWorku * nWorku * sizeof(float)); LAPACK(slaset)("L", &mWorkl, &nWorkl, ZERO, ZERO, Workl, &mWorkl); LAPACK(slaset)("U", &mWorku, &nWorku, ZERO, ZERO, Worku, &mWorku); // Recursive kernel RELAPACK_sgbtrf_rec(m, n, kl, ku, Ab, ldAb, ipiv, Workl, &mWorkl, Worku, &mWorku, info); // Free work space free(Workl); free(Worku); } /** sgbtrf's recursive compute kernel */ static void RELAPACK_sgbtrf_rec( const blasint *m, const blasint *n, const blasint *kl, const blasint *ku, float *Ab, const blasint *ldAb, blasint *ipiv, float *Workl, const blasint *ldWorkl, float *Worku, const blasint *ldWorku, blasint *info ) { if (*n <= MAX(CROSSOVER_SGBTRF, 1)) { // Unblocked LAPACK(sgbtf2)(m, n, kl, ku, Ab, ldAb, ipiv, info); return; } // Constants const float ONE[] = { 1. }; const float MONE[] = { -1. }; const blasint iONE[] = { 1 }; // Loop iterators blasint i, j; // Output upper band width const blasint kv = *ku + *kl; // Unskew A const blasint ldA[] = { *ldAb - 1 }; float *const A = Ab + kv; // Splitting const blasint n1 = MIN(SREC_SPLIT(*n), *kl); const blasint n2 = *n - n1; const blasint m1 = MIN(n1, *m); const blasint m2 = *m - m1; const blasint mn1 = MIN(m1, n1); const blasint mn2 = MIN(m2, n2); // Ab_L * // Ab_BR float *const Ab_L = Ab; float *const Ab_BR = Ab + *ldAb * n1; // A_L A_R float *const A_L = A; float *const A_R = A + *ldA * n1; // A_TL A_TR // A_BL A_BR float *const A_TL = A; float *const A_TR = A + *ldA * n1; float *const A_BL = A + m1; float *const A_BR = A + *ldA * n1 + m1; // ipiv_T // ipiv_B blasint *const ipiv_T = ipiv; blasint *const ipiv_B = ipiv + n1; // Banded splitting const blasint n21 = MIN(n2, kv - n1); const blasint n22 = MIN(n2 - n21, n1); const blasint m21 = MIN(m2, *kl - m1); const blasint m22 = MIN(m2 - m21, m1); // n1 n21 n22 // m * A_Rl ARr float *const A_Rl = A_R; float *const A_Rr = A_R + *ldA * n21; // n1 n21 n22 // m1 * A_TRl A_TRr // m21 A_BLt A_BRtl A_BRtr // m22 A_BLb A_BRbl A_BRbr float *const A_TRl = A_TR; float *const A_TRr = A_TR + *ldA * n21; float *const A_BLt = A_BL; float *const A_BLb = A_BL + m21; float *const A_BRtl = A_BR; float *const A_BRtr = A_BR + *ldA * n21; float *const A_BRbl = A_BR + m21; float *const A_BRbr = A_BR + *ldA * n21 + m21; // recursion(Ab_L, ipiv_T) RELAPACK_sgbtrf_rec(m, &n1, kl, ku, Ab_L, ldAb, ipiv_T, Workl, ldWorkl, Worku, ldWorku, info); // Workl = A_BLb LAPACK(slacpy)("U", &m22, &n1, A_BLb, ldA, Workl, ldWorkl); // partially redo swaps in A_L for (i = 0; i < mn1; i++) { const blasint ip = ipiv_T[i] - 1; if (ip != i) { if (ip < *kl) BLAS(sswap)(&i, A_L + i, ldA, A_L + ip, ldA); else BLAS(sswap)(&i, A_L + i, ldA, Workl + ip - *kl, ldWorkl); } } // apply pivots to A_Rl LAPACK(slaswp)(&n21, A_Rl, ldA, iONE, &mn1, ipiv_T, iONE); // apply pivots to A_Rr columnwise for (j = 0; j < n22; j++) { float *const A_Rrj = A_Rr + *ldA * j; for (i = j; i < mn1; i++) { const blasint ip = ipiv_T[i] - 1; if (ip != i) { const float tmp = A_Rrj[i]; A_Rrj[i] = A_Rr[ip]; A_Rrj[ip] = tmp; } } } // A_TRl = A_TL \ A_TRl BLAS(strsm)("L", "L", "N", "U", &m1, &n21, ONE, A_TL, ldA, A_TRl, ldA); // Worku = A_TRr LAPACK(slacpy)("L", &m1, &n22, A_TRr, ldA, Worku, ldWorku); // Worku = A_TL \ Worku BLAS(strsm)("L", "L", "N", "U", &m1, &n22, ONE, A_TL, ldA, Worku, ldWorku); // A_TRr = Worku LAPACK(slacpy)("L", &m1, &n22, Worku, ldWorku, A_TRr, ldA); // A_BRtl = A_BRtl - A_BLt * A_TRl BLAS(sgemm)("N", "N", &m21, &n21, &n1, MONE, A_BLt, ldA, A_TRl, ldA, ONE, A_BRtl, ldA); // A_BRbl = A_BRbl - Workl * A_TRl BLAS(sgemm)("N", "N", &m22, &n21, &n1, MONE, Workl, ldWorkl, A_TRl, ldA, ONE, A_BRbl, ldA); // A_BRtr = A_BRtr - A_BLt * Worku BLAS(sgemm)("N", "N", &m21, &n22, &n1, MONE, A_BLt, ldA, Worku, ldWorku, ONE, A_BRtr, ldA); // A_BRbr = A_BRbr - Workl * Worku BLAS(sgemm)("N", "N", &m22, &n22, &n1, MONE, Workl, ldWorkl, Worku, ldWorku, ONE, A_BRbr, ldA); // partially undo swaps in A_L for (i = mn1 - 1; i >= 0; i--) { const blasint ip = ipiv_T[i] - 1; if (ip != i) { if (ip < *kl) BLAS(sswap)(&i, A_L + i, ldA, A_L + ip, ldA); else BLAS(sswap)(&i, A_L + i, ldA, Workl + ip - *kl, ldWorkl); } } // recursion(Ab_BR, ipiv_B) //cause of infinite recursion here ? // RELAPACK_sgbtrf_rec(&m2, &n2, kl, ku, Ab_BR, ldAb, ipiv_B, Workl, ldWorkl, Worku, ldWorku, info); LAPACK(sgbtf2)(&m2, &n2, kl, ku, Ab_BR, ldAb, ipiv_B, info); if (*info) *info += n1; // shift pivots for (i = 0; i < mn2; i++) ipiv_B[i] += n1; }