diff options
author | Martin Kroeker <martin@ruby.chemie.uni-freiburg.de> | 2021-02-28 18:50:26 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2021-02-28 18:50:26 +0100 |
commit | 9b7b1da133a6c9c6d77d36dc37247044551ccd75 (patch) | |
tree | 711b74d6905c9921e89755332a579bb324da89e9 /lapack-netlib/TESTING | |
parent | a5ab891292052b5c6ea58ba47e3f58efc5043ce3 (diff) | |
download | openblas-9b7b1da133a6c9c6d77d36dc37247044551ccd75.tar.gz openblas-9b7b1da133a6c9c6d77d36dc37247044551ccd75.tar.bz2 openblas-9b7b1da133a6c9c6d77d36dc37247044551ccd75.zip |
Add rewritten dchkee.F from Reference-LAPACK PR335
Diffstat (limited to 'lapack-netlib/TESTING')
-rw-r--r-- | lapack-netlib/TESTING/EIG/dchkee.F | 2538 |
1 files changed, 2538 insertions, 0 deletions
diff --git a/lapack-netlib/TESTING/EIG/dchkee.F b/lapack-netlib/TESTING/EIG/dchkee.F new file mode 100644 index 000000000..ee22ce33d --- /dev/null +++ b/lapack-netlib/TESTING/EIG/dchkee.F @@ -0,0 +1,2538 @@ +*> \brief \b DCHKEE +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +* Definition: +* =========== +* +* PROGRAM DCHKEE +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DCHKEE tests the DOUBLE PRECISION LAPACK subroutines for the matrix +*> eigenvalue problem. The test paths in this version are +*> +*> NEP (Nonsymmetric Eigenvalue Problem): +*> Test DGEHRD, DORGHR, DHSEQR, DTREVC, DHSEIN, and DORMHR +*> +*> SEP (Symmetric Eigenvalue Problem): +*> Test DSYTRD, DORGTR, DSTEQR, DSTERF, DSTEIN, DSTEDC, +*> and drivers DSYEV(X), DSBEV(X), DSPEV(X), DSTEV(X), +*> DSYEVD, DSBEVD, DSPEVD, DSTEVD +*> +*> SVD (Singular Value Decomposition): +*> Test DGEBRD, DORGBR, DBDSQR, DBDSDC +*> and the drivers DGESVD, DGESDD +*> +*> DEV (Nonsymmetric Eigenvalue/eigenvector Driver): +*> Test DGEEV +*> +*> DES (Nonsymmetric Schur form Driver): +*> Test DGEES +*> +*> DVX (Nonsymmetric Eigenvalue/eigenvector Expert Driver): +*> Test DGEEVX +*> +*> DSX (Nonsymmetric Schur form Expert Driver): +*> Test DGEESX +*> +*> DGG (Generalized Nonsymmetric Eigenvalue Problem): +*> Test DGGHD3, DGGBAL, DGGBAK, DHGEQZ, and DTGEVC +*> +*> DGS (Generalized Nonsymmetric Schur form Driver): +*> Test DGGES +*> +*> DGV (Generalized Nonsymmetric Eigenvalue/eigenvector Driver): +*> Test DGGEV +*> +*> DGX (Generalized Nonsymmetric Schur form Expert Driver): +*> Test DGGESX +*> +*> DXV (Generalized Nonsymmetric Eigenvalue/eigenvector Expert Driver): +*> Test DGGEVX +*> +*> DSG (Symmetric Generalized Eigenvalue Problem): +*> Test DSYGST, DSYGV, DSYGVD, DSYGVX, DSPGST, DSPGV, DSPGVD, +*> DSPGVX, DSBGST, DSBGV, DSBGVD, and DSBGVX +*> +*> DSB (Symmetric Band Eigenvalue Problem): +*> Test DSBTRD +*> +*> DBB (Band Singular Value Decomposition): +*> Test DGBBRD +*> +*> DEC (Eigencondition estimation): +*> Test DLALN2, DLASY2, DLAEQU, DLAEXC, DTRSYL, DTREXC, DTRSNA, +*> DTRSEN, and DLAQTR +*> +*> DBL (Balancing a general matrix) +*> Test DGEBAL +*> +*> DBK (Back transformation on a balanced matrix) +*> Test DGEBAK +*> +*> DGL (Balancing a matrix pair) +*> Test DGGBAL +*> +*> DGK (Back transformation on a matrix pair) +*> Test DGGBAK +*> +*> GLM (Generalized Linear Regression Model): +*> Tests DGGGLM +*> +*> GQR (Generalized QR and RQ factorizations): +*> Tests DGGQRF and DGGRQF +*> +*> GSV (Generalized Singular Value Decomposition): +*> Tests DGGSVD, DGGSVP, DTGSJA, DLAGS2, DLAPLL, and DLAPMT +*> +*> CSD (CS decomposition): +*> Tests DORCSD +*> +*> LSE (Constrained Linear Least Squares): +*> Tests DGGLSE +*> +*> Each test path has a different set of inputs, but the data sets for +*> the driver routines xEV, xES, xVX, and xSX can be concatenated in a +*> single input file. The first line of input should contain one of the +*> 3-character path names in columns 1-3. The number of remaining lines +*> depends on what is found on the first line. +*> +*> The number of matrix types used in testing is often controllable from +*> the input file. The number of matrix types for each path, and the +*> test routine that describes them, is as follows: +*> +*> Path name(s) Types Test routine +*> +*> DHS or NEP 21 DCHKHS +*> DST or SEP 21 DCHKST (routines) +*> 18 DDRVST (drivers) +*> DBD or SVD 16 DCHKBD (routines) +*> 5 DDRVBD (drivers) +*> DEV 21 DDRVEV +*> DES 21 DDRVES +*> DVX 21 DDRVVX +*> DSX 21 DDRVSX +*> DGG 26 DCHKGG (routines) +*> DGS 26 DDRGES +*> DGX 5 DDRGSX +*> DGV 26 DDRGEV +*> DXV 2 DDRGVX +*> DSG 21 DDRVSG +*> DSB 15 DCHKSB +*> DBB 15 DCHKBB +*> DEC - DCHKEC +*> DBL - DCHKBL +*> DBK - DCHKBK +*> DGL - DCHKGL +*> DGK - DCHKGK +*> GLM 8 DCKGLM +*> GQR 8 DCKGQR +*> GSV 8 DCKGSV +*> CSD 3 DCKCSD +*> LSE 8 DCKLSE +*> +*>----------------------------------------------------------------------- +*> +*> NEP input file: +*> +*> line 2: NN, INTEGER +*> Number of values of N. +*> +*> line 3: NVAL, INTEGER array, dimension (NN) +*> The values for the matrix dimension N. +*> +*> line 4: NPARMS, INTEGER +*> Number of values of the parameters NB, NBMIN, NX, NS, and +*> MAXB. +*> +*> line 5: NBVAL, INTEGER array, dimension (NPARMS) +*> The values for the blocksize NB. +*> +*> line 6: NBMIN, INTEGER array, dimension (NPARMS) +*> The values for the minimum blocksize NBMIN. +*> +*> line 7: NXVAL, INTEGER array, dimension (NPARMS) +*> The values for the crossover point NX. +*> +*> line 8: INMIN, INTEGER array, dimension (NPARMS) +*> LAHQR vs TTQRE crossover point, >= 11 +*> +*> line 9: INWIN, INTEGER array, dimension (NPARMS) +*> recommended deflation window size +*> +*> line 10: INIBL, INTEGER array, dimension (NPARMS) +*> nibble crossover point +*> +*> line 11: ISHFTS, INTEGER array, dimension (NPARMS) +*> number of simultaneous shifts) +*> +*> line 12: IACC22, INTEGER array, dimension (NPARMS) +*> select structured matrix multiply: 0, 1 or 2) +*> +*> line 13: THRESH +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. To have all of the test +*> ratios printed, use THRESH = 0.0 . +*> +*> line 14: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 14 was 2: +*> +*> line 15: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 15-EOF: The remaining lines occur in sets of 1 or 2 and allow +*> the user to specify the matrix types. Each line contains +*> a 3-character path name in columns 1-3, and the number +*> of matrix types must be the first nonblank item in columns +*> 4-80. If the number of matrix types is at least 1 but is +*> less than the maximum number of possible types, a second +*> line will be read to get the numbers of the matrix types to +*> be used. For example, +*> NEP 21 +*> requests all of the matrix types for the nonsymmetric +*> eigenvalue problem, while +*> NEP 4 +*> 9 10 11 12 +*> requests only matrices of type 9, 10, 11, and 12. +*> +*> The valid 3-character path names are 'NEP' or 'SHS' for the +*> nonsymmetric eigenvalue routines. +*> +*>----------------------------------------------------------------------- +*> +*> SEP or DSG input file: +*> +*> line 2: NN, INTEGER +*> Number of values of N. +*> +*> line 3: NVAL, INTEGER array, dimension (NN) +*> The values for the matrix dimension N. +*> +*> line 4: NPARMS, INTEGER +*> Number of values of the parameters NB, NBMIN, and NX. +*> +*> line 5: NBVAL, INTEGER array, dimension (NPARMS) +*> The values for the blocksize NB. +*> +*> line 6: NBMIN, INTEGER array, dimension (NPARMS) +*> The values for the minimum blocksize NBMIN. +*> +*> line 7: NXVAL, INTEGER array, dimension (NPARMS) +*> The values for the crossover point NX. +*> +*> line 8: THRESH +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 9: TSTCHK, LOGICAL +*> Flag indicating whether or not to test the LAPACK routines. +*> +*> line 10: TSTDRV, LOGICAL +*> Flag indicating whether or not to test the driver routines. +*> +*> line 11: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 12: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 12 was 2: +*> +*> line 13: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 13-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path names are 'SEP' or 'SST' for the +*> symmetric eigenvalue routines and driver routines, and +*> 'DSG' for the routines for the symmetric generalized +*> eigenvalue problem. +*> +*>----------------------------------------------------------------------- +*> +*> SVD input file: +*> +*> line 2: NN, INTEGER +*> Number of values of M and N. +*> +*> line 3: MVAL, INTEGER array, dimension (NN) +*> The values for the matrix row dimension M. +*> +*> line 4: NVAL, INTEGER array, dimension (NN) +*> The values for the matrix column dimension N. +*> +*> line 5: NPARMS, INTEGER +*> Number of values of the parameter NB, NBMIN, NX, and NRHS. +*> +*> line 6: NBVAL, INTEGER array, dimension (NPARMS) +*> The values for the blocksize NB. +*> +*> line 7: NBMIN, INTEGER array, dimension (NPARMS) +*> The values for the minimum blocksize NBMIN. +*> +*> line 8: NXVAL, INTEGER array, dimension (NPARMS) +*> The values for the crossover point NX. +*> +*> line 9: NSVAL, INTEGER array, dimension (NPARMS) +*> The values for the number of right hand sides NRHS. +*> +*> line 10: THRESH +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 11: TSTCHK, LOGICAL +*> Flag indicating whether or not to test the LAPACK routines. +*> +*> line 12: TSTDRV, LOGICAL +*> Flag indicating whether or not to test the driver routines. +*> +*> line 13: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 14: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 14 was 2: +*> +*> line 15: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 15-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path names are 'SVD' or 'SBD' for both the +*> SVD routines and the SVD driver routines. +*> +*>----------------------------------------------------------------------- +*> +*> DEV and DES data files: +*> +*> line 1: 'DEV' or 'DES' in columns 1 to 3. +*> +*> line 2: NSIZES, INTEGER +*> Number of sizes of matrices to use. Should be at least 0 +*> and at most 20. If NSIZES = 0, no testing is done +*> (although the remaining 3 lines are still read). +*> +*> line 3: NN, INTEGER array, dimension(NSIZES) +*> Dimensions of matrices to be tested. +*> +*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs +*> These integer parameters determine how blocking is done +*> (see ILAENV for details) +*> NB : block size +*> NBMIN : minimum block size +*> NX : minimum dimension for blocking +*> NS : number of shifts in xHSEQR +*> NBCOL : minimum column dimension for blocking +*> +*> line 5: THRESH, REAL +*> The test threshold against which computed residuals are +*> compared. Should generally be in the range from 10. to 20. +*> If it is 0., all test case data will be printed. +*> +*> line 6: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits. +*> +*> line 7: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 7 was 2: +*> +*> line 8: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 9 and following: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'DEV' to test SGEEV, or +*> 'DES' to test SGEES. +*> +*>----------------------------------------------------------------------- +*> +*> The DVX data has two parts. The first part is identical to DEV, +*> and the second part consists of test matrices with precomputed +*> solutions. +*> +*> line 1: 'DVX' in columns 1-3. +*> +*> line 2: NSIZES, INTEGER +*> If NSIZES = 0, no testing of randomly generated examples +*> is done, but any precomputed examples are tested. +*> +*> line 3: NN, INTEGER array, dimension(NSIZES) +*> +*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs +*> +*> line 5: THRESH, REAL +*> +*> line 6: TSTERR, LOGICAL +*> +*> line 7: NEWSD, INTEGER +*> +*> If line 7 was 2: +*> +*> line 8: INTEGER array, dimension (4) +*> +*> lines 9 and following: The first line contains 'DVX' in columns 1-3 +*> followed by the number of matrix types, possibly with +*> a second line to specify certain matrix types. +*> If the number of matrix types = 0, no testing of randomly +*> generated examples is done, but any precomputed examples +*> are tested. +*> +*> remaining lines : Each matrix is stored on 1+2*N lines, where N is +*> its dimension. The first line contains the dimension (a +*> single integer). The next N lines contain the matrix, one +*> row per line. The last N lines correspond to each +*> eigenvalue. Each of these last N lines contains 4 real +*> values: the real part of the eigenvalue, the imaginary +*> part of the eigenvalue, the reciprocal condition number of +*> the eigenvalues, and the reciprocal condition number of the +*> eigenvector. The end of data is indicated by dimension N=0. +*> Even if no data is to be tested, there must be at least one +*> line containing N=0. +*> +*>----------------------------------------------------------------------- +*> +*> The DSX data is like DVX. The first part is identical to DEV, and the +*> second part consists of test matrices with precomputed solutions. +*> +*> line 1: 'DSX' in columns 1-3. +*> +*> line 2: NSIZES, INTEGER +*> If NSIZES = 0, no testing of randomly generated examples +*> is done, but any precomputed examples are tested. +*> +*> line 3: NN, INTEGER array, dimension(NSIZES) +*> +*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs +*> +*> line 5: THRESH, REAL +*> +*> line 6: TSTERR, LOGICAL +*> +*> line 7: NEWSD, INTEGER +*> +*> If line 7 was 2: +*> +*> line 8: INTEGER array, dimension (4) +*> +*> lines 9 and following: The first line contains 'DSX' in columns 1-3 +*> followed by the number of matrix types, possibly with +*> a second line to specify certain matrix types. +*> If the number of matrix types = 0, no testing of randomly +*> generated examples is done, but any precomputed examples +*> are tested. +*> +*> remaining lines : Each matrix is stored on 3+N lines, where N is its +*> dimension. The first line contains the dimension N and the +*> dimension M of an invariant subspace. The second line +*> contains M integers, identifying the eigenvalues in the +*> invariant subspace (by their position in a list of +*> eigenvalues ordered by increasing real part). The next N +*> lines contain the matrix. The last line contains the +*> reciprocal condition number for the average of the selected +*> eigenvalues, and the reciprocal condition number for the +*> corresponding right invariant subspace. The end of data is +*> indicated by a line containing N=0 and M=0. Even if no data +*> is to be tested, there must be at least one line containing +*> N=0 and M=0. +*> +*>----------------------------------------------------------------------- +*> +*> DGG input file: +*> +*> line 2: NN, INTEGER +*> Number of values of N. +*> +*> line 3: NVAL, INTEGER array, dimension (NN) +*> The values for the matrix dimension N. +*> +*> line 4: NPARMS, INTEGER +*> Number of values of the parameters NB, NBMIN, NS, MAXB, and +*> NBCOL. +*> +*> line 5: NBVAL, INTEGER array, dimension (NPARMS) +*> The values for the blocksize NB. +*> +*> line 6: NBMIN, INTEGER array, dimension (NPARMS) +*> The values for NBMIN, the minimum row dimension for blocks. +*> +*> line 7: NSVAL, INTEGER array, dimension (NPARMS) +*> The values for the number of shifts. +*> +*> line 8: MXBVAL, INTEGER array, dimension (NPARMS) +*> The values for MAXB, used in determining minimum blocksize. +*> +*> line 9: IACC22, INTEGER array, dimension (NPARMS) +*> select structured matrix multiply: 1 or 2) +*> +*> line 10: NBCOL, INTEGER array, dimension (NPARMS) +*> The values for NBCOL, the minimum column dimension for +*> blocks. +*> +*> line 11: THRESH +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 12: TSTCHK, LOGICAL +*> Flag indicating whether or not to test the LAPACK routines. +*> +*> line 13: TSTDRV, LOGICAL +*> Flag indicating whether or not to test the driver routines. +*> +*> line 14: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 15: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 15 was 2: +*> +*> line 16: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 17-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'DGG' for the generalized +*> eigenvalue problem routines and driver routines. +*> +*>----------------------------------------------------------------------- +*> +*> DGS and DGV input files: +*> +*> line 1: 'DGS' or 'DGV' in columns 1 to 3. +*> +*> line 2: NN, INTEGER +*> Number of values of N. +*> +*> line 3: NVAL, INTEGER array, dimension(NN) +*> Dimensions of matrices to be tested. +*> +*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs +*> These integer parameters determine how blocking is done +*> (see ILAENV for details) +*> NB : block size +*> NBMIN : minimum block size +*> NX : minimum dimension for blocking +*> NS : number of shifts in xHGEQR +*> NBCOL : minimum column dimension for blocking +*> +*> line 5: THRESH, REAL +*> The test threshold against which computed residuals are +*> compared. Should generally be in the range from 10. to 20. +*> If it is 0., all test case data will be printed. +*> +*> line 6: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits. +*> +*> line 7: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 17 was 2: +*> +*> line 7: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 7-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'DGS' for the generalized +*> eigenvalue problem routines and driver routines. +*> +*>----------------------------------------------------------------------- +*> +*> DXV input files: +*> +*> line 1: 'DXV' in columns 1 to 3. +*> +*> line 2: N, INTEGER +*> Value of N. +*> +*> line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs +*> These integer parameters determine how blocking is done +*> (see ILAENV for details) +*> NB : block size +*> NBMIN : minimum block size +*> NX : minimum dimension for blocking +*> NS : number of shifts in xHGEQR +*> NBCOL : minimum column dimension for blocking +*> +*> line 4: THRESH, REAL +*> The test threshold against which computed residuals are +*> compared. Should generally be in the range from 10. to 20. +*> Information will be printed about each test for which the +*> test ratio is greater than or equal to the threshold. +*> +*> line 5: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 6: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 6 was 2: +*> +*> line 7: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> If line 2 was 0: +*> +*> line 7-EOF: Precomputed examples are tested. +*> +*> remaining lines : Each example is stored on 3+2*N lines, where N is +*> its dimension. The first line contains the dimension (a +*> single integer). The next N lines contain the matrix A, one +*> row per line. The next N lines contain the matrix B. The +*> next line contains the reciprocals of the eigenvalue +*> condition numbers. The last line contains the reciprocals of +*> the eigenvector condition numbers. The end of data is +*> indicated by dimension N=0. Even if no data is to be tested, +*> there must be at least one line containing N=0. +*> +*>----------------------------------------------------------------------- +*> +*> DGX input files: +*> +*> line 1: 'DGX' in columns 1 to 3. +*> +*> line 2: N, INTEGER +*> Value of N. +*> +*> line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs +*> These integer parameters determine how blocking is done +*> (see ILAENV for details) +*> NB : block size +*> NBMIN : minimum block size +*> NX : minimum dimension for blocking +*> NS : number of shifts in xHGEQR +*> NBCOL : minimum column dimension for blocking +*> +*> line 4: THRESH, REAL +*> The test threshold against which computed residuals are +*> compared. Should generally be in the range from 10. to 20. +*> Information will be printed about each test for which the +*> test ratio is greater than or equal to the threshold. +*> +*> line 5: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 6: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 6 was 2: +*> +*> line 7: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> If line 2 was 0: +*> +*> line 7-EOF: Precomputed examples are tested. +*> +*> remaining lines : Each example is stored on 3+2*N lines, where N is +*> its dimension. The first line contains the dimension (a +*> single integer). The next line contains an integer k such +*> that only the last k eigenvalues will be selected and appear +*> in the leading diagonal blocks of $A$ and $B$. The next N +*> lines contain the matrix A, one row per line. The next N +*> lines contain the matrix B. The last line contains the +*> reciprocal of the eigenvalue cluster condition number and the +*> reciprocal of the deflating subspace (associated with the +*> selected eigencluster) condition number. The end of data is +*> indicated by dimension N=0. Even if no data is to be tested, +*> there must be at least one line containing N=0. +*> +*>----------------------------------------------------------------------- +*> +*> DSB input file: +*> +*> line 2: NN, INTEGER +*> Number of values of N. +*> +*> line 3: NVAL, INTEGER array, dimension (NN) +*> The values for the matrix dimension N. +*> +*> line 4: NK, INTEGER +*> Number of values of K. +*> +*> line 5: KVAL, INTEGER array, dimension (NK) +*> The values for the matrix dimension K. +*> +*> line 6: THRESH +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 7: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 7 was 2: +*> +*> line 8: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 8-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'DSB'. +*> +*>----------------------------------------------------------------------- +*> +*> DBB input file: +*> +*> line 2: NN, INTEGER +*> Number of values of M and N. +*> +*> line 3: MVAL, INTEGER array, dimension (NN) +*> The values for the matrix row dimension M. +*> +*> line 4: NVAL, INTEGER array, dimension (NN) +*> The values for the matrix column dimension N. +*> +*> line 4: NK, INTEGER +*> Number of values of K. +*> +*> line 5: KVAL, INTEGER array, dimension (NK) +*> The values for the matrix bandwidth K. +*> +*> line 6: NPARMS, INTEGER +*> Number of values of the parameter NRHS +*> +*> line 7: NSVAL, INTEGER array, dimension (NPARMS) +*> The values for the number of right hand sides NRHS. +*> +*> line 8: THRESH +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 9: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 9 was 2: +*> +*> line 10: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 10-EOF: Lines specifying matrix types, as for SVD. +*> The 3-character path name is 'DBB'. +*> +*>----------------------------------------------------------------------- +*> +*> DEC input file: +*> +*> line 2: THRESH, REAL +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> lines 3-EOF: +*> +*> Input for testing the eigencondition routines consists of a set of +*> specially constructed test cases and their solutions. The data +*> format is not intended to be modified by the user. +*> +*>----------------------------------------------------------------------- +*> +*> DBL and DBK input files: +*> +*> line 1: 'DBL' in columns 1-3 to test SGEBAL, or 'DBK' in +*> columns 1-3 to test SGEBAK. +*> +*> The remaining lines consist of specially constructed test cases. +*> +*>----------------------------------------------------------------------- +*> +*> DGL and DGK input files: +*> +*> line 1: 'DGL' in columns 1-3 to test DGGBAL, or 'DGK' in +*> columns 1-3 to test DGGBAK. +*> +*> The remaining lines consist of specially constructed test cases. +*> +*>----------------------------------------------------------------------- +*> +*> GLM data file: +*> +*> line 1: 'GLM' in columns 1 to 3. +*> +*> line 2: NN, INTEGER +*> Number of values of M, P, and N. +*> +*> line 3: MVAL, INTEGER array, dimension(NN) +*> Values of M (row dimension). +*> +*> line 4: PVAL, INTEGER array, dimension(NN) +*> Values of P (row dimension). +*> +*> line 5: NVAL, INTEGER array, dimension(NN) +*> Values of N (column dimension), note M <= N <= M+P. +*> +*> line 6: THRESH, REAL +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 7: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 8: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 8 was 2: +*> +*> line 9: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 9-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'GLM' for the generalized +*> linear regression model routines. +*> +*>----------------------------------------------------------------------- +*> +*> GQR data file: +*> +*> line 1: 'GQR' in columns 1 to 3. +*> +*> line 2: NN, INTEGER +*> Number of values of M, P, and N. +*> +*> line 3: MVAL, INTEGER array, dimension(NN) +*> Values of M. +*> +*> line 4: PVAL, INTEGER array, dimension(NN) +*> Values of P. +*> +*> line 5: NVAL, INTEGER array, dimension(NN) +*> Values of N. +*> +*> line 6: THRESH, REAL +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 7: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 8: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 8 was 2: +*> +*> line 9: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 9-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'GQR' for the generalized +*> QR and RQ routines. +*> +*>----------------------------------------------------------------------- +*> +*> GSV data file: +*> +*> line 1: 'GSV' in columns 1 to 3. +*> +*> line 2: NN, INTEGER +*> Number of values of M, P, and N. +*> +*> line 3: MVAL, INTEGER array, dimension(NN) +*> Values of M (row dimension). +*> +*> line 4: PVAL, INTEGER array, dimension(NN) +*> Values of P (row dimension). +*> +*> line 5: NVAL, INTEGER array, dimension(NN) +*> Values of N (column dimension). +*> +*> line 6: THRESH, REAL +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 7: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 8: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 8 was 2: +*> +*> line 9: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 9-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'GSV' for the generalized +*> SVD routines. +*> +*>----------------------------------------------------------------------- +*> +*> CSD data file: +*> +*> line 1: 'CSD' in columns 1 to 3. +*> +*> line 2: NM, INTEGER +*> Number of values of M, P, and N. +*> +*> line 3: MVAL, INTEGER array, dimension(NM) +*> Values of M (row and column dimension of orthogonal matrix). +*> +*> line 4: PVAL, INTEGER array, dimension(NM) +*> Values of P (row dimension of top-left block). +*> +*> line 5: NVAL, INTEGER array, dimension(NM) +*> Values of N (column dimension of top-left block). +*> +*> line 6: THRESH, REAL +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 7: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 8: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 8 was 2: +*> +*> line 9: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 9-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'CSD' for the CSD routine. +*> +*>----------------------------------------------------------------------- +*> +*> LSE data file: +*> +*> line 1: 'LSE' in columns 1 to 3. +*> +*> line 2: NN, INTEGER +*> Number of values of M, P, and N. +*> +*> line 3: MVAL, INTEGER array, dimension(NN) +*> Values of M. +*> +*> line 4: PVAL, INTEGER array, dimension(NN) +*> Values of P. +*> +*> line 5: NVAL, INTEGER array, dimension(NN) +*> Values of N, note P <= N <= P+M. +*> +*> line 6: THRESH, REAL +*> Threshold value for the test ratios. Information will be +*> printed about each test for which the test ratio is greater +*> than or equal to the threshold. +*> +*> line 7: TSTERR, LOGICAL +*> Flag indicating whether or not to test the error exits for +*> the LAPACK routines and driver routines. +*> +*> line 8: NEWSD, INTEGER +*> A code indicating how to set the random number seed. +*> = 0: Set the seed to a default value before each run +*> = 1: Initialize the seed to a default value only before the +*> first run +*> = 2: Like 1, but use the seed values on the next line +*> +*> If line 8 was 2: +*> +*> line 9: INTEGER array, dimension (4) +*> Four integer values for the random number seed. +*> +*> lines 9-EOF: Lines specifying matrix types, as for NEP. +*> The 3-character path name is 'GSV' for the generalized +*> SVD routines. +*> +*>----------------------------------------------------------------------- +*> +*> NMAX is currently set to 132 and must be at least 12 for some of the +*> precomputed examples, and LWORK = NMAX*(5*NMAX+5)+1 in the parameter +*> statements below. For SVD, we assume NRHS may be as big as N. The +*> parameter NEED is set to 14 to allow for 14 N-by-N matrices for DGG. +*> \endverbatim +* +* Arguments: +* ========== +* +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date June 2016 +* +*> \ingroup double_eig +* +* ===================================================================== + PROGRAM DCHKEE +* +#if defined(_OPENMP) + use omp_lib +#endif +* +* -- LAPACK test routine (version 3.7.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* June 2016 +* +* ===================================================================== +* +* .. Parameters .. + INTEGER NMAX + PARAMETER ( NMAX = 132 ) + INTEGER NCMAX + PARAMETER ( NCMAX = 20 ) + INTEGER NEED + PARAMETER ( NEED = 14 ) + INTEGER LWORK + PARAMETER ( LWORK = NMAX*( 5*NMAX+5 )+1 ) + INTEGER LIWORK + PARAMETER ( LIWORK = NMAX*( 5*NMAX+20 ) ) + INTEGER MAXIN + PARAMETER ( MAXIN = 20 ) + INTEGER MAXT + PARAMETER ( MAXT = 30 ) + INTEGER NIN, NOUT + PARAMETER ( NIN = 5, NOUT = 6 ) +* .. +* .. Local Scalars .. + LOGICAL CSD, DBB, DGG, DSB, FATAL, GLM, GQR, GSV, LSE, + $ NEP, DBK, DBL, SEP, DES, DEV, DGK, DGL, DGS, + $ DGV, DGX, DSX, SVD, DVX, DXV, TSTCHK, TSTDIF, + $ TSTDRV, TSTERR + CHARACTER C1 + CHARACTER*3 C3, PATH + CHARACTER*32 VNAME + CHARACTER*10 INTSTR + CHARACTER*80 LINE + INTEGER I, I1, IC, INFO, ITMP, K, LENP, MAXTYP, NEWSD, + $ NK, NN, NPARMS, NRHS, NTYPES, + $ VERS_MAJOR, VERS_MINOR, VERS_PATCH, N_THREADS + DOUBLE PRECISION EPS, S1, S2, THRESH, THRSHN +* .. +* .. Local Arrays .. + LOGICAL DOTYPE( MAXT ), LOGWRK( NMAX ) + INTEGER IOLDSD( 4 ), ISEED( 4 ), IWORK( LIWORK ), + $ KVAL( MAXIN ), MVAL( MAXIN ), MXBVAL( MAXIN ), + $ NBCOL( MAXIN ), NBMIN( MAXIN ), NBVAL( MAXIN ), + $ NSVAL( MAXIN ), NVAL( MAXIN ), NXVAL( MAXIN ), + $ PVAL( MAXIN ) + INTEGER INMIN( MAXIN ), INWIN( MAXIN ), INIBL( MAXIN ), + $ ISHFTS( MAXIN ), IACC22( MAXIN ) + DOUBLE PRECISION D( NMAX, 12 ), RESULT( 500 ), TAUA( NMAX ), + $ TAUB( NMAX ), X( 5*NMAX ) +* .. +* .. Allocatable Arrays .. + INTEGER AllocateStatus + DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: WORK + DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE :: A, B, C +* .. +* .. External Functions .. + LOGICAL LSAMEN + DOUBLE PRECISION DLAMCH, DSECND + EXTERNAL LSAMEN, DLAMCH, DSECND +* .. +* .. External Subroutines .. + EXTERNAL ALAREQ, DCHKBB, DCHKBD, DCHKBK, DCHKBL, DCHKEC, + $ DCHKGG, DCHKGK, DCHKGL, DCHKHS, DCHKSB, DCHKST, + $ DCKCSD, DCKGLM, DCKGQR, DCKGSV, DCKLSE, DDRGES, + $ DDRGEV, DDRGSX, DDRGVX, DDRVBD, DDRVES, DDRVEV, + $ DDRVSG, DDRVST, DDRVSX, DDRVVX, DERRBD, + $ DERRED, DERRGG, DERRHS, DERRST, ILAVER, XLAENV, + $ DDRGES3, DDRGEV3, + $ DCHKST2STG, DDRVST2STG, DCHKSB2STG, DDRVSG2STG +* .. +* .. Intrinsic Functions .. + INTRINSIC LEN, MIN +* .. +* .. Scalars in Common .. + LOGICAL LERR, OK + CHARACTER*32 SRNAMT + INTEGER INFOT, MAXB, NPROC, NSHIFT, NUNIT, SELDIM, + $ SELOPT +* .. +* .. Arrays in Common .. + LOGICAL SELVAL( 20 ) + INTEGER IPARMS( 100 ) + DOUBLE PRECISION SELWI( 20 ), SELWR( 20 ) +* .. +* .. Common blocks .. + COMMON / CENVIR / NPROC, NSHIFT, MAXB + COMMON / INFOC / INFOT, NUNIT, OK, LERR + COMMON / SRNAMC / SRNAMT + COMMON / SSLCT / SELOPT, SELDIM, SELVAL, SELWR, SELWI + COMMON / CLAENV / IPARMS +* .. +* .. Data statements .. + DATA INTSTR / '0123456789' / + DATA IOLDSD / 0, 0, 0, 1 / +* .. +* .. Allocate memory dynamically .. +* + ALLOCATE ( A(NMAX*NMAX,NEED), STAT = AllocateStatus ) + IF (AllocateStatus /= 0) STOP "*** Not enough memory ***" + ALLOCATE ( B(NMAX*NMAX,5), STAT = AllocateStatus ) + IF (AllocateStatus /= 0) STOP "*** Not enough memory ***" + ALLOCATE ( C(NCMAX*NCMAX,NCMAX*NCMAX), STAT = AllocateStatus ) + IF (AllocateStatus /= 0) STOP "*** Not enough memory ***" + ALLOCATE ( WORK(LWORK), STAT = AllocateStatus ) + IF (AllocateStatus /= 0) STOP "*** Not enough memory ***" +* .. +* .. Executable Statements .. +* + A = 0.0 + B = 0.0 + C = 0.0 + D = 0.0 + S1 = DSECND( ) + FATAL = .FALSE. + NUNIT = NOUT +* +* Return to here to read multiple sets of data +* + 10 CONTINUE +* +* Read the first line and set the 3-character test path +* + READ( NIN, FMT = '(A80)', END = 380 )LINE + PATH = LINE( 1: 3 ) + NEP = LSAMEN( 3, PATH, 'NEP' ) .OR. LSAMEN( 3, PATH, 'DHS' ) + SEP = LSAMEN( 3, PATH, 'SEP' ) .OR. LSAMEN( 3, PATH, 'DST' ) .OR. + $ LSAMEN( 3, PATH, 'DSG' ) .OR. LSAMEN( 3, PATH, 'SE2' ) + SVD = LSAMEN( 3, PATH, 'SVD' ) .OR. LSAMEN( 3, PATH, 'DBD' ) + DEV = LSAMEN( 3, PATH, 'DEV' ) + DES = LSAMEN( 3, PATH, 'DES' ) + DVX = LSAMEN( 3, PATH, 'DVX' ) + DSX = LSAMEN( 3, PATH, 'DSX' ) + DGG = LSAMEN( 3, PATH, 'DGG' ) + DGS = LSAMEN( 3, PATH, 'DGS' ) + DGX = LSAMEN( 3, PATH, 'DGX' ) + DGV = LSAMEN( 3, PATH, 'DGV' ) + DXV = LSAMEN( 3, PATH, 'DXV' ) + DSB = LSAMEN( 3, PATH, 'DSB' ) + DBB = LSAMEN( 3, PATH, 'DBB' ) + GLM = LSAMEN( 3, PATH, 'GLM' ) + GQR = LSAMEN( 3, PATH, 'GQR' ) .OR. LSAMEN( 3, PATH, 'GRQ' ) + GSV = LSAMEN( 3, PATH, 'GSV' ) + CSD = LSAMEN( 3, PATH, 'CSD' ) + LSE = LSAMEN( 3, PATH, 'LSE' ) + DBL = LSAMEN( 3, PATH, 'DBL' ) + DBK = LSAMEN( 3, PATH, 'DBK' ) + DGL = LSAMEN( 3, PATH, 'DGL' ) + DGK = LSAMEN( 3, PATH, 'DGK' ) +* +* Report values of parameters. +* + IF( PATH.EQ.' ' ) THEN + GO TO 10 + ELSE IF( NEP ) THEN + WRITE( NOUT, FMT = 9987 ) + ELSE IF( SEP ) THEN + WRITE( NOUT, FMT = 9986 ) + ELSE IF( SVD ) THEN + WRITE( NOUT, FMT = 9985 ) + ELSE IF( DEV ) THEN + WRITE( NOUT, FMT = 9979 ) + ELSE IF( DES ) THEN + WRITE( NOUT, FMT = 9978 ) + ELSE IF( DVX ) THEN + WRITE( NOUT, FMT = 9977 ) + ELSE IF( DSX ) THEN + WRITE( NOUT, FMT = 9976 ) + ELSE IF( DGG ) THEN + WRITE( NOUT, FMT = 9975 ) + ELSE IF( DGS ) THEN + WRITE( NOUT, FMT = 9964 ) + ELSE IF( DGX ) THEN + WRITE( NOUT, FMT = 9965 ) + ELSE IF( DGV ) THEN + WRITE( NOUT, FMT = 9963 ) + ELSE IF( DXV ) THEN + WRITE( NOUT, FMT = 9962 ) + ELSE IF( DSB ) THEN + WRITE( NOUT, FMT = 9974 ) + ELSE IF( DBB ) THEN + WRITE( NOUT, FMT = 9967 ) + ELSE IF( GLM ) THEN + WRITE( NOUT, FMT = 9971 ) + ELSE IF( GQR ) THEN + WRITE( NOUT, FMT = 9970 ) + ELSE IF( GSV ) THEN + WRITE( NOUT, FMT = 9969 ) + ELSE IF( CSD ) THEN + WRITE( NOUT, FMT = 9960 ) + ELSE IF( LSE ) THEN + WRITE( NOUT, FMT = 9968 ) + ELSE IF( DBL ) THEN +* +* DGEBAL: Balancing +* + CALL DCHKBL( NIN, NOUT ) + GO TO 10 + ELSE IF( DBK ) THEN +* +* DGEBAK: Back transformation +* + CALL DCHKBK( NIN, NOUT ) + GO TO 10 + ELSE IF( DGL ) THEN +* +* DGGBAL: Balancing +* + CALL DCHKGL( NIN, NOUT ) + GO TO 10 + ELSE IF( DGK ) THEN +* +* DGGBAK: Back transformation +* + CALL DCHKGK( NIN, NOUT ) + GO TO 10 + ELSE IF( LSAMEN( 3, PATH, 'DEC' ) ) THEN +* +* DEC: Eigencondition estimation +* + READ( NIN, FMT = * )THRESH + CALL XLAENV( 1, 1 ) + CALL XLAENV( 12, 11 ) + CALL XLAENV( 13, 2 ) + CALL XLAENV( 14, 0 ) + CALL XLAENV( 15, 2 ) + CALL XLAENV( 16, 2 ) + TSTERR = .TRUE. + CALL DCHKEC( THRESH, TSTERR, NIN, NOUT ) + GO TO 10 + ELSE + WRITE( NOUT, FMT = 9992 )PATH + GO TO 10 + END IF + CALL ILAVER( VERS_MAJOR, VERS_MINOR, VERS_PATCH ) + WRITE( NOUT, FMT = 9972 ) VERS_MAJOR, VERS_MINOR, VERS_PATCH + WRITE( NOUT, FMT = 9984 ) +* +* Read the number of values of M, P, and N. +* + READ( NIN, FMT = * )NN + IF( NN.LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' NN ', NN, 1 + NN = 0 + FATAL = .TRUE. + ELSE IF( NN.GT.MAXIN ) THEN + WRITE( NOUT, FMT = 9988 )' NN ', NN, MAXIN + NN = 0 + FATAL = .TRUE. + END IF +* +* Read the values of M +* + IF( .NOT.( DGX .OR. DXV ) ) THEN + READ( NIN, FMT = * )( MVAL( I ), I = 1, NN ) + IF( SVD ) THEN + VNAME = ' M ' + ELSE + VNAME = ' N ' + END IF + DO 20 I = 1, NN + IF( MVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )VNAME, MVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( MVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )VNAME, MVAL( I ), NMAX + FATAL = .TRUE. + END IF + 20 CONTINUE + WRITE( NOUT, FMT = 9983 )'M: ', ( MVAL( I ), I = 1, NN ) + END IF +* +* Read the values of P +* + IF( GLM .OR. GQR .OR. GSV .OR. CSD .OR. LSE ) THEN + READ( NIN, FMT = * )( PVAL( I ), I = 1, NN ) + DO 30 I = 1, NN + IF( PVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' P ', PVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( PVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )' P ', PVAL( I ), NMAX + FATAL = .TRUE. + END IF + 30 CONTINUE + WRITE( NOUT, FMT = 9983 )'P: ', ( PVAL( I ), I = 1, NN ) + END IF +* +* Read the values of N +* + IF( SVD .OR. DBB .OR. GLM .OR. GQR .OR. GSV .OR. CSD .OR. + $ LSE ) THEN + READ( NIN, FMT = * )( NVAL( I ), I = 1, NN ) + DO 40 I = 1, NN + IF( NVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' N ', NVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( NVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )' N ', NVAL( I ), NMAX + FATAL = .TRUE. + END IF + 40 CONTINUE + ELSE + DO 50 I = 1, NN + NVAL( I ) = MVAL( I ) + 50 CONTINUE + END IF + IF( .NOT.( DGX .OR. DXV ) ) THEN + WRITE( NOUT, FMT = 9983 )'N: ', ( NVAL( I ), I = 1, NN ) + ELSE + WRITE( NOUT, FMT = 9983 )'N: ', NN + END IF +* +* Read the number of values of K, followed by the values of K +* + IF( DSB .OR. DBB ) THEN + READ( NIN, FMT = * )NK + READ( NIN, FMT = * )( KVAL( I ), I = 1, NK ) + DO 60 I = 1, NK + IF( KVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' K ', KVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( KVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )' K ', KVAL( I ), NMAX + FATAL = .TRUE. + END IF + 60 CONTINUE + WRITE( NOUT, FMT = 9983 )'K: ', ( KVAL( I ), I = 1, NK ) + END IF +* + IF( DEV .OR. DES .OR. DVX .OR. DSX ) THEN +* +* For the nonsymmetric QR driver routines, only one set of +* parameters is allowed. +* + READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ), + $ INMIN( 1 ), INWIN( 1 ), INIBL(1), ISHFTS(1), IACC22(1) + IF( NBVAL( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1 + FATAL = .TRUE. + ELSE IF( NBMIN( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1 + FATAL = .TRUE. + ELSE IF( NXVAL( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1 + FATAL = .TRUE. + ELSE IF( INMIN( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( 1 ), 1 + FATAL = .TRUE. + ELSE IF( INWIN( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( 1 ), 1 + FATAL = .TRUE. + ELSE IF( INIBL( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( 1 ), 1 + FATAL = .TRUE. + ELSE IF( ISHFTS( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( 1 ), 1 + FATAL = .TRUE. + ELSE IF( IACC22( 1 ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( 1 ), 0 + FATAL = .TRUE. + END IF + CALL XLAENV( 1, NBVAL( 1 ) ) + CALL XLAENV( 2, NBMIN( 1 ) ) + CALL XLAENV( 3, NXVAL( 1 ) ) + CALL XLAENV(12, MAX( 11, INMIN( 1 ) ) ) + CALL XLAENV(13, INWIN( 1 ) ) + CALL XLAENV(14, INIBL( 1 ) ) + CALL XLAENV(15, ISHFTS( 1 ) ) + CALL XLAENV(16, IACC22( 1 ) ) + WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 ) + WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 ) + WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 ) + WRITE( NOUT, FMT = 9983 )'INMIN: ', INMIN( 1 ) + WRITE( NOUT, FMT = 9983 )'INWIN: ', INWIN( 1 ) + WRITE( NOUT, FMT = 9983 )'INIBL: ', INIBL( 1 ) + WRITE( NOUT, FMT = 9983 )'ISHFTS: ', ISHFTS( 1 ) + WRITE( NOUT, FMT = 9983 )'IACC22: ', IACC22( 1 ) +* + ELSEIF( DGS .OR. DGX .OR. DGV .OR. DXV ) THEN +* +* For the nonsymmetric generalized driver routines, only one set +* of parameters is allowed. +* + READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ), + $ NSVAL( 1 ), MXBVAL( 1 ) + IF( NBVAL( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1 + FATAL = .TRUE. + ELSE IF( NBMIN( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1 + FATAL = .TRUE. + ELSE IF( NXVAL( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1 + FATAL = .TRUE. + ELSE IF( NSVAL( 1 ).LT.2 ) THEN + WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( 1 ), 2 + FATAL = .TRUE. + ELSE IF( MXBVAL( 1 ).LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( 1 ), 1 + FATAL = .TRUE. + END IF + CALL XLAENV( 1, NBVAL( 1 ) ) + CALL XLAENV( 2, NBMIN( 1 ) ) + CALL XLAENV( 3, NXVAL( 1 ) ) + CALL XLAENV( 4, NSVAL( 1 ) ) + CALL XLAENV( 8, MXBVAL( 1 ) ) + WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 ) + WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 ) + WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 ) + WRITE( NOUT, FMT = 9983 )'NS: ', NSVAL( 1 ) + WRITE( NOUT, FMT = 9983 )'MAXB: ', MXBVAL( 1 ) +* + ELSE IF( .NOT.DSB .AND. .NOT.GLM .AND. .NOT.GQR .AND. .NOT. + $ GSV .AND. .NOT.CSD .AND. .NOT.LSE ) THEN +* +* For the other paths, the number of parameters can be varied +* from the input file. Read the number of parameter values. +* + READ( NIN, FMT = * )NPARMS + IF( NPARMS.LT.1 ) THEN + WRITE( NOUT, FMT = 9989 )'NPARMS', NPARMS, 1 + NPARMS = 0 + FATAL = .TRUE. + ELSE IF( NPARMS.GT.MAXIN ) THEN + WRITE( NOUT, FMT = 9988 )'NPARMS', NPARMS, MAXIN + NPARMS = 0 + FATAL = .TRUE. + END IF +* +* Read the values of NB +* + IF( .NOT.DBB ) THEN + READ( NIN, FMT = * )( NBVAL( I ), I = 1, NPARMS ) + DO 70 I = 1, NPARMS + IF( NBVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( NBVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )' NB ', NBVAL( I ), NMAX + FATAL = .TRUE. + END IF + 70 CONTINUE + WRITE( NOUT, FMT = 9983 )'NB: ', + $ ( NBVAL( I ), I = 1, NPARMS ) + END IF +* +* Read the values of NBMIN +* + IF( NEP .OR. SEP .OR. SVD .OR. DGG ) THEN + READ( NIN, FMT = * )( NBMIN( I ), I = 1, NPARMS ) + DO 80 I = 1, NPARMS + IF( NBMIN( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( I ), 0 + FATAL = .TRUE. + ELSE IF( NBMIN( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )'NBMIN ', NBMIN( I ), NMAX + FATAL = .TRUE. + END IF + 80 CONTINUE + WRITE( NOUT, FMT = 9983 )'NBMIN:', + $ ( NBMIN( I ), I = 1, NPARMS ) + ELSE + DO 90 I = 1, NPARMS + NBMIN( I ) = 1 + 90 CONTINUE + END IF +* +* Read the values of NX +* + IF( NEP .OR. SEP .OR. SVD ) THEN + READ( NIN, FMT = * )( NXVAL( I ), I = 1, NPARMS ) + DO 100 I = 1, NPARMS + IF( NXVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( NXVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )' NX ', NXVAL( I ), NMAX + FATAL = .TRUE. + END IF + 100 CONTINUE + WRITE( NOUT, FMT = 9983 )'NX: ', + $ ( NXVAL( I ), I = 1, NPARMS ) + ELSE + DO 110 I = 1, NPARMS + NXVAL( I ) = 1 + 110 CONTINUE + END IF +* +* Read the values of NSHIFT (if DGG) or NRHS (if SVD +* or DBB). +* + IF( SVD .OR. DBB .OR. DGG ) THEN + READ( NIN, FMT = * )( NSVAL( I ), I = 1, NPARMS ) + DO 120 I = 1, NPARMS + IF( NSVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( NSVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )' NS ', NSVAL( I ), NMAX + FATAL = .TRUE. + END IF + 120 CONTINUE + WRITE( NOUT, FMT = 9983 )'NS: ', + $ ( NSVAL( I ), I = 1, NPARMS ) + ELSE + DO 130 I = 1, NPARMS + NSVAL( I ) = 1 + 130 CONTINUE + END IF +* +* Read the values for MAXB. +* + IF( DGG ) THEN + READ( NIN, FMT = * )( MXBVAL( I ), I = 1, NPARMS ) + DO 140 I = 1, NPARMS + IF( MXBVAL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( I ), 0 + FATAL = .TRUE. + ELSE IF( MXBVAL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )' MAXB ', MXBVAL( I ), NMAX + FATAL = .TRUE. + END IF + 140 CONTINUE + WRITE( NOUT, FMT = 9983 )'MAXB: ', + $ ( MXBVAL( I ), I = 1, NPARMS ) + ELSE + DO 150 I = 1, NPARMS + MXBVAL( I ) = 1 + 150 CONTINUE + END IF +* +* Read the values for INMIN. +* + IF( NEP ) THEN + READ( NIN, FMT = * )( INMIN( I ), I = 1, NPARMS ) + DO 540 I = 1, NPARMS + IF( INMIN( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( I ), 0 + FATAL = .TRUE. + END IF + 540 CONTINUE + WRITE( NOUT, FMT = 9983 )'INMIN: ', + $ ( INMIN( I ), I = 1, NPARMS ) + ELSE + DO 550 I = 1, NPARMS + INMIN( I ) = 1 + 550 CONTINUE + END IF +* +* Read the values for INWIN. +* + IF( NEP ) THEN + READ( NIN, FMT = * )( INWIN( I ), I = 1, NPARMS ) + DO 560 I = 1, NPARMS + IF( INWIN( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( I ), 0 + FATAL = .TRUE. + END IF + 560 CONTINUE + WRITE( NOUT, FMT = 9983 )'INWIN: ', + $ ( INWIN( I ), I = 1, NPARMS ) + ELSE + DO 570 I = 1, NPARMS + INWIN( I ) = 1 + 570 CONTINUE + END IF +* +* Read the values for INIBL. +* + IF( NEP ) THEN + READ( NIN, FMT = * )( INIBL( I ), I = 1, NPARMS ) + DO 580 I = 1, NPARMS + IF( INIBL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( I ), 0 + FATAL = .TRUE. + END IF + 580 CONTINUE + WRITE( NOUT, FMT = 9983 )'INIBL: ', + $ ( INIBL( I ), I = 1, NPARMS ) + ELSE + DO 590 I = 1, NPARMS + INIBL( I ) = 1 + 590 CONTINUE + END IF +* +* Read the values for ISHFTS. +* + IF( NEP ) THEN + READ( NIN, FMT = * )( ISHFTS( I ), I = 1, NPARMS ) + DO 600 I = 1, NPARMS + IF( ISHFTS( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( I ), 0 + FATAL = .TRUE. + END IF + 600 CONTINUE + WRITE( NOUT, FMT = 9983 )'ISHFTS: ', + $ ( ISHFTS( I ), I = 1, NPARMS ) + ELSE + DO 610 I = 1, NPARMS + ISHFTS( I ) = 1 + 610 CONTINUE + END IF +* +* Read the values for IACC22. +* + IF( NEP .OR. DGG ) THEN + READ( NIN, FMT = * )( IACC22( I ), I = 1, NPARMS ) + DO 620 I = 1, NPARMS + IF( IACC22( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( I ), 0 + FATAL = .TRUE. + END IF + 620 CONTINUE + WRITE( NOUT, FMT = 9983 )'IACC22: ', + $ ( IACC22( I ), I = 1, NPARMS ) + ELSE + DO 630 I = 1, NPARMS + IACC22( I ) = 1 + 630 CONTINUE + END IF +* +* Read the values for NBCOL. +* + IF( DGG ) THEN + READ( NIN, FMT = * )( NBCOL( I ), I = 1, NPARMS ) + DO 160 I = 1, NPARMS + IF( NBCOL( I ).LT.0 ) THEN + WRITE( NOUT, FMT = 9989 )'NBCOL ', NBCOL( I ), 0 + FATAL = .TRUE. + ELSE IF( NBCOL( I ).GT.NMAX ) THEN + WRITE( NOUT, FMT = 9988 )'NBCOL ', NBCOL( I ), NMAX + FATAL = .TRUE. + END IF + 160 CONTINUE + WRITE( NOUT, FMT = 9983 )'NBCOL:', + $ ( NBCOL( I ), I = 1, NPARMS ) + ELSE + DO 170 I = 1, NPARMS + NBCOL( I ) = 1 + 170 CONTINUE + END IF + END IF +* +* Calculate and print the machine dependent constants. +* + WRITE( NOUT, FMT = * ) + EPS = DLAMCH( 'Underflow threshold' ) + WRITE( NOUT, FMT = 9981 )'underflow', EPS + EPS = DLAMCH( 'Overflow threshold' ) + WRITE( NOUT, FMT = 9981 )'overflow ', EPS + EPS = DLAMCH( 'Epsilon' ) + WRITE( NOUT, FMT = 9981 )'precision', EPS +* +* Read the threshold value for the test ratios. +* + READ( NIN, FMT = * )THRESH + WRITE( NOUT, FMT = 9982 )THRESH + IF( SEP .OR. SVD .OR. DGG ) THEN +* +* Read the flag that indicates whether to test LAPACK routines. +* + READ( NIN, FMT = * )TSTCHK +* +* Read the flag that indicates whether to test driver routines. +* + READ( NIN, FMT = * )TSTDRV + END IF +* +* Read the flag that indicates whether to test the error exits. +* + READ( NIN, FMT = * )TSTERR +* +* Read the code describing how to set the random number seed. +* + READ( NIN, FMT = * )NEWSD +* +* If NEWSD = 2, read another line with 4 integers for the seed. +* + IF( NEWSD.EQ.2 ) + $ READ( NIN, FMT = * )( IOLDSD( I ), I = 1, 4 ) +* + DO 180 I = 1, 4 + ISEED( I ) = IOLDSD( I ) + 180 CONTINUE +* + IF( FATAL ) THEN + WRITE( NOUT, FMT = 9999 ) + STOP + END IF +* +* Read the input lines indicating the test path and its parameters. +* The first three characters indicate the test path, and the number +* of test matrix types must be the first nonblank item in columns +* 4-80. +* + 190 CONTINUE +* + IF( .NOT.( DGX .OR. DXV ) ) THEN +* + 200 CONTINUE + READ( NIN, FMT = '(A80)', END = 380 )LINE + C3 = LINE( 1: 3 ) + LENP = LEN( LINE ) + I = 3 + ITMP = 0 + I1 = 0 + 210 CONTINUE + I = I + 1 + IF( I.GT.LENP ) THEN + IF( I1.GT.0 ) THEN + GO TO 240 + ELSE + NTYPES = MAXT + GO TO 240 + END IF + END IF + IF( LINE( I: I ).NE.' ' .AND. LINE( I: I ).NE.',' ) THEN + I1 = I + C1 = LINE( I1: I1 ) +* +* Check that a valid integer was read +* + DO 220 K = 1, 10 + IF( C1.EQ.INTSTR( K: K ) ) THEN + IC = K - 1 + GO TO 230 + END IF + 220 CONTINUE + WRITE( NOUT, FMT = 9991 )I, LINE + GO TO 200 + 230 CONTINUE + ITMP = 10*ITMP + IC + GO TO 210 + ELSE IF( I1.GT.0 ) THEN + GO TO 240 + ELSE + GO TO 210 + END IF + 240 CONTINUE + NTYPES = ITMP +* +* Skip the tests if NTYPES is <= 0. +* + IF( .NOT.( DEV .OR. DES .OR. DVX .OR. DSX .OR. DGV .OR. + $ DGS ) .AND. NTYPES.LE.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + GO TO 200 + END IF +* + ELSE + IF( DXV ) + $ C3 = 'DXV' + IF( DGX ) + $ C3 = 'DGX' + END IF +* +* Reset the random number seed. +* + IF( NEWSD.EQ.0 ) THEN + DO 250 K = 1, 4 + ISEED( K ) = IOLDSD( K ) + 250 CONTINUE + END IF +* + IF( LSAMEN( 3, C3, 'DHS' ) .OR. LSAMEN( 3, C3, 'NEP' ) ) THEN +* +* ------------------------------------- +* NEP: Nonsymmetric Eigenvalue Problem +* ------------------------------------- +* Vary the parameters +* NB = block size +* NBMIN = minimum block size +* NX = crossover point +* NS = number of shifts +* MAXB = minimum submatrix size +* + MAXTYP = 21 + NTYPES = MIN( MAXTYP, NTYPES ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL XLAENV( 1, 1 ) + IF( TSTERR ) + $ CALL DERRHS( 'DHSEQR', NOUT ) + DO 270 I = 1, NPARMS + CALL XLAENV( 1, NBVAL( I ) ) + CALL XLAENV( 2, NBMIN( I ) ) + CALL XLAENV( 3, NXVAL( I ) ) + CALL XLAENV(12, MAX( 11, INMIN( I ) ) ) + CALL XLAENV(13, INWIN( I ) ) + CALL XLAENV(14, INIBL( I ) ) + CALL XLAENV(15, ISHFTS( I ) ) + CALL XLAENV(16, IACC22( I ) ) +* + IF( NEWSD.EQ.0 ) THEN + DO 260 K = 1, 4 + ISEED( K ) = IOLDSD( K ) + 260 CONTINUE + END IF + WRITE( NOUT, FMT = 9961 )C3, NBVAL( I ), NBMIN( I ), + $ NXVAL( I ), MAX( 11, INMIN(I)), + $ INWIN( I ), INIBL( I ), ISHFTS( I ), IACC22( I ) + CALL DCHKHS( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), + $ A( 1, 4 ), A( 1, 5 ), NMAX, A( 1, 6 ), + $ A( 1, 7 ), D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), + $ D( 1, 4 ), D( 1, 5 ), D( 1, 6 ), A( 1, 8 ), + $ A( 1, 9 ), A( 1, 10 ), A( 1, 11 ), A( 1, 12 ), + $ D( 1, 7 ), WORK, LWORK, IWORK, LOGWRK, RESULT, + $ INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DCHKHS', INFO + 270 CONTINUE +* + ELSE IF( LSAMEN( 3, C3, 'DST' ) .OR. LSAMEN( 3, C3, 'SEP' ) + $ .OR. LSAMEN( 3, C3, 'SE2' ) ) THEN +* +* ---------------------------------- +* SEP: Symmetric Eigenvalue Problem +* ---------------------------------- +* Vary the parameters +* NB = block size +* NBMIN = minimum block size +* NX = crossover point +* + MAXTYP = 21 + NTYPES = MIN( MAXTYP, NTYPES ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL XLAENV( 1, 1 ) + CALL XLAENV( 9, 25 ) + IF( TSTERR ) THEN +#if defined(_OPENMP) + N_THREADS = OMP_GET_NUM_THREADS() + CALL OMP_SET_NUM_THREADS(1) +#endif + CALL DERRST( 'DST', NOUT ) +#if defined(_OPENMP) + CALL OMP_SET_NUM_THREADS(N_THREADS) +#endif + END IF + DO 290 I = 1, NPARMS + CALL XLAENV( 1, NBVAL( I ) ) + CALL XLAENV( 2, NBMIN( I ) ) + CALL XLAENV( 3, NXVAL( I ) ) +* + IF( NEWSD.EQ.0 ) THEN + DO 280 K = 1, 4 + ISEED( K ) = IOLDSD( K ) + 280 CONTINUE + END IF + WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ), + $ NXVAL( I ) + IF( TSTCHK ) THEN + IF( LSAMEN( 3, C3, 'SE2' ) ) THEN + CALL DCHKST2STG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, + $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ), + $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), D( 1, 5 ), + $ D( 1, 6 ), D( 1, 7 ), D( 1, 8 ), D( 1, 9 ), + $ D( 1, 10 ), D( 1, 11 ), A( 1, 3 ), NMAX, + $ A( 1, 4 ), A( 1, 5 ), D( 1, 12 ), A( 1, 6 ), + $ WORK, LWORK, IWORK, LIWORK, RESULT, INFO ) + ELSE + CALL DCHKST( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, + $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ), + $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), D( 1, 5 ), + $ D( 1, 6 ), D( 1, 7 ), D( 1, 8 ), D( 1, 9 ), + $ D( 1, 10 ), D( 1, 11 ), A( 1, 3 ), NMAX, + $ A( 1, 4 ), A( 1, 5 ), D( 1, 12 ), A( 1, 6 ), + $ WORK, LWORK, IWORK, LIWORK, RESULT, INFO ) + ENDIF + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DCHKST', INFO + END IF + IF( TSTDRV ) THEN + IF( LSAMEN( 3, C3, 'SE2' ) ) THEN + CALL DDRVST2STG( NN, NVAL, 18, DOTYPE, ISEED, THRESH, + $ NOUT, A( 1, 1 ), NMAX, D( 1, 3 ), D( 1, 4 ), + $ D( 1, 5 ), D( 1, 6 ), D( 1, 8 ), D( 1, 9 ), + $ D( 1, 10 ), D( 1, 11 ), A( 1, 2 ), NMAX, + $ A( 1, 3 ), D( 1, 12 ), A( 1, 4 ), WORK, + $ LWORK, IWORK, LIWORK, RESULT, INFO ) + ELSE + CALL DDRVST( NN, NVAL, 18, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, D( 1, 3 ), D( 1, 4 ), + $ D( 1, 5 ), D( 1, 6 ), D( 1, 8 ), D( 1, 9 ), + $ D( 1, 10 ), D( 1, 11 ), A( 1, 2 ), NMAX, + $ A( 1, 3 ), D( 1, 12 ), A( 1, 4 ), WORK, + $ LWORK, IWORK, LIWORK, RESULT, INFO ) + ENDIF + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DDRVST', INFO + END IF + 290 CONTINUE +* + ELSE IF( LSAMEN( 3, C3, 'DSG' ) ) THEN +* +* ---------------------------------------------- +* DSG: Symmetric Generalized Eigenvalue Problem +* ---------------------------------------------- +* Vary the parameters +* NB = block size +* NBMIN = minimum block size +* NX = crossover point +* + MAXTYP = 21 + NTYPES = MIN( MAXTYP, NTYPES ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL XLAENV( 9, 25 ) + DO 310 I = 1, NPARMS + CALL XLAENV( 1, NBVAL( I ) ) + CALL XLAENV( 2, NBMIN( I ) ) + CALL XLAENV( 3, NXVAL( I ) ) +* + IF( NEWSD.EQ.0 ) THEN + DO 300 K = 1, 4 + ISEED( K ) = IOLDSD( K ) + 300 CONTINUE + END IF + WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ), + $ NXVAL( I ) + IF( TSTCHK ) THEN +* CALL DDRVSG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, +* $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX, +* $ D( 1, 3 ), A( 1, 3 ), NMAX, A( 1, 4 ), +* $ A( 1, 5 ), A( 1, 6 ), A( 1, 7 ), WORK, +* $ LWORK, IWORK, LIWORK, RESULT, INFO ) + CALL DDRVSG2STG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, + $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX, + $ D( 1, 3 ), D( 1, 3 ), A( 1, 3 ), NMAX, + $ A( 1, 4 ), A( 1, 5 ), A( 1, 6 ), + $ A( 1, 7 ), WORK, LWORK, IWORK, LIWORK, + $ RESULT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DDRVSG', INFO + END IF + 310 CONTINUE +* + ELSE IF( LSAMEN( 3, C3, 'DBD' ) .OR. LSAMEN( 3, C3, 'SVD' ) ) THEN +* +* ---------------------------------- +* SVD: Singular Value Decomposition +* ---------------------------------- +* Vary the parameters +* NB = block size +* NBMIN = minimum block size +* NX = crossover point +* NRHS = number of right hand sides +* + MAXTYP = 16 + NTYPES = MIN( MAXTYP, NTYPES ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL XLAENV( 1, 1 ) + CALL XLAENV( 9, 25 ) +* +* Test the error exits +* + IF( TSTERR .AND. TSTCHK ) + $ CALL DERRBD( 'DBD', NOUT ) + IF( TSTERR .AND. TSTDRV ) + $ CALL DERRED( 'DBD', NOUT ) +* + DO 330 I = 1, NPARMS + NRHS = NSVAL( I ) + CALL XLAENV( 1, NBVAL( I ) ) + CALL XLAENV( 2, NBMIN( I ) ) + CALL XLAENV( 3, NXVAL( I ) ) + IF( NEWSD.EQ.0 ) THEN + DO 320 K = 1, 4 + ISEED( K ) = IOLDSD( K ) + 320 CONTINUE + END IF + WRITE( NOUT, FMT = 9995 )C3, NBVAL( I ), NBMIN( I ), + $ NXVAL( I ), NRHS + IF( TSTCHK ) THEN + CALL DCHKBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, NRHS, ISEED, + $ THRESH, A( 1, 1 ), NMAX, D( 1, 1 ), + $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), A( 1, 2 ), + $ NMAX, A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), NMAX, + $ A( 1, 6 ), NMAX, A( 1, 7 ), A( 1, 8 ), WORK, + $ LWORK, IWORK, NOUT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DCHKBD', INFO + END IF + IF( TSTDRV ) + $ CALL DDRVBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, ISEED, + $ THRESH, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX, + $ A( 1, 3 ), NMAX, A( 1, 4 ), A( 1, 5 ), + $ A( 1, 6 ), D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), + $ WORK, LWORK, IWORK, NOUT, INFO ) + 330 CONTINUE +* + ELSE IF( LSAMEN( 3, C3, 'DEV' ) ) THEN +* +* -------------------------------------------- +* DEV: Nonsymmetric Eigenvalue Problem Driver +* DGEEV (eigenvalues and eigenvectors) +* -------------------------------------------- +* + MAXTYP = 21 + NTYPES = MIN( MAXTYP, NTYPES ) + IF( NTYPES.LE.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL DERRED( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL DDRVEV( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ), + $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), A( 1, 3 ), + $ NMAX, A( 1, 4 ), NMAX, A( 1, 5 ), NMAX, RESULT, + $ WORK, LWORK, IWORK, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DGEEV', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( LSAMEN( 3, C3, 'DES' ) ) THEN +* +* -------------------------------------------- +* DES: Nonsymmetric Eigenvalue Problem Driver +* DGEES (Schur form) +* -------------------------------------------- +* + MAXTYP = 21 + NTYPES = MIN( MAXTYP, NTYPES ) + IF( NTYPES.LE.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL DERRED( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL DDRVES( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), + $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), + $ A( 1, 4 ), NMAX, RESULT, WORK, LWORK, IWORK, + $ LOGWRK, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DGEES', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( LSAMEN( 3, C3, 'DVX' ) ) THEN +* +* -------------------------------------------------------------- +* DVX: Nonsymmetric Eigenvalue Problem Expert Driver +* DGEEVX (eigenvalues, eigenvectors and condition numbers) +* -------------------------------------------------------------- +* + MAXTYP = 21 + NTYPES = MIN( MAXTYP, NTYPES ) + IF( NTYPES.LT.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL DERRED( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL DDRVVX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN, + $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ), + $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), A( 1, 3 ), + $ NMAX, A( 1, 4 ), NMAX, A( 1, 5 ), NMAX, + $ D( 1, 5 ), D( 1, 6 ), D( 1, 7 ), D( 1, 8 ), + $ D( 1, 9 ), D( 1, 10 ), D( 1, 11 ), D( 1, 12 ), + $ RESULT, WORK, LWORK, IWORK, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DGEEVX', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( LSAMEN( 3, C3, 'DSX' ) ) THEN +* +* --------------------------------------------------- +* DSX: Nonsymmetric Eigenvalue Problem Expert Driver +* DGEESX (Schur form and condition numbers) +* --------------------------------------------------- +* + MAXTYP = 21 + NTYPES = MIN( MAXTYP, NTYPES ) + IF( NTYPES.LT.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL DERRED( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL DDRVSX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN, + $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), + $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), + $ D( 1, 5 ), D( 1, 6 ), A( 1, 4 ), NMAX, + $ A( 1, 5 ), RESULT, WORK, LWORK, IWORK, LOGWRK, + $ INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DGEESX', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( LSAMEN( 3, C3, 'DGG' ) ) THEN +* +* ------------------------------------------------- +* DGG: Generalized Nonsymmetric Eigenvalue Problem +* ------------------------------------------------- +* Vary the parameters +* NB = block size +* NBMIN = minimum block size +* NS = number of shifts +* MAXB = minimum submatrix size +* IACC22: structured matrix multiply +* NBCOL = minimum column dimension for blocks +* + MAXTYP = 26 + NTYPES = MIN( MAXTYP, NTYPES ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL XLAENV(1,1) + IF( TSTCHK .AND. TSTERR ) + $ CALL DERRGG( C3, NOUT ) + DO 350 I = 1, NPARMS + CALL XLAENV( 1, NBVAL( I ) ) + CALL XLAENV( 2, NBMIN( I ) ) + CALL XLAENV( 4, NSVAL( I ) ) + CALL XLAENV( 8, MXBVAL( I ) ) + CALL XLAENV( 16, IACC22( I ) ) + CALL XLAENV( 5, NBCOL( I ) ) +* + IF( NEWSD.EQ.0 ) THEN + DO 340 K = 1, 4 + ISEED( K ) = IOLDSD( K ) + 340 CONTINUE + END IF + WRITE( NOUT, FMT = 9996 )C3, NBVAL( I ), NBMIN( I ), + $ NSVAL( I ), MXBVAL( I ), IACC22( I ), NBCOL( I ) + TSTDIF = .FALSE. + THRSHN = 10.D0 + IF( TSTCHK ) THEN + CALL DCHKGG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, + $ TSTDIF, THRSHN, NOUT, A( 1, 1 ), NMAX, + $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), + $ A( 1, 6 ), A( 1, 7 ), A( 1, 8 ), A( 1, 9 ), + $ NMAX, A( 1, 10 ), A( 1, 11 ), A( 1, 12 ), + $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), + $ D( 1, 5 ), D( 1, 6 ), A( 1, 13 ), + $ A( 1, 14 ), WORK, LWORK, LOGWRK, RESULT, + $ INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DCHKGG', INFO + END IF + 350 CONTINUE +* + ELSE IF( LSAMEN( 3, C3, 'DGS' ) ) THEN +* +* ------------------------------------------------- +* DGS: Generalized Nonsymmetric Eigenvalue Problem +* DGGES (Schur form) +* ------------------------------------------------- +* + MAXTYP = 26 + NTYPES = MIN( MAXTYP, NTYPES ) + IF( NTYPES.LE.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL DERRGG( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL DDRGES( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), + $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), + $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), WORK, LWORK, + $ RESULT, LOGWRK, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DDRGES', INFO +* +* Blocked version +* + CALL XLAENV(16, 2) + CALL DDRGES3( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), + $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), + $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), WORK, LWORK, + $ RESULT, LOGWRK, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DDRGES3', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( DGX ) THEN +* +* ------------------------------------------------- +* DGX: Generalized Nonsymmetric Eigenvalue Problem +* DGGESX (Schur form and condition numbers) +* ------------------------------------------------- +* + MAXTYP = 5 + NTYPES = MAXTYP + IF( NN.LT.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL DERRGG( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL XLAENV( 5, 2 ) + CALL DDRGSX( NN, NCMAX, THRESH, NIN, NOUT, A( 1, 1 ), NMAX, + $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), + $ A( 1, 6 ), D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), + $ C( 1, 1 ), NCMAX*NCMAX, A( 1, 12 ), WORK, + $ LWORK, IWORK, LIWORK, LOGWRK, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DDRGSX', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( LSAMEN( 3, C3, 'DGV' ) ) THEN +* +* ------------------------------------------------- +* DGV: Generalized Nonsymmetric Eigenvalue Problem +* DGGEV (Eigenvalue/vector form) +* ------------------------------------------------- +* + MAXTYP = 26 + NTYPES = MIN( MAXTYP, NTYPES ) + IF( NTYPES.LE.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL DERRGG( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL DDRGEV( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), + $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), + $ A( 1, 9 ), NMAX, D( 1, 1 ), D( 1, 2 ), + $ D( 1, 3 ), D( 1, 4 ), D( 1, 5 ), D( 1, 6 ), + $ WORK, LWORK, RESULT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DDRGEV', INFO +* +* Blocked version +* + CALL DDRGEV3( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, + $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), + $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), + $ A( 1, 9 ), NMAX, D( 1, 1 ), D( 1, 2 ), + $ D( 1, 3 ), D( 1, 4 ), D( 1, 5 ), D( 1, 6 ), + $ WORK, LWORK, RESULT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DDRGEV3', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( DXV ) THEN +* +* ------------------------------------------------- +* DXV: Generalized Nonsymmetric Eigenvalue Problem +* DGGEVX (eigenvalue/vector with condition numbers) +* ------------------------------------------------- +* + MAXTYP = 2 + NTYPES = MAXTYP + IF( NN.LT.0 ) THEN + WRITE( NOUT, FMT = 9990 )C3 + ELSE + IF( TSTERR ) + $ CALL DERRGG( C3, NOUT ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + CALL DDRGVX( NN, THRESH, NIN, NOUT, A( 1, 1 ), NMAX, + $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), D( 1, 1 ), + $ D( 1, 2 ), D( 1, 3 ), A( 1, 5 ), A( 1, 6 ), + $ IWORK( 1 ), IWORK( 2 ), D( 1, 4 ), D( 1, 5 ), + $ D( 1, 6 ), D( 1, 7 ), D( 1, 8 ), D( 1, 9 ), + $ WORK, LWORK, IWORK( 3 ), LIWORK-2, RESULT, + $ LOGWRK, INFO ) +* + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DDRGVX', INFO + END IF + WRITE( NOUT, FMT = 9973 ) + GO TO 10 +* + ELSE IF( LSAMEN( 3, C3, 'DSB' ) ) THEN +* +* ------------------------------ +* DSB: Symmetric Band Reduction +* ------------------------------ +* + MAXTYP = 15 + NTYPES = MIN( MAXTYP, NTYPES ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + IF( TSTERR ) + $ CALL DERRST( 'DSB', NOUT ) +* CALL DCHKSB( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED, THRESH, +* $ NOUT, A( 1, 1 ), NMAX, D( 1, 1 ), D( 1, 2 ), +* $ A( 1, 2 ), NMAX, WORK, LWORK, RESULT, INFO ) + CALL DCHKSB2STG( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED, + $ THRESH, NOUT, A( 1, 1 ), NMAX, D( 1, 1 ), + $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), D( 1, 5 ), + $ A( 1, 2 ), NMAX, WORK, LWORK, RESULT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DCHKSB', INFO +* + ELSE IF( LSAMEN( 3, C3, 'DBB' ) ) THEN +* +* ------------------------------ +* DBB: General Band Reduction +* ------------------------------ +* + MAXTYP = 15 + NTYPES = MIN( MAXTYP, NTYPES ) + CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) + DO 370 I = 1, NPARMS + NRHS = NSVAL( I ) +* + IF( NEWSD.EQ.0 ) THEN + DO 360 K = 1, 4 + ISEED( K ) = IOLDSD( K ) + 360 CONTINUE + END IF + WRITE( NOUT, FMT = 9966 )C3, NRHS + CALL DCHKBB( NN, MVAL, NVAL, NK, KVAL, MAXTYP, DOTYPE, NRHS, + $ ISEED, THRESH, NOUT, A( 1, 1 ), NMAX, + $ A( 1, 2 ), 2*NMAX, D( 1, 1 ), D( 1, 2 ), + $ A( 1, 4 ), NMAX, A( 1, 5 ), NMAX, A( 1, 6 ), + $ NMAX, A( 1, 7 ), WORK, LWORK, RESULT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DCHKBB', INFO + 370 CONTINUE +* + ELSE IF( LSAMEN( 3, C3, 'GLM' ) ) THEN +* +* ----------------------------------------- +* GLM: Generalized Linear Regression Model +* ----------------------------------------- +* + CALL XLAENV( 1, 1 ) + IF( TSTERR ) + $ CALL DERRGG( 'GLM', NOUT ) + CALL DCKGLM( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, + $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X, + $ WORK, D( 1, 1 ), NIN, NOUT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DCKGLM', INFO +* + ELSE IF( LSAMEN( 3, C3, 'GQR' ) ) THEN +* +* ------------------------------------------ +* GQR: Generalized QR and RQ factorizations +* ------------------------------------------ +* + CALL XLAENV( 1, 1 ) + IF( TSTERR ) + $ CALL DERRGG( 'GQR', NOUT ) + CALL DCKGQR( NN, MVAL, NN, PVAL, NN, NVAL, NTYPES, ISEED, + $ THRESH, NMAX, A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), + $ A( 1, 4 ), TAUA, B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), + $ B( 1, 4 ), B( 1, 5 ), TAUB, WORK, D( 1, 1 ), NIN, + $ NOUT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DCKGQR', INFO +* + ELSE IF( LSAMEN( 3, C3, 'GSV' ) ) THEN +* +* ---------------------------------------------- +* GSV: Generalized Singular Value Decomposition +* ---------------------------------------------- +* + CALL XLAENV(1,1) + IF( TSTERR ) + $ CALL DERRGG( 'GSV', NOUT ) + CALL DCKGSV( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, + $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), + $ A( 1, 3 ), B( 1, 3 ), A( 1, 4 ), TAUA, TAUB, + $ B( 1, 4 ), IWORK, WORK, D( 1, 1 ), NIN, NOUT, + $ INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DCKGSV', INFO +* + ELSE IF( LSAMEN( 3, C3, 'CSD' ) ) THEN +* +* ---------------------------------------------- +* CSD: CS Decomposition +* ---------------------------------------------- +* + CALL XLAENV(1,1) + IF( TSTERR ) + $ CALL DERRGG( 'CSD', NOUT ) + CALL DCKCSD( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, + $ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), + $ A( 1, 5 ), A( 1, 6 ), A( 1, 7 ), IWORK, WORK, + $ D( 1, 1 ), NIN, NOUT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DCKCSD', INFO +* + ELSE IF( LSAMEN( 3, C3, 'LSE' ) ) THEN +* +* -------------------------------------- +* LSE: Constrained Linear Least Squares +* -------------------------------------- +* + CALL XLAENV( 1, 1 ) + IF( TSTERR ) + $ CALL DERRGG( 'LSE', NOUT ) + CALL DCKLSE( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, + $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X, + $ WORK, D( 1, 1 ), NIN, NOUT, INFO ) + IF( INFO.NE.0 ) + $ WRITE( NOUT, FMT = 9980 )'DCKLSE', INFO +* + ELSE + WRITE( NOUT, FMT = * ) + WRITE( NOUT, FMT = * ) + WRITE( NOUT, FMT = 9992 )C3 + END IF + IF( .NOT.( DGX .OR. DXV ) ) + $ GO TO 190 + 380 CONTINUE + WRITE( NOUT, FMT = 9994 ) + S2 = DSECND( ) + WRITE( NOUT, FMT = 9993 )S2 - S1 +* + DEALLOCATE (A, STAT = AllocateStatus) + DEALLOCATE (B, STAT = AllocateStatus) + DEALLOCATE (C, STAT = AllocateStatus) + DEALLOCATE (WORK, STAT = AllocateStatus) +* + 9999 FORMAT( / ' Execution not attempted due to input errors' ) + 9997 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4 ) + 9996 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NS =', I4, + $ ', MAXB =', I4, ', IACC22 =', I4, ', NBCOL =', I4 ) + 9995 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4, + $ ', NRHS =', I4 ) + 9994 FORMAT( / / ' End of tests' ) + 9993 FORMAT( ' Total time used = ', F12.2, ' seconds', / ) + 9992 FORMAT( 1X, A3, ': Unrecognized path name' ) + 9991 FORMAT( / / ' *** Invalid integer value in column ', I2, + $ ' of input', ' line:', / A79 ) + 9990 FORMAT( / / 1X, A3, ' routines were not tested' ) + 9989 FORMAT( ' Invalid input value: ', A, '=', I6, '; must be >=', + $ I6 ) + 9988 FORMAT( ' Invalid input value: ', A, '=', I6, '; must be <=', + $ I6 ) + 9987 FORMAT( ' Tests of the Nonsymmetric Eigenvalue Problem routines' ) + 9986 FORMAT( ' Tests of the Symmetric Eigenvalue Problem routines' ) + 9985 FORMAT( ' Tests of the Singular Value Decomposition routines' ) + 9984 FORMAT( / ' The following parameter values will be used:' ) + 9983 FORMAT( 4X, A, 10I6, / 10X, 10I6 ) + 9982 FORMAT( / ' Routines pass computational tests if test ratio is ', + $ 'less than', F8.2, / ) + 9981 FORMAT( ' Relative machine ', A, ' is taken to be', D16.6 ) + 9980 FORMAT( ' *** Error code from ', A, ' = ', I4 ) + 9979 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver', + $ / ' DGEEV (eigenvalues and eigevectors)' ) + 9978 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver', + $ / ' DGEES (Schur form)' ) + 9977 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert', + $ ' Driver', / ' DGEEVX (eigenvalues, eigenvectors and', + $ ' condition numbers)' ) + 9976 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert', + $ ' Driver', / ' DGEESX (Schur form and condition', + $ ' numbers)' ) + 9975 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', + $ 'Problem routines' ) + 9974 FORMAT( ' Tests of DSBTRD', / ' (reduction of a symmetric band ', + $ 'matrix to tridiagonal form)' ) + 9973 FORMAT( / 1X, 71( '-' ) ) + 9972 FORMAT( / ' LAPACK VERSION ', I1, '.', I1, '.', I1 ) + 9971 FORMAT( / ' Tests of the Generalized Linear Regression Model ', + $ 'routines' ) + 9970 FORMAT( / ' Tests of the Generalized QR and RQ routines' ) + 9969 FORMAT( / ' Tests of the Generalized Singular Value', + $ ' Decomposition routines' ) + 9968 FORMAT( / ' Tests of the Linear Least Squares routines' ) + 9967 FORMAT( ' Tests of DGBBRD', / ' (reduction of a general band ', + $ 'matrix to real bidiagonal form)' ) + 9966 FORMAT( / / 1X, A3, ': NRHS =', I4 ) + 9965 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', + $ 'Problem Expert Driver DGGESX' ) + 9964 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', + $ 'Problem Driver DGGES' ) + 9963 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', + $ 'Problem Driver DGGEV' ) + 9962 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', + $ 'Problem Expert Driver DGGEVX' ) + 9961 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4, + $ ', INMIN=', I4, + $ ', INWIN =', I4, ', INIBL =', I4, ', ISHFTS =', I4, + $ ', IACC22 =', I4) + 9960 FORMAT( / ' Tests of the CS Decomposition routines' ) +* +* End of DCHKEE +* + END |