#include "relapack.h" #include #include static void RELAPACK_dgbtrf_rec(const blasint *, const blasint *, const blasint *, const blasint *, double *, const blasint *, blasint *, double *, const blasint *, double *, const blasint *, blasint *); /** DGBTRF computes an LU factorization of a real m-by-n band matrix A using partial pivoting with row interchanges. * * This routine is functionally equivalent to LAPACK's dgbtrf. * For details on its interface, see * http://www.netlib.org/lapack/explore-html/da/d87/dgbtrf_8f.html * */ void RELAPACK_dgbtrf( const blasint *m, const blasint *n, const blasint *kl, const blasint *ku, double *Ab, const blasint *ldAb, blasint *ipiv, blasint *info ) { // Check arguments *info = 0; if (*m < 0) *info = -1; else if (*n < 0) *info = -2; else if (*kl < 0) *info = -3; else if (*ku < 0) *info = -4; else if (*ldAb < 2 * *kl + *ku + 1) *info = -6; if (*info) { const blasint minfo = -*info; LAPACK(xerbla)("DGBTRF", &minfo, strlen("DGBTRF")); return; } if (*m == 0 || *n == 0) return; // Constant const double ZERO[] = { 0. }; // Result upper band width const blasint kv = *ku + *kl; // Unskew A const blasint ldA[] = { *ldAb - 1 }; double *const A = Ab + kv; // Zero upper diagonal fill-in elements blasint i, j; for (j = 0; j < *n; j++) { double *const A_j = A + *ldA * j; for (i = MAX(0, j - kv); i < j - *ku; i++) A_j[i] = 0.; } // Allocate work space const blasint n1 = DREC_SPLIT(*n); const blasint mWorkl = abs( (kv > n1) ? MAX(1, *m - *kl) : kv); const blasint nWorkl = abs( (kv > n1) ? n1 : kv); const blasint mWorku = abs( (*kl > n1) ? n1 : *kl); // const blasint nWorku = abs( (*kl > n1) ? MAX(0, *n - *kl) : *kl); const blasint nWorku = abs( (*kl > n1) ? MAX(1, *n - *kl) : *kl); double *Workl = malloc(mWorkl * nWorkl * sizeof(double)); double *Worku = malloc(mWorku * nWorku * sizeof(double)); LAPACK(dlaset)("L", &mWorkl, &nWorkl, ZERO, ZERO, Workl, &mWorkl); LAPACK(dlaset)("U", &mWorku, &nWorku, ZERO, ZERO, Worku, &mWorku); // Recursive kernel RELAPACK_dgbtrf_rec(m, n, kl, ku, Ab, ldAb, ipiv, Workl, &mWorkl, Worku, &mWorku, info); // Free work space free(Workl); free(Worku); } /** dgbtrf's recursive compute kernel */ static void RELAPACK_dgbtrf_rec( const blasint *m, const blasint *n, const blasint *kl, const blasint *ku, double *Ab, const blasint *ldAb, blasint *ipiv, double *Workl, const blasint *ldWorkl, double *Worku, const blasint *ldWorku, blasint *info ) { if (*n <= MAX(CROSSOVER_DGBTRF, 1) || *n > *kl || *ldAb == 1) { // Unblocked LAPACK(dgbtf2)(m, n, kl, ku, Ab, ldAb, ipiv, info); return; } // Constants const double ONE[] = { 1. }; const double MONE[] = { -1. }; const blasint iONE[] = { 1 }; // Loop iterators blasint i, j; // Output upper band width const blasint kv = *ku + *kl; // Unskew A const blasint ldA[] = { *ldAb - 1 }; double *const A = Ab + kv; // Splitting const blasint n1 = MIN(DREC_SPLIT(*n), *kl); const blasint n2 = *n - n1; const blasint m1 = MIN(n1, *m); const blasint m2 = *m - m1; const blasint mn1 = MIN(m1, n1); const blasint mn2 = MIN(m2, n2); // Ab_L * // Ab_BR double *const Ab_L = Ab; double *const Ab_BR = Ab + *ldAb * n1; // A_L A_R double *const A_L = A; double *const A_R = A + *ldA * n1; // A_TL A_TR // A_BL A_BR double *const A_TL = A; double *const A_TR = A + *ldA * n1; double *const A_BL = A + m1; double *const A_BR = A + *ldA * n1 + m1; // ipiv_T // ipiv_B blasint *const ipiv_T = ipiv; blasint *const ipiv_B = ipiv + n1; // Banded splitting const blasint n21 = MIN(n2, kv - n1); const blasint n22 = MIN(n2 - n21, n1); const blasint m21 = MIN(m2, *kl - m1); const blasint m22 = MIN(m2 - m21, m1); // n1 n21 n22 // m * A_Rl ARr double *const A_Rl = A_R; double *const A_Rr = A_R + *ldA * n21; // n1 n21 n22 // m1 * A_TRl A_TRr // m21 A_BLt A_BRtl A_BRtr // m22 A_BLb A_BRbl A_BRbr double *const A_TRl = A_TR; double *const A_TRr = A_TR + *ldA * n21; double *const A_BLt = A_BL; double *const A_BLb = A_BL + m21; double *const A_BRtl = A_BR; double *const A_BRtr = A_BR + *ldA * n21; double *const A_BRbl = A_BR + m21; double *const A_BRbr = A_BR + *ldA * n21 + m21; // recursion(Ab_L, ipiv_T) RELAPACK_dgbtrf_rec(m, &n1, kl, ku, Ab_L, ldAb, ipiv_T, Workl, ldWorkl, Worku, ldWorku, info); // Workl = A_BLb LAPACK(dlacpy)("U", &m22, &n1, A_BLb, ldA, Workl, ldWorkl); // partially redo swaps in A_L for (i = 0; i < mn1; i++) { const blasint ip = ipiv_T[i] - 1; if (ip != i) { if (ip < *kl) BLAS(dswap)(&i, A_L + i, ldA, A_L + ip, ldA); else BLAS(dswap)(&i, A_L + i, ldA, Workl + ip - *kl, ldWorkl); } } // apply pivots to A_Rl LAPACK(dlaswp)(&n21, A_Rl, ldA, iONE, &mn1, ipiv_T, iONE); // apply pivots to A_Rr columnwise for (j = 0; j < n22; j++) { double *const A_Rrj = A_Rr + *ldA * j; for (i = j; i < mn1; i++) { const blasint ip = ipiv_T[i] - 1; if (ip != i) { const double tmp = A_Rrj[i]; A_Rrj[i] = A_Rr[ip]; A_Rrj[ip] = tmp; } } } // A_TRl = A_TL \ A_TRl BLAS(dtrsm)("L", "L", "N", "U", &m1, &n21, ONE, A_TL, ldA, A_TRl, ldA); // Worku = A_TRr LAPACK(dlacpy)("L", &m1, &n22, A_TRr, ldA, Worku, ldWorku); // Worku = A_TL \ Worku if (ldWorku <= 0) return; BLAS(dtrsm)("L", "L", "N", "U", &m1, &n22, ONE, A_TL, ldA, Worku, ldWorku); // A_TRr = Worku LAPACK(dlacpy)("L", &m1, &n22, Worku, ldWorku, A_TRr, ldA); // A_BRtl = A_BRtl - A_BLt * A_TRl BLAS(dgemm)("N", "N", &m21, &n21, &n1, MONE, A_BLt, ldA, A_TRl, ldA, ONE, A_BRtl, ldA); // A_BRbl = A_BRbl - Workl * A_TRl BLAS(dgemm)("N", "N", &m22, &n21, &n1, MONE, Workl, ldWorkl, A_TRl, ldA, ONE, A_BRbl, ldA); // A_BRtr = A_BRtr - A_BLt * Worku BLAS(dgemm)("N", "N", &m21, &n22, &n1, MONE, A_BLt, ldA, Worku, ldWorku, ONE, A_BRtr, ldA); // A_BRbr = A_BRbr - Workl * Worku BLAS(dgemm)("N", "N", &m22, &n22, &n1, MONE, Workl, ldWorkl, Worku, ldWorku, ONE, A_BRbr, ldA); // partially undo swaps in A_L for (i = mn1 - 1; i >= 0; i--) { const blasint ip = ipiv_T[i] - 1; if (ip != i) { if (ip < *kl) BLAS(dswap)(&i, A_L + i, ldA, A_L + ip, ldA); else BLAS(dswap)(&i, A_L + i, ldA, Workl + ip - *kl, ldWorkl); } } // recursion(Ab_BR, ipiv_B) // RELAPACK_dgbtrf_rec(&m2, &n2, kl, ku, Ab_BR, ldAb, ipiv_B, Workl, ldWorkl, Worku, ldWorku, info); LAPACK(dgbtf2)(&m2, &n2, kl, ku, Ab_BR, ldAb, ipiv_B, info); if (*info) *info += n1; // shift pivots for (i = 0; i < mn2; i++) ipiv_B[i] += n1; }