summaryrefslogtreecommitdiff
path: root/lapack-netlib/TESTING
diff options
context:
space:
mode:
authorMartin Kroeker <martin@ruby.chemie.uni-freiburg.de>2021-02-28 18:50:26 +0100
committerGitHub <noreply@github.com>2021-02-28 18:50:26 +0100
commit9b7b1da133a6c9c6d77d36dc37247044551ccd75 (patch)
tree711b74d6905c9921e89755332a579bb324da89e9 /lapack-netlib/TESTING
parenta5ab891292052b5c6ea58ba47e3f58efc5043ce3 (diff)
downloadopenblas-9b7b1da133a6c9c6d77d36dc37247044551ccd75.tar.gz
openblas-9b7b1da133a6c9c6d77d36dc37247044551ccd75.tar.bz2
openblas-9b7b1da133a6c9c6d77d36dc37247044551ccd75.zip
Add rewritten dchkee.F from Reference-LAPACK PR335
Diffstat (limited to 'lapack-netlib/TESTING')
-rw-r--r--lapack-netlib/TESTING/EIG/dchkee.F2538
1 files changed, 2538 insertions, 0 deletions
diff --git a/lapack-netlib/TESTING/EIG/dchkee.F b/lapack-netlib/TESTING/EIG/dchkee.F
new file mode 100644
index 000000000..ee22ce33d
--- /dev/null
+++ b/lapack-netlib/TESTING/EIG/dchkee.F
@@ -0,0 +1,2538 @@
+*> \brief \b DCHKEE
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+* Definition:
+* ===========
+*
+* PROGRAM DCHKEE
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> DCHKEE tests the DOUBLE PRECISION LAPACK subroutines for the matrix
+*> eigenvalue problem. The test paths in this version are
+*>
+*> NEP (Nonsymmetric Eigenvalue Problem):
+*> Test DGEHRD, DORGHR, DHSEQR, DTREVC, DHSEIN, and DORMHR
+*>
+*> SEP (Symmetric Eigenvalue Problem):
+*> Test DSYTRD, DORGTR, DSTEQR, DSTERF, DSTEIN, DSTEDC,
+*> and drivers DSYEV(X), DSBEV(X), DSPEV(X), DSTEV(X),
+*> DSYEVD, DSBEVD, DSPEVD, DSTEVD
+*>
+*> SVD (Singular Value Decomposition):
+*> Test DGEBRD, DORGBR, DBDSQR, DBDSDC
+*> and the drivers DGESVD, DGESDD
+*>
+*> DEV (Nonsymmetric Eigenvalue/eigenvector Driver):
+*> Test DGEEV
+*>
+*> DES (Nonsymmetric Schur form Driver):
+*> Test DGEES
+*>
+*> DVX (Nonsymmetric Eigenvalue/eigenvector Expert Driver):
+*> Test DGEEVX
+*>
+*> DSX (Nonsymmetric Schur form Expert Driver):
+*> Test DGEESX
+*>
+*> DGG (Generalized Nonsymmetric Eigenvalue Problem):
+*> Test DGGHD3, DGGBAL, DGGBAK, DHGEQZ, and DTGEVC
+*>
+*> DGS (Generalized Nonsymmetric Schur form Driver):
+*> Test DGGES
+*>
+*> DGV (Generalized Nonsymmetric Eigenvalue/eigenvector Driver):
+*> Test DGGEV
+*>
+*> DGX (Generalized Nonsymmetric Schur form Expert Driver):
+*> Test DGGESX
+*>
+*> DXV (Generalized Nonsymmetric Eigenvalue/eigenvector Expert Driver):
+*> Test DGGEVX
+*>
+*> DSG (Symmetric Generalized Eigenvalue Problem):
+*> Test DSYGST, DSYGV, DSYGVD, DSYGVX, DSPGST, DSPGV, DSPGVD,
+*> DSPGVX, DSBGST, DSBGV, DSBGVD, and DSBGVX
+*>
+*> DSB (Symmetric Band Eigenvalue Problem):
+*> Test DSBTRD
+*>
+*> DBB (Band Singular Value Decomposition):
+*> Test DGBBRD
+*>
+*> DEC (Eigencondition estimation):
+*> Test DLALN2, DLASY2, DLAEQU, DLAEXC, DTRSYL, DTREXC, DTRSNA,
+*> DTRSEN, and DLAQTR
+*>
+*> DBL (Balancing a general matrix)
+*> Test DGEBAL
+*>
+*> DBK (Back transformation on a balanced matrix)
+*> Test DGEBAK
+*>
+*> DGL (Balancing a matrix pair)
+*> Test DGGBAL
+*>
+*> DGK (Back transformation on a matrix pair)
+*> Test DGGBAK
+*>
+*> GLM (Generalized Linear Regression Model):
+*> Tests DGGGLM
+*>
+*> GQR (Generalized QR and RQ factorizations):
+*> Tests DGGQRF and DGGRQF
+*>
+*> GSV (Generalized Singular Value Decomposition):
+*> Tests DGGSVD, DGGSVP, DTGSJA, DLAGS2, DLAPLL, and DLAPMT
+*>
+*> CSD (CS decomposition):
+*> Tests DORCSD
+*>
+*> LSE (Constrained Linear Least Squares):
+*> Tests DGGLSE
+*>
+*> Each test path has a different set of inputs, but the data sets for
+*> the driver routines xEV, xES, xVX, and xSX can be concatenated in a
+*> single input file. The first line of input should contain one of the
+*> 3-character path names in columns 1-3. The number of remaining lines
+*> depends on what is found on the first line.
+*>
+*> The number of matrix types used in testing is often controllable from
+*> the input file. The number of matrix types for each path, and the
+*> test routine that describes them, is as follows:
+*>
+*> Path name(s) Types Test routine
+*>
+*> DHS or NEP 21 DCHKHS
+*> DST or SEP 21 DCHKST (routines)
+*> 18 DDRVST (drivers)
+*> DBD or SVD 16 DCHKBD (routines)
+*> 5 DDRVBD (drivers)
+*> DEV 21 DDRVEV
+*> DES 21 DDRVES
+*> DVX 21 DDRVVX
+*> DSX 21 DDRVSX
+*> DGG 26 DCHKGG (routines)
+*> DGS 26 DDRGES
+*> DGX 5 DDRGSX
+*> DGV 26 DDRGEV
+*> DXV 2 DDRGVX
+*> DSG 21 DDRVSG
+*> DSB 15 DCHKSB
+*> DBB 15 DCHKBB
+*> DEC - DCHKEC
+*> DBL - DCHKBL
+*> DBK - DCHKBK
+*> DGL - DCHKGL
+*> DGK - DCHKGK
+*> GLM 8 DCKGLM
+*> GQR 8 DCKGQR
+*> GSV 8 DCKGSV
+*> CSD 3 DCKCSD
+*> LSE 8 DCKLSE
+*>
+*>-----------------------------------------------------------------------
+*>
+*> NEP input file:
+*>
+*> line 2: NN, INTEGER
+*> Number of values of N.
+*>
+*> line 3: NVAL, INTEGER array, dimension (NN)
+*> The values for the matrix dimension N.
+*>
+*> line 4: NPARMS, INTEGER
+*> Number of values of the parameters NB, NBMIN, NX, NS, and
+*> MAXB.
+*>
+*> line 5: NBVAL, INTEGER array, dimension (NPARMS)
+*> The values for the blocksize NB.
+*>
+*> line 6: NBMIN, INTEGER array, dimension (NPARMS)
+*> The values for the minimum blocksize NBMIN.
+*>
+*> line 7: NXVAL, INTEGER array, dimension (NPARMS)
+*> The values for the crossover point NX.
+*>
+*> line 8: INMIN, INTEGER array, dimension (NPARMS)
+*> LAHQR vs TTQRE crossover point, >= 11
+*>
+*> line 9: INWIN, INTEGER array, dimension (NPARMS)
+*> recommended deflation window size
+*>
+*> line 10: INIBL, INTEGER array, dimension (NPARMS)
+*> nibble crossover point
+*>
+*> line 11: ISHFTS, INTEGER array, dimension (NPARMS)
+*> number of simultaneous shifts)
+*>
+*> line 12: IACC22, INTEGER array, dimension (NPARMS)
+*> select structured matrix multiply: 0, 1 or 2)
+*>
+*> line 13: THRESH
+*> Threshold value for the test ratios. Information will be
+*> printed about each test for which the test ratio is greater
+*> than or equal to the threshold. To have all of the test
+*> ratios printed, use THRESH = 0.0 .
+*>
+*> line 14: NEWSD, INTEGER
+*> A code indicating how to set the random number seed.
+*> = 0: Set the seed to a default value before each run
+*> = 1: Initialize the seed to a default value only before the
+*> first run
+*> = 2: Like 1, but use the seed values on the next line
+*>
+*> If line 14 was 2:
+*>
+*> line 15: INTEGER array, dimension (4)
+*> Four integer values for the random number seed.
+*>
+*> lines 15-EOF: The remaining lines occur in sets of 1 or 2 and allow
+*> the user to specify the matrix types. Each line contains
+*> a 3-character path name in columns 1-3, and the number
+*> of matrix types must be the first nonblank item in columns
+*> 4-80. If the number of matrix types is at least 1 but is
+*> less than the maximum number of possible types, a second
+*> line will be read to get the numbers of the matrix types to
+*> be used. For example,
+*> NEP 21
+*> requests all of the matrix types for the nonsymmetric
+*> eigenvalue problem, while
+*> NEP 4
+*> 9 10 11 12
+*> requests only matrices of type 9, 10, 11, and 12.
+*>
+*> The valid 3-character path names are 'NEP' or 'SHS' for the
+*> nonsymmetric eigenvalue routines.
+*>
+*>-----------------------------------------------------------------------
+*>
+*> SEP or DSG input file:
+*>
+*> line 2: NN, INTEGER
+*> Number of values of N.
+*>
+*> line 3: NVAL, INTEGER array, dimension (NN)
+*> The values for the matrix dimension N.
+*>
+*> line 4: NPARMS, INTEGER
+*> Number of values of the parameters NB, NBMIN, and NX.
+*>
+*> line 5: NBVAL, INTEGER array, dimension (NPARMS)
+*> The values for the blocksize NB.
+*>
+*> line 6: NBMIN, INTEGER array, dimension (NPARMS)
+*> The values for the minimum blocksize NBMIN.
+*>
+*> line 7: NXVAL, INTEGER array, dimension (NPARMS)
+*> The values for the crossover point NX.
+*>
+*> line 8: THRESH
+*> Threshold value for the test ratios. Information will be
+*> printed about each test for which the test ratio is greater
+*> than or equal to the threshold.
+*>
+*> line 9: TSTCHK, LOGICAL
+*> Flag indicating whether or not to test the LAPACK routines.
+*>
+*> line 10: TSTDRV, LOGICAL
+*> Flag indicating whether or not to test the driver routines.
+*>
+*> line 11: TSTERR, LOGICAL
+*> Flag indicating whether or not to test the error exits for
+*> the LAPACK routines and driver routines.
+*>
+*> line 12: NEWSD, INTEGER
+*> A code indicating how to set the random number seed.
+*> = 0: Set the seed to a default value before each run
+*> = 1: Initialize the seed to a default value only before the
+*> first run
+*> = 2: Like 1, but use the seed values on the next line
+*>
+*> If line 12 was 2:
+*>
+*> line 13: INTEGER array, dimension (4)
+*> Four integer values for the random number seed.
+*>
+*> lines 13-EOF: Lines specifying matrix types, as for NEP.
+*> The 3-character path names are 'SEP' or 'SST' for the
+*> symmetric eigenvalue routines and driver routines, and
+*> 'DSG' for the routines for the symmetric generalized
+*> eigenvalue problem.
+*>
+*>-----------------------------------------------------------------------
+*>
+*> SVD input file:
+*>
+*> line 2: NN, INTEGER
+*> Number of values of M and N.
+*>
+*> line 3: MVAL, INTEGER array, dimension (NN)
+*> The values for the matrix row dimension M.
+*>
+*> line 4: NVAL, INTEGER array, dimension (NN)
+*> The values for the matrix column dimension N.
+*>
+*> line 5: NPARMS, INTEGER
+*> Number of values of the parameter NB, NBMIN, NX, and NRHS.
+*>
+*> line 6: NBVAL, INTEGER array, dimension (NPARMS)
+*> The values for the blocksize NB.
+*>
+*> line 7: NBMIN, INTEGER array, dimension (NPARMS)
+*> The values for the minimum blocksize NBMIN.
+*>
+*> line 8: NXVAL, INTEGER array, dimension (NPARMS)
+*> The values for the crossover point NX.
+*>
+*> line 9: NSVAL, INTEGER array, dimension (NPARMS)
+*> The values for the number of right hand sides NRHS.
+*>
+*> line 10: THRESH
+*> Threshold value for the test ratios. Information will be
+*> printed about each test for which the test ratio is greater
+*> than or equal to the threshold.
+*>
+*> line 11: TSTCHK, LOGICAL
+*> Flag indicating whether or not to test the LAPACK routines.
+*>
+*> line 12: TSTDRV, LOGICAL
+*> Flag indicating whether or not to test the driver routines.
+*>
+*> line 13: TSTERR, LOGICAL
+*> Flag indicating whether or not to test the error exits for
+*> the LAPACK routines and driver routines.
+*>
+*> line 14: NEWSD, INTEGER
+*> A code indicating how to set the random number seed.
+*> = 0: Set the seed to a default value before each run
+*> = 1: Initialize the seed to a default value only before the
+*> first run
+*> = 2: Like 1, but use the seed values on the next line
+*>
+*> If line 14 was 2:
+*>
+*> line 15: INTEGER array, dimension (4)
+*> Four integer values for the random number seed.
+*>
+*> lines 15-EOF: Lines specifying matrix types, as for NEP.
+*> The 3-character path names are 'SVD' or 'SBD' for both the
+*> SVD routines and the SVD driver routines.
+*>
+*>-----------------------------------------------------------------------
+*>
+*> DEV and DES data files:
+*>
+*> line 1: 'DEV' or 'DES' in columns 1 to 3.
+*>
+*> line 2: NSIZES, INTEGER
+*> Number of sizes of matrices to use. Should be at least 0
+*> and at most 20. If NSIZES = 0, no testing is done
+*> (although the remaining 3 lines are still read).
+*>
+*> line 3: NN, INTEGER array, dimension(NSIZES)
+*> Dimensions of matrices to be tested.
+*>
+*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs
+*> These integer parameters determine how blocking is done
+*> (see ILAENV for details)
+*> NB : block size
+*> NBMIN : minimum block size
+*> NX : minimum dimension for blocking
+*> NS : number of shifts in xHSEQR
+*> NBCOL : minimum column dimension for blocking
+*>
+*> line 5: THRESH, REAL
+*> The test threshold against which computed residuals are
+*> compared. Should generally be in the range from 10. to 20.
+*> If it is 0., all test case data will be printed.
+*>
+*> line 6: TSTERR, LOGICAL
+*> Flag indicating whether or not to test the error exits.
+*>
+*> line 7: NEWSD, INTEGER
+*> A code indicating how to set the random number seed.
+*> = 0: Set the seed to a default value before each run
+*> = 1: Initialize the seed to a default value only before the
+*> first run
+*> = 2: Like 1, but use the seed values on the next line
+*>
+*> If line 7 was 2:
+*>
+*> line 8: INTEGER array, dimension (4)
+*> Four integer values for the random number seed.
+*>
+*> lines 9 and following: Lines specifying matrix types, as for NEP.
+*> The 3-character path name is 'DEV' to test SGEEV, or
+*> 'DES' to test SGEES.
+*>
+*>-----------------------------------------------------------------------
+*>
+*> The DVX data has two parts. The first part is identical to DEV,
+*> and the second part consists of test matrices with precomputed
+*> solutions.
+*>
+*> line 1: 'DVX' in columns 1-3.
+*>
+*> line 2: NSIZES, INTEGER
+*> If NSIZES = 0, no testing of randomly generated examples
+*> is done, but any precomputed examples are tested.
+*>
+*> line 3: NN, INTEGER array, dimension(NSIZES)
+*>
+*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs
+*>
+*> line 5: THRESH, REAL
+*>
+*> line 6: TSTERR, LOGICAL
+*>
+*> line 7: NEWSD, INTEGER
+*>
+*> If line 7 was 2:
+*>
+*> line 8: INTEGER array, dimension (4)
+*>
+*> lines 9 and following: The first line contains 'DVX' in columns 1-3
+*> followed by the number of matrix types, possibly with
+*> a second line to specify certain matrix types.
+*> If the number of matrix types = 0, no testing of randomly
+*> generated examples is done, but any precomputed examples
+*> are tested.
+*>
+*> remaining lines : Each matrix is stored on 1+2*N lines, where N is
+*> its dimension. The first line contains the dimension (a
+*> single integer). The next N lines contain the matrix, one
+*> row per line. The last N lines correspond to each
+*> eigenvalue. Each of these last N lines contains 4 real
+*> values: the real part of the eigenvalue, the imaginary
+*> part of the eigenvalue, the reciprocal condition number of
+*> the eigenvalues, and the reciprocal condition number of the
+*> eigenvector. The end of data is indicated by dimension N=0.
+*> Even if no data is to be tested, there must be at least one
+*> line containing N=0.
+*>
+*>-----------------------------------------------------------------------
+*>
+*> The DSX data is like DVX. The first part is identical to DEV, and the
+*> second part consists of test matrices with precomputed solutions.
+*>
+*> line 1: 'DSX' in columns 1-3.
+*>
+*> line 2: NSIZES, INTEGER
+*> If NSIZES = 0, no testing of randomly generated examples
+*> is done, but any precomputed examples are tested.
+*>
+*> line 3: NN, INTEGER array, dimension(NSIZES)
+*>
+*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs
+*>
+*> line 5: THRESH, REAL
+*>
+*> line 6: TSTERR, LOGICAL
+*>
+*> line 7: NEWSD, INTEGER
+*>
+*> If line 7 was 2:
+*>
+*> line 8: INTEGER array, dimension (4)
+*>
+*> lines 9 and following: The first line contains 'DSX' in columns 1-3
+*> followed by the number of matrix types, possibly with
+*> a second line to specify certain matrix types.
+*> If the number of matrix types = 0, no testing of randomly
+*> generated examples is done, but any precomputed examples
+*> are tested.
+*>
+*> remaining lines : Each matrix is stored on 3+N lines, where N is its
+*> dimension. The first line contains the dimension N and the
+*> dimension M of an invariant subspace. The second line
+*> contains M integers, identifying the eigenvalues in the
+*> invariant subspace (by their position in a list of
+*> eigenvalues ordered by increasing real part). The next N
+*> lines contain the matrix. The last line contains the
+*> reciprocal condition number for the average of the selected
+*> eigenvalues, and the reciprocal condition number for the
+*> corresponding right invariant subspace. The end of data is
+*> indicated by a line containing N=0 and M=0. Even if no data
+*> is to be tested, there must be at least one line containing
+*> N=0 and M=0.
+*>
+*>-----------------------------------------------------------------------
+*>
+*> DGG input file:
+*>
+*> line 2: NN, INTEGER
+*> Number of values of N.
+*>
+*> line 3: NVAL, INTEGER array, dimension (NN)
+*> The values for the matrix dimension N.
+*>
+*> line 4: NPARMS, INTEGER
+*> Number of values of the parameters NB, NBMIN, NS, MAXB, and
+*> NBCOL.
+*>
+*> line 5: NBVAL, INTEGER array, dimension (NPARMS)
+*> The values for the blocksize NB.
+*>
+*> line 6: NBMIN, INTEGER array, dimension (NPARMS)
+*> The values for NBMIN, the minimum row dimension for blocks.
+*>
+*> line 7: NSVAL, INTEGER array, dimension (NPARMS)
+*> The values for the number of shifts.
+*>
+*> line 8: MXBVAL, INTEGER array, dimension (NPARMS)
+*> The values for MAXB, used in determining minimum blocksize.
+*>
+*> line 9: IACC22, INTEGER array, dimension (NPARMS)
+*> select structured matrix multiply: 1 or 2)
+*>
+*> line 10: NBCOL, INTEGER array, dimension (NPARMS)
+*> The values for NBCOL, the minimum column dimension for
+*> blocks.
+*>
+*> line 11: THRESH
+*> Threshold value for the test ratios. Information will be
+*> printed about each test for which the test ratio is greater
+*> than or equal to the threshold.
+*>
+*> line 12: TSTCHK, LOGICAL
+*> Flag indicating whether or not to test the LAPACK routines.
+*>
+*> line 13: TSTDRV, LOGICAL
+*> Flag indicating whether or not to test the driver routines.
+*>
+*> line 14: TSTERR, LOGICAL
+*> Flag indicating whether or not to test the error exits for
+*> the LAPACK routines and driver routines.
+*>
+*> line 15: NEWSD, INTEGER
+*> A code indicating how to set the random number seed.
+*> = 0: Set the seed to a default value before each run
+*> = 1: Initialize the seed to a default value only before the
+*> first run
+*> = 2: Like 1, but use the seed values on the next line
+*>
+*> If line 15 was 2:
+*>
+*> line 16: INTEGER array, dimension (4)
+*> Four integer values for the random number seed.
+*>
+*> lines 17-EOF: Lines specifying matrix types, as for NEP.
+*> The 3-character path name is 'DGG' for the generalized
+*> eigenvalue problem routines and driver routines.
+*>
+*>-----------------------------------------------------------------------
+*>
+*> DGS and DGV input files:
+*>
+*> line 1: 'DGS' or 'DGV' in columns 1 to 3.
+*>
+*> line 2: NN, INTEGER
+*> Number of values of N.
+*>
+*> line 3: NVAL, INTEGER array, dimension(NN)
+*> Dimensions of matrices to be tested.
+*>
+*> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs
+*> These integer parameters determine how blocking is done
+*> (see ILAENV for details)
+*> NB : block size
+*> NBMIN : minimum block size
+*> NX : minimum dimension for blocking
+*> NS : number of shifts in xHGEQR
+*> NBCOL : minimum column dimension for blocking
+*>
+*> line 5: THRESH, REAL
+*> The test threshold against which computed residuals are
+*> compared. Should generally be in the range from 10. to 20.
+*> If it is 0., all test case data will be printed.
+*>
+*> line 6: TSTERR, LOGICAL
+*> Flag indicating whether or not to test the error exits.
+*>
+*> line 7: NEWSD, INTEGER
+*> A code indicating how to set the random number seed.
+*> = 0: Set the seed to a default value before each run
+*> = 1: Initialize the seed to a default value only before the
+*> first run
+*> = 2: Like 1, but use the seed values on the next line
+*>
+*> If line 17 was 2:
+*>
+*> line 7: INTEGER array, dimension (4)
+*> Four integer values for the random number seed.
+*>
+*> lines 7-EOF: Lines specifying matrix types, as for NEP.
+*> The 3-character path name is 'DGS' for the generalized
+*> eigenvalue problem routines and driver routines.
+*>
+*>-----------------------------------------------------------------------
+*>
+*> DXV input files:
+*>
+*> line 1: 'DXV' in columns 1 to 3.
+*>
+*> line 2: N, INTEGER
+*> Value of N.
+*>
+*> line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs
+*> These integer parameters determine how blocking is done
+*> (see ILAENV for details)
+*> NB : block size
+*> NBMIN : minimum block size
+*> NX : minimum dimension for blocking
+*> NS : number of shifts in xHGEQR
+*> NBCOL : minimum column dimension for blocking
+*>
+*> line 4: THRESH, REAL
+*> The test threshold against which computed residuals are
+*> compared. Should generally be in the range from 10. to 20.
+*> Information will be printed about each test for which the
+*> test ratio is greater than or equal to the threshold.
+*>
+*> line 5: TSTERR, LOGICAL
+*> Flag indicating whether or not to test the error exits for
+*> the LAPACK routines and driver routines.
+*>
+*> line 6: NEWSD, INTEGER
+*> A code indicating how to set the random number seed.
+*> = 0: Set the seed to a default value before each run
+*> = 1: Initialize the seed to a default value only before the
+*> first run
+*> = 2: Like 1, but use the seed values on the next line
+*>
+*> If line 6 was 2:
+*>
+*> line 7: INTEGER array, dimension (4)
+*> Four integer values for the random number seed.
+*>
+*> If line 2 was 0:
+*>
+*> line 7-EOF: Precomputed examples are tested.
+*>
+*> remaining lines : Each example is stored on 3+2*N lines, where N is
+*> its dimension. The first line contains the dimension (a
+*> single integer). The next N lines contain the matrix A, one
+*> row per line. The next N lines contain the matrix B. The
+*> next line contains the reciprocals of the eigenvalue
+*> condition numbers. The last line contains the reciprocals of
+*> the eigenvector condition numbers. The end of data is
+*> indicated by dimension N=0. Even if no data is to be tested,
+*> there must be at least one line containing N=0.
+*>
+*>-----------------------------------------------------------------------
+*>
+*> DGX input files:
+*>
+*> line 1: 'DGX' in columns 1 to 3.
+*>
+*> line 2: N, INTEGER
+*> Value of N.
+*>
+*> line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs
+*> These integer parameters determine how blocking is done
+*> (see ILAENV for details)
+*> NB : block size
+*> NBMIN : minimum block size
+*> NX : minimum dimension for blocking
+*> NS : number of shifts in xHGEQR
+*> NBCOL : minimum column dimension for blocking
+*>
+*> line 4: THRESH, REAL
+*> The test threshold against which computed residuals are
+*> compared. Should generally be in the range from 10. to 20.
+*> Information will be printed about each test for which the
+*> test ratio is greater than or equal to the threshold.
+*>
+*> line 5: TSTERR, LOGICAL
+*> Flag indicating whether or not to test the error exits for
+*> the LAPACK routines and driver routines.
+*>
+*> line 6: NEWSD, INTEGER
+*> A code indicating how to set the random number seed.
+*> = 0: Set the seed to a default value before each run
+*> = 1: Initialize the seed to a default value only before the
+*> first run
+*> = 2: Like 1, but use the seed values on the next line
+*>
+*> If line 6 was 2:
+*>
+*> line 7: INTEGER array, dimension (4)
+*> Four integer values for the random number seed.
+*>
+*> If line 2 was 0:
+*>
+*> line 7-EOF: Precomputed examples are tested.
+*>
+*> remaining lines : Each example is stored on 3+2*N lines, where N is
+*> its dimension. The first line contains the dimension (a
+*> single integer). The next line contains an integer k such
+*> that only the last k eigenvalues will be selected and appear
+*> in the leading diagonal blocks of $A$ and $B$. The next N
+*> lines contain the matrix A, one row per line. The next N
+*> lines contain the matrix B. The last line contains the
+*> reciprocal of the eigenvalue cluster condition number and the
+*> reciprocal of the deflating subspace (associated with the
+*> selected eigencluster) condition number. The end of data is
+*> indicated by dimension N=0. Even if no data is to be tested,
+*> there must be at least one line containing N=0.
+*>
+*>-----------------------------------------------------------------------
+*>
+*> DSB input file:
+*>
+*> line 2: NN, INTEGER
+*> Number of values of N.
+*>
+*> line 3: NVAL, INTEGER array, dimension (NN)
+*> The values for the matrix dimension N.
+*>
+*> line 4: NK, INTEGER
+*> Number of values of K.
+*>
+*> line 5: KVAL, INTEGER array, dimension (NK)
+*> The values for the matrix dimension K.
+*>
+*> line 6: THRESH
+*> Threshold value for the test ratios. Information will be
+*> printed about each test for which the test ratio is greater
+*> than or equal to the threshold.
+*>
+*> line 7: NEWSD, INTEGER
+*> A code indicating how to set the random number seed.
+*> = 0: Set the seed to a default value before each run
+*> = 1: Initialize the seed to a default value only before the
+*> first run
+*> = 2: Like 1, but use the seed values on the next line
+*>
+*> If line 7 was 2:
+*>
+*> line 8: INTEGER array, dimension (4)
+*> Four integer values for the random number seed.
+*>
+*> lines 8-EOF: Lines specifying matrix types, as for NEP.
+*> The 3-character path name is 'DSB'.
+*>
+*>-----------------------------------------------------------------------
+*>
+*> DBB input file:
+*>
+*> line 2: NN, INTEGER
+*> Number of values of M and N.
+*>
+*> line 3: MVAL, INTEGER array, dimension (NN)
+*> The values for the matrix row dimension M.
+*>
+*> line 4: NVAL, INTEGER array, dimension (NN)
+*> The values for the matrix column dimension N.
+*>
+*> line 4: NK, INTEGER
+*> Number of values of K.
+*>
+*> line 5: KVAL, INTEGER array, dimension (NK)
+*> The values for the matrix bandwidth K.
+*>
+*> line 6: NPARMS, INTEGER
+*> Number of values of the parameter NRHS
+*>
+*> line 7: NSVAL, INTEGER array, dimension (NPARMS)
+*> The values for the number of right hand sides NRHS.
+*>
+*> line 8: THRESH
+*> Threshold value for the test ratios. Information will be
+*> printed about each test for which the test ratio is greater
+*> than or equal to the threshold.
+*>
+*> line 9: NEWSD, INTEGER
+*> A code indicating how to set the random number seed.
+*> = 0: Set the seed to a default value before each run
+*> = 1: Initialize the seed to a default value only before the
+*> first run
+*> = 2: Like 1, but use the seed values on the next line
+*>
+*> If line 9 was 2:
+*>
+*> line 10: INTEGER array, dimension (4)
+*> Four integer values for the random number seed.
+*>
+*> lines 10-EOF: Lines specifying matrix types, as for SVD.
+*> The 3-character path name is 'DBB'.
+*>
+*>-----------------------------------------------------------------------
+*>
+*> DEC input file:
+*>
+*> line 2: THRESH, REAL
+*> Threshold value for the test ratios. Information will be
+*> printed about each test for which the test ratio is greater
+*> than or equal to the threshold.
+*>
+*> lines 3-EOF:
+*>
+*> Input for testing the eigencondition routines consists of a set of
+*> specially constructed test cases and their solutions. The data
+*> format is not intended to be modified by the user.
+*>
+*>-----------------------------------------------------------------------
+*>
+*> DBL and DBK input files:
+*>
+*> line 1: 'DBL' in columns 1-3 to test SGEBAL, or 'DBK' in
+*> columns 1-3 to test SGEBAK.
+*>
+*> The remaining lines consist of specially constructed test cases.
+*>
+*>-----------------------------------------------------------------------
+*>
+*> DGL and DGK input files:
+*>
+*> line 1: 'DGL' in columns 1-3 to test DGGBAL, or 'DGK' in
+*> columns 1-3 to test DGGBAK.
+*>
+*> The remaining lines consist of specially constructed test cases.
+*>
+*>-----------------------------------------------------------------------
+*>
+*> GLM data file:
+*>
+*> line 1: 'GLM' in columns 1 to 3.
+*>
+*> line 2: NN, INTEGER
+*> Number of values of M, P, and N.
+*>
+*> line 3: MVAL, INTEGER array, dimension(NN)
+*> Values of M (row dimension).
+*>
+*> line 4: PVAL, INTEGER array, dimension(NN)
+*> Values of P (row dimension).
+*>
+*> line 5: NVAL, INTEGER array, dimension(NN)
+*> Values of N (column dimension), note M <= N <= M+P.
+*>
+*> line 6: THRESH, REAL
+*> Threshold value for the test ratios. Information will be
+*> printed about each test for which the test ratio is greater
+*> than or equal to the threshold.
+*>
+*> line 7: TSTERR, LOGICAL
+*> Flag indicating whether or not to test the error exits for
+*> the LAPACK routines and driver routines.
+*>
+*> line 8: NEWSD, INTEGER
+*> A code indicating how to set the random number seed.
+*> = 0: Set the seed to a default value before each run
+*> = 1: Initialize the seed to a default value only before the
+*> first run
+*> = 2: Like 1, but use the seed values on the next line
+*>
+*> If line 8 was 2:
+*>
+*> line 9: INTEGER array, dimension (4)
+*> Four integer values for the random number seed.
+*>
+*> lines 9-EOF: Lines specifying matrix types, as for NEP.
+*> The 3-character path name is 'GLM' for the generalized
+*> linear regression model routines.
+*>
+*>-----------------------------------------------------------------------
+*>
+*> GQR data file:
+*>
+*> line 1: 'GQR' in columns 1 to 3.
+*>
+*> line 2: NN, INTEGER
+*> Number of values of M, P, and N.
+*>
+*> line 3: MVAL, INTEGER array, dimension(NN)
+*> Values of M.
+*>
+*> line 4: PVAL, INTEGER array, dimension(NN)
+*> Values of P.
+*>
+*> line 5: NVAL, INTEGER array, dimension(NN)
+*> Values of N.
+*>
+*> line 6: THRESH, REAL
+*> Threshold value for the test ratios. Information will be
+*> printed about each test for which the test ratio is greater
+*> than or equal to the threshold.
+*>
+*> line 7: TSTERR, LOGICAL
+*> Flag indicating whether or not to test the error exits for
+*> the LAPACK routines and driver routines.
+*>
+*> line 8: NEWSD, INTEGER
+*> A code indicating how to set the random number seed.
+*> = 0: Set the seed to a default value before each run
+*> = 1: Initialize the seed to a default value only before the
+*> first run
+*> = 2: Like 1, but use the seed values on the next line
+*>
+*> If line 8 was 2:
+*>
+*> line 9: INTEGER array, dimension (4)
+*> Four integer values for the random number seed.
+*>
+*> lines 9-EOF: Lines specifying matrix types, as for NEP.
+*> The 3-character path name is 'GQR' for the generalized
+*> QR and RQ routines.
+*>
+*>-----------------------------------------------------------------------
+*>
+*> GSV data file:
+*>
+*> line 1: 'GSV' in columns 1 to 3.
+*>
+*> line 2: NN, INTEGER
+*> Number of values of M, P, and N.
+*>
+*> line 3: MVAL, INTEGER array, dimension(NN)
+*> Values of M (row dimension).
+*>
+*> line 4: PVAL, INTEGER array, dimension(NN)
+*> Values of P (row dimension).
+*>
+*> line 5: NVAL, INTEGER array, dimension(NN)
+*> Values of N (column dimension).
+*>
+*> line 6: THRESH, REAL
+*> Threshold value for the test ratios. Information will be
+*> printed about each test for which the test ratio is greater
+*> than or equal to the threshold.
+*>
+*> line 7: TSTERR, LOGICAL
+*> Flag indicating whether or not to test the error exits for
+*> the LAPACK routines and driver routines.
+*>
+*> line 8: NEWSD, INTEGER
+*> A code indicating how to set the random number seed.
+*> = 0: Set the seed to a default value before each run
+*> = 1: Initialize the seed to a default value only before the
+*> first run
+*> = 2: Like 1, but use the seed values on the next line
+*>
+*> If line 8 was 2:
+*>
+*> line 9: INTEGER array, dimension (4)
+*> Four integer values for the random number seed.
+*>
+*> lines 9-EOF: Lines specifying matrix types, as for NEP.
+*> The 3-character path name is 'GSV' for the generalized
+*> SVD routines.
+*>
+*>-----------------------------------------------------------------------
+*>
+*> CSD data file:
+*>
+*> line 1: 'CSD' in columns 1 to 3.
+*>
+*> line 2: NM, INTEGER
+*> Number of values of M, P, and N.
+*>
+*> line 3: MVAL, INTEGER array, dimension(NM)
+*> Values of M (row and column dimension of orthogonal matrix).
+*>
+*> line 4: PVAL, INTEGER array, dimension(NM)
+*> Values of P (row dimension of top-left block).
+*>
+*> line 5: NVAL, INTEGER array, dimension(NM)
+*> Values of N (column dimension of top-left block).
+*>
+*> line 6: THRESH, REAL
+*> Threshold value for the test ratios. Information will be
+*> printed about each test for which the test ratio is greater
+*> than or equal to the threshold.
+*>
+*> line 7: TSTERR, LOGICAL
+*> Flag indicating whether or not to test the error exits for
+*> the LAPACK routines and driver routines.
+*>
+*> line 8: NEWSD, INTEGER
+*> A code indicating how to set the random number seed.
+*> = 0: Set the seed to a default value before each run
+*> = 1: Initialize the seed to a default value only before the
+*> first run
+*> = 2: Like 1, but use the seed values on the next line
+*>
+*> If line 8 was 2:
+*>
+*> line 9: INTEGER array, dimension (4)
+*> Four integer values for the random number seed.
+*>
+*> lines 9-EOF: Lines specifying matrix types, as for NEP.
+*> The 3-character path name is 'CSD' for the CSD routine.
+*>
+*>-----------------------------------------------------------------------
+*>
+*> LSE data file:
+*>
+*> line 1: 'LSE' in columns 1 to 3.
+*>
+*> line 2: NN, INTEGER
+*> Number of values of M, P, and N.
+*>
+*> line 3: MVAL, INTEGER array, dimension(NN)
+*> Values of M.
+*>
+*> line 4: PVAL, INTEGER array, dimension(NN)
+*> Values of P.
+*>
+*> line 5: NVAL, INTEGER array, dimension(NN)
+*> Values of N, note P <= N <= P+M.
+*>
+*> line 6: THRESH, REAL
+*> Threshold value for the test ratios. Information will be
+*> printed about each test for which the test ratio is greater
+*> than or equal to the threshold.
+*>
+*> line 7: TSTERR, LOGICAL
+*> Flag indicating whether or not to test the error exits for
+*> the LAPACK routines and driver routines.
+*>
+*> line 8: NEWSD, INTEGER
+*> A code indicating how to set the random number seed.
+*> = 0: Set the seed to a default value before each run
+*> = 1: Initialize the seed to a default value only before the
+*> first run
+*> = 2: Like 1, but use the seed values on the next line
+*>
+*> If line 8 was 2:
+*>
+*> line 9: INTEGER array, dimension (4)
+*> Four integer values for the random number seed.
+*>
+*> lines 9-EOF: Lines specifying matrix types, as for NEP.
+*> The 3-character path name is 'GSV' for the generalized
+*> SVD routines.
+*>
+*>-----------------------------------------------------------------------
+*>
+*> NMAX is currently set to 132 and must be at least 12 for some of the
+*> precomputed examples, and LWORK = NMAX*(5*NMAX+5)+1 in the parameter
+*> statements below. For SVD, we assume NRHS may be as big as N. The
+*> parameter NEED is set to 14 to allow for 14 N-by-N matrices for DGG.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date June 2016
+*
+*> \ingroup double_eig
+*
+* =====================================================================
+ PROGRAM DCHKEE
+*
+#if defined(_OPENMP)
+ use omp_lib
+#endif
+*
+* -- LAPACK test routine (version 3.7.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* June 2016
+*
+* =====================================================================
+*
+* .. Parameters ..
+ INTEGER NMAX
+ PARAMETER ( NMAX = 132 )
+ INTEGER NCMAX
+ PARAMETER ( NCMAX = 20 )
+ INTEGER NEED
+ PARAMETER ( NEED = 14 )
+ INTEGER LWORK
+ PARAMETER ( LWORK = NMAX*( 5*NMAX+5 )+1 )
+ INTEGER LIWORK
+ PARAMETER ( LIWORK = NMAX*( 5*NMAX+20 ) )
+ INTEGER MAXIN
+ PARAMETER ( MAXIN = 20 )
+ INTEGER MAXT
+ PARAMETER ( MAXT = 30 )
+ INTEGER NIN, NOUT
+ PARAMETER ( NIN = 5, NOUT = 6 )
+* ..
+* .. Local Scalars ..
+ LOGICAL CSD, DBB, DGG, DSB, FATAL, GLM, GQR, GSV, LSE,
+ $ NEP, DBK, DBL, SEP, DES, DEV, DGK, DGL, DGS,
+ $ DGV, DGX, DSX, SVD, DVX, DXV, TSTCHK, TSTDIF,
+ $ TSTDRV, TSTERR
+ CHARACTER C1
+ CHARACTER*3 C3, PATH
+ CHARACTER*32 VNAME
+ CHARACTER*10 INTSTR
+ CHARACTER*80 LINE
+ INTEGER I, I1, IC, INFO, ITMP, K, LENP, MAXTYP, NEWSD,
+ $ NK, NN, NPARMS, NRHS, NTYPES,
+ $ VERS_MAJOR, VERS_MINOR, VERS_PATCH, N_THREADS
+ DOUBLE PRECISION EPS, S1, S2, THRESH, THRSHN
+* ..
+* .. Local Arrays ..
+ LOGICAL DOTYPE( MAXT ), LOGWRK( NMAX )
+ INTEGER IOLDSD( 4 ), ISEED( 4 ), IWORK( LIWORK ),
+ $ KVAL( MAXIN ), MVAL( MAXIN ), MXBVAL( MAXIN ),
+ $ NBCOL( MAXIN ), NBMIN( MAXIN ), NBVAL( MAXIN ),
+ $ NSVAL( MAXIN ), NVAL( MAXIN ), NXVAL( MAXIN ),
+ $ PVAL( MAXIN )
+ INTEGER INMIN( MAXIN ), INWIN( MAXIN ), INIBL( MAXIN ),
+ $ ISHFTS( MAXIN ), IACC22( MAXIN )
+ DOUBLE PRECISION D( NMAX, 12 ), RESULT( 500 ), TAUA( NMAX ),
+ $ TAUB( NMAX ), X( 5*NMAX )
+* ..
+* .. Allocatable Arrays ..
+ INTEGER AllocateStatus
+ DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: WORK
+ DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE :: A, B, C
+* ..
+* .. External Functions ..
+ LOGICAL LSAMEN
+ DOUBLE PRECISION DLAMCH, DSECND
+ EXTERNAL LSAMEN, DLAMCH, DSECND
+* ..
+* .. External Subroutines ..
+ EXTERNAL ALAREQ, DCHKBB, DCHKBD, DCHKBK, DCHKBL, DCHKEC,
+ $ DCHKGG, DCHKGK, DCHKGL, DCHKHS, DCHKSB, DCHKST,
+ $ DCKCSD, DCKGLM, DCKGQR, DCKGSV, DCKLSE, DDRGES,
+ $ DDRGEV, DDRGSX, DDRGVX, DDRVBD, DDRVES, DDRVEV,
+ $ DDRVSG, DDRVST, DDRVSX, DDRVVX, DERRBD,
+ $ DERRED, DERRGG, DERRHS, DERRST, ILAVER, XLAENV,
+ $ DDRGES3, DDRGEV3,
+ $ DCHKST2STG, DDRVST2STG, DCHKSB2STG, DDRVSG2STG
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC LEN, MIN
+* ..
+* .. Scalars in Common ..
+ LOGICAL LERR, OK
+ CHARACTER*32 SRNAMT
+ INTEGER INFOT, MAXB, NPROC, NSHIFT, NUNIT, SELDIM,
+ $ SELOPT
+* ..
+* .. Arrays in Common ..
+ LOGICAL SELVAL( 20 )
+ INTEGER IPARMS( 100 )
+ DOUBLE PRECISION SELWI( 20 ), SELWR( 20 )
+* ..
+* .. Common blocks ..
+ COMMON / CENVIR / NPROC, NSHIFT, MAXB
+ COMMON / INFOC / INFOT, NUNIT, OK, LERR
+ COMMON / SRNAMC / SRNAMT
+ COMMON / SSLCT / SELOPT, SELDIM, SELVAL, SELWR, SELWI
+ COMMON / CLAENV / IPARMS
+* ..
+* .. Data statements ..
+ DATA INTSTR / '0123456789' /
+ DATA IOLDSD / 0, 0, 0, 1 /
+* ..
+* .. Allocate memory dynamically ..
+*
+ ALLOCATE ( A(NMAX*NMAX,NEED), STAT = AllocateStatus )
+ IF (AllocateStatus /= 0) STOP "*** Not enough memory ***"
+ ALLOCATE ( B(NMAX*NMAX,5), STAT = AllocateStatus )
+ IF (AllocateStatus /= 0) STOP "*** Not enough memory ***"
+ ALLOCATE ( C(NCMAX*NCMAX,NCMAX*NCMAX), STAT = AllocateStatus )
+ IF (AllocateStatus /= 0) STOP "*** Not enough memory ***"
+ ALLOCATE ( WORK(LWORK), STAT = AllocateStatus )
+ IF (AllocateStatus /= 0) STOP "*** Not enough memory ***"
+* ..
+* .. Executable Statements ..
+*
+ A = 0.0
+ B = 0.0
+ C = 0.0
+ D = 0.0
+ S1 = DSECND( )
+ FATAL = .FALSE.
+ NUNIT = NOUT
+*
+* Return to here to read multiple sets of data
+*
+ 10 CONTINUE
+*
+* Read the first line and set the 3-character test path
+*
+ READ( NIN, FMT = '(A80)', END = 380 )LINE
+ PATH = LINE( 1: 3 )
+ NEP = LSAMEN( 3, PATH, 'NEP' ) .OR. LSAMEN( 3, PATH, 'DHS' )
+ SEP = LSAMEN( 3, PATH, 'SEP' ) .OR. LSAMEN( 3, PATH, 'DST' ) .OR.
+ $ LSAMEN( 3, PATH, 'DSG' ) .OR. LSAMEN( 3, PATH, 'SE2' )
+ SVD = LSAMEN( 3, PATH, 'SVD' ) .OR. LSAMEN( 3, PATH, 'DBD' )
+ DEV = LSAMEN( 3, PATH, 'DEV' )
+ DES = LSAMEN( 3, PATH, 'DES' )
+ DVX = LSAMEN( 3, PATH, 'DVX' )
+ DSX = LSAMEN( 3, PATH, 'DSX' )
+ DGG = LSAMEN( 3, PATH, 'DGG' )
+ DGS = LSAMEN( 3, PATH, 'DGS' )
+ DGX = LSAMEN( 3, PATH, 'DGX' )
+ DGV = LSAMEN( 3, PATH, 'DGV' )
+ DXV = LSAMEN( 3, PATH, 'DXV' )
+ DSB = LSAMEN( 3, PATH, 'DSB' )
+ DBB = LSAMEN( 3, PATH, 'DBB' )
+ GLM = LSAMEN( 3, PATH, 'GLM' )
+ GQR = LSAMEN( 3, PATH, 'GQR' ) .OR. LSAMEN( 3, PATH, 'GRQ' )
+ GSV = LSAMEN( 3, PATH, 'GSV' )
+ CSD = LSAMEN( 3, PATH, 'CSD' )
+ LSE = LSAMEN( 3, PATH, 'LSE' )
+ DBL = LSAMEN( 3, PATH, 'DBL' )
+ DBK = LSAMEN( 3, PATH, 'DBK' )
+ DGL = LSAMEN( 3, PATH, 'DGL' )
+ DGK = LSAMEN( 3, PATH, 'DGK' )
+*
+* Report values of parameters.
+*
+ IF( PATH.EQ.' ' ) THEN
+ GO TO 10
+ ELSE IF( NEP ) THEN
+ WRITE( NOUT, FMT = 9987 )
+ ELSE IF( SEP ) THEN
+ WRITE( NOUT, FMT = 9986 )
+ ELSE IF( SVD ) THEN
+ WRITE( NOUT, FMT = 9985 )
+ ELSE IF( DEV ) THEN
+ WRITE( NOUT, FMT = 9979 )
+ ELSE IF( DES ) THEN
+ WRITE( NOUT, FMT = 9978 )
+ ELSE IF( DVX ) THEN
+ WRITE( NOUT, FMT = 9977 )
+ ELSE IF( DSX ) THEN
+ WRITE( NOUT, FMT = 9976 )
+ ELSE IF( DGG ) THEN
+ WRITE( NOUT, FMT = 9975 )
+ ELSE IF( DGS ) THEN
+ WRITE( NOUT, FMT = 9964 )
+ ELSE IF( DGX ) THEN
+ WRITE( NOUT, FMT = 9965 )
+ ELSE IF( DGV ) THEN
+ WRITE( NOUT, FMT = 9963 )
+ ELSE IF( DXV ) THEN
+ WRITE( NOUT, FMT = 9962 )
+ ELSE IF( DSB ) THEN
+ WRITE( NOUT, FMT = 9974 )
+ ELSE IF( DBB ) THEN
+ WRITE( NOUT, FMT = 9967 )
+ ELSE IF( GLM ) THEN
+ WRITE( NOUT, FMT = 9971 )
+ ELSE IF( GQR ) THEN
+ WRITE( NOUT, FMT = 9970 )
+ ELSE IF( GSV ) THEN
+ WRITE( NOUT, FMT = 9969 )
+ ELSE IF( CSD ) THEN
+ WRITE( NOUT, FMT = 9960 )
+ ELSE IF( LSE ) THEN
+ WRITE( NOUT, FMT = 9968 )
+ ELSE IF( DBL ) THEN
+*
+* DGEBAL: Balancing
+*
+ CALL DCHKBL( NIN, NOUT )
+ GO TO 10
+ ELSE IF( DBK ) THEN
+*
+* DGEBAK: Back transformation
+*
+ CALL DCHKBK( NIN, NOUT )
+ GO TO 10
+ ELSE IF( DGL ) THEN
+*
+* DGGBAL: Balancing
+*
+ CALL DCHKGL( NIN, NOUT )
+ GO TO 10
+ ELSE IF( DGK ) THEN
+*
+* DGGBAK: Back transformation
+*
+ CALL DCHKGK( NIN, NOUT )
+ GO TO 10
+ ELSE IF( LSAMEN( 3, PATH, 'DEC' ) ) THEN
+*
+* DEC: Eigencondition estimation
+*
+ READ( NIN, FMT = * )THRESH
+ CALL XLAENV( 1, 1 )
+ CALL XLAENV( 12, 11 )
+ CALL XLAENV( 13, 2 )
+ CALL XLAENV( 14, 0 )
+ CALL XLAENV( 15, 2 )
+ CALL XLAENV( 16, 2 )
+ TSTERR = .TRUE.
+ CALL DCHKEC( THRESH, TSTERR, NIN, NOUT )
+ GO TO 10
+ ELSE
+ WRITE( NOUT, FMT = 9992 )PATH
+ GO TO 10
+ END IF
+ CALL ILAVER( VERS_MAJOR, VERS_MINOR, VERS_PATCH )
+ WRITE( NOUT, FMT = 9972 ) VERS_MAJOR, VERS_MINOR, VERS_PATCH
+ WRITE( NOUT, FMT = 9984 )
+*
+* Read the number of values of M, P, and N.
+*
+ READ( NIN, FMT = * )NN
+ IF( NN.LT.0 ) THEN
+ WRITE( NOUT, FMT = 9989 )' NN ', NN, 1
+ NN = 0
+ FATAL = .TRUE.
+ ELSE IF( NN.GT.MAXIN ) THEN
+ WRITE( NOUT, FMT = 9988 )' NN ', NN, MAXIN
+ NN = 0
+ FATAL = .TRUE.
+ END IF
+*
+* Read the values of M
+*
+ IF( .NOT.( DGX .OR. DXV ) ) THEN
+ READ( NIN, FMT = * )( MVAL( I ), I = 1, NN )
+ IF( SVD ) THEN
+ VNAME = ' M '
+ ELSE
+ VNAME = ' N '
+ END IF
+ DO 20 I = 1, NN
+ IF( MVAL( I ).LT.0 ) THEN
+ WRITE( NOUT, FMT = 9989 )VNAME, MVAL( I ), 0
+ FATAL = .TRUE.
+ ELSE IF( MVAL( I ).GT.NMAX ) THEN
+ WRITE( NOUT, FMT = 9988 )VNAME, MVAL( I ), NMAX
+ FATAL = .TRUE.
+ END IF
+ 20 CONTINUE
+ WRITE( NOUT, FMT = 9983 )'M: ', ( MVAL( I ), I = 1, NN )
+ END IF
+*
+* Read the values of P
+*
+ IF( GLM .OR. GQR .OR. GSV .OR. CSD .OR. LSE ) THEN
+ READ( NIN, FMT = * )( PVAL( I ), I = 1, NN )
+ DO 30 I = 1, NN
+ IF( PVAL( I ).LT.0 ) THEN
+ WRITE( NOUT, FMT = 9989 )' P ', PVAL( I ), 0
+ FATAL = .TRUE.
+ ELSE IF( PVAL( I ).GT.NMAX ) THEN
+ WRITE( NOUT, FMT = 9988 )' P ', PVAL( I ), NMAX
+ FATAL = .TRUE.
+ END IF
+ 30 CONTINUE
+ WRITE( NOUT, FMT = 9983 )'P: ', ( PVAL( I ), I = 1, NN )
+ END IF
+*
+* Read the values of N
+*
+ IF( SVD .OR. DBB .OR. GLM .OR. GQR .OR. GSV .OR. CSD .OR.
+ $ LSE ) THEN
+ READ( NIN, FMT = * )( NVAL( I ), I = 1, NN )
+ DO 40 I = 1, NN
+ IF( NVAL( I ).LT.0 ) THEN
+ WRITE( NOUT, FMT = 9989 )' N ', NVAL( I ), 0
+ FATAL = .TRUE.
+ ELSE IF( NVAL( I ).GT.NMAX ) THEN
+ WRITE( NOUT, FMT = 9988 )' N ', NVAL( I ), NMAX
+ FATAL = .TRUE.
+ END IF
+ 40 CONTINUE
+ ELSE
+ DO 50 I = 1, NN
+ NVAL( I ) = MVAL( I )
+ 50 CONTINUE
+ END IF
+ IF( .NOT.( DGX .OR. DXV ) ) THEN
+ WRITE( NOUT, FMT = 9983 )'N: ', ( NVAL( I ), I = 1, NN )
+ ELSE
+ WRITE( NOUT, FMT = 9983 )'N: ', NN
+ END IF
+*
+* Read the number of values of K, followed by the values of K
+*
+ IF( DSB .OR. DBB ) THEN
+ READ( NIN, FMT = * )NK
+ READ( NIN, FMT = * )( KVAL( I ), I = 1, NK )
+ DO 60 I = 1, NK
+ IF( KVAL( I ).LT.0 ) THEN
+ WRITE( NOUT, FMT = 9989 )' K ', KVAL( I ), 0
+ FATAL = .TRUE.
+ ELSE IF( KVAL( I ).GT.NMAX ) THEN
+ WRITE( NOUT, FMT = 9988 )' K ', KVAL( I ), NMAX
+ FATAL = .TRUE.
+ END IF
+ 60 CONTINUE
+ WRITE( NOUT, FMT = 9983 )'K: ', ( KVAL( I ), I = 1, NK )
+ END IF
+*
+ IF( DEV .OR. DES .OR. DVX .OR. DSX ) THEN
+*
+* For the nonsymmetric QR driver routines, only one set of
+* parameters is allowed.
+*
+ READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ),
+ $ INMIN( 1 ), INWIN( 1 ), INIBL(1), ISHFTS(1), IACC22(1)
+ IF( NBVAL( 1 ).LT.1 ) THEN
+ WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1
+ FATAL = .TRUE.
+ ELSE IF( NBMIN( 1 ).LT.1 ) THEN
+ WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1
+ FATAL = .TRUE.
+ ELSE IF( NXVAL( 1 ).LT.1 ) THEN
+ WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1
+ FATAL = .TRUE.
+ ELSE IF( INMIN( 1 ).LT.1 ) THEN
+ WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( 1 ), 1
+ FATAL = .TRUE.
+ ELSE IF( INWIN( 1 ).LT.1 ) THEN
+ WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( 1 ), 1
+ FATAL = .TRUE.
+ ELSE IF( INIBL( 1 ).LT.1 ) THEN
+ WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( 1 ), 1
+ FATAL = .TRUE.
+ ELSE IF( ISHFTS( 1 ).LT.1 ) THEN
+ WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( 1 ), 1
+ FATAL = .TRUE.
+ ELSE IF( IACC22( 1 ).LT.0 ) THEN
+ WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( 1 ), 0
+ FATAL = .TRUE.
+ END IF
+ CALL XLAENV( 1, NBVAL( 1 ) )
+ CALL XLAENV( 2, NBMIN( 1 ) )
+ CALL XLAENV( 3, NXVAL( 1 ) )
+ CALL XLAENV(12, MAX( 11, INMIN( 1 ) ) )
+ CALL XLAENV(13, INWIN( 1 ) )
+ CALL XLAENV(14, INIBL( 1 ) )
+ CALL XLAENV(15, ISHFTS( 1 ) )
+ CALL XLAENV(16, IACC22( 1 ) )
+ WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 )
+ WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 )
+ WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 )
+ WRITE( NOUT, FMT = 9983 )'INMIN: ', INMIN( 1 )
+ WRITE( NOUT, FMT = 9983 )'INWIN: ', INWIN( 1 )
+ WRITE( NOUT, FMT = 9983 )'INIBL: ', INIBL( 1 )
+ WRITE( NOUT, FMT = 9983 )'ISHFTS: ', ISHFTS( 1 )
+ WRITE( NOUT, FMT = 9983 )'IACC22: ', IACC22( 1 )
+*
+ ELSEIF( DGS .OR. DGX .OR. DGV .OR. DXV ) THEN
+*
+* For the nonsymmetric generalized driver routines, only one set
+* of parameters is allowed.
+*
+ READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ),
+ $ NSVAL( 1 ), MXBVAL( 1 )
+ IF( NBVAL( 1 ).LT.1 ) THEN
+ WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1
+ FATAL = .TRUE.
+ ELSE IF( NBMIN( 1 ).LT.1 ) THEN
+ WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1
+ FATAL = .TRUE.
+ ELSE IF( NXVAL( 1 ).LT.1 ) THEN
+ WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1
+ FATAL = .TRUE.
+ ELSE IF( NSVAL( 1 ).LT.2 ) THEN
+ WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( 1 ), 2
+ FATAL = .TRUE.
+ ELSE IF( MXBVAL( 1 ).LT.1 ) THEN
+ WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( 1 ), 1
+ FATAL = .TRUE.
+ END IF
+ CALL XLAENV( 1, NBVAL( 1 ) )
+ CALL XLAENV( 2, NBMIN( 1 ) )
+ CALL XLAENV( 3, NXVAL( 1 ) )
+ CALL XLAENV( 4, NSVAL( 1 ) )
+ CALL XLAENV( 8, MXBVAL( 1 ) )
+ WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 )
+ WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 )
+ WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 )
+ WRITE( NOUT, FMT = 9983 )'NS: ', NSVAL( 1 )
+ WRITE( NOUT, FMT = 9983 )'MAXB: ', MXBVAL( 1 )
+*
+ ELSE IF( .NOT.DSB .AND. .NOT.GLM .AND. .NOT.GQR .AND. .NOT.
+ $ GSV .AND. .NOT.CSD .AND. .NOT.LSE ) THEN
+*
+* For the other paths, the number of parameters can be varied
+* from the input file. Read the number of parameter values.
+*
+ READ( NIN, FMT = * )NPARMS
+ IF( NPARMS.LT.1 ) THEN
+ WRITE( NOUT, FMT = 9989 )'NPARMS', NPARMS, 1
+ NPARMS = 0
+ FATAL = .TRUE.
+ ELSE IF( NPARMS.GT.MAXIN ) THEN
+ WRITE( NOUT, FMT = 9988 )'NPARMS', NPARMS, MAXIN
+ NPARMS = 0
+ FATAL = .TRUE.
+ END IF
+*
+* Read the values of NB
+*
+ IF( .NOT.DBB ) THEN
+ READ( NIN, FMT = * )( NBVAL( I ), I = 1, NPARMS )
+ DO 70 I = 1, NPARMS
+ IF( NBVAL( I ).LT.0 ) THEN
+ WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( I ), 0
+ FATAL = .TRUE.
+ ELSE IF( NBVAL( I ).GT.NMAX ) THEN
+ WRITE( NOUT, FMT = 9988 )' NB ', NBVAL( I ), NMAX
+ FATAL = .TRUE.
+ END IF
+ 70 CONTINUE
+ WRITE( NOUT, FMT = 9983 )'NB: ',
+ $ ( NBVAL( I ), I = 1, NPARMS )
+ END IF
+*
+* Read the values of NBMIN
+*
+ IF( NEP .OR. SEP .OR. SVD .OR. DGG ) THEN
+ READ( NIN, FMT = * )( NBMIN( I ), I = 1, NPARMS )
+ DO 80 I = 1, NPARMS
+ IF( NBMIN( I ).LT.0 ) THEN
+ WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( I ), 0
+ FATAL = .TRUE.
+ ELSE IF( NBMIN( I ).GT.NMAX ) THEN
+ WRITE( NOUT, FMT = 9988 )'NBMIN ', NBMIN( I ), NMAX
+ FATAL = .TRUE.
+ END IF
+ 80 CONTINUE
+ WRITE( NOUT, FMT = 9983 )'NBMIN:',
+ $ ( NBMIN( I ), I = 1, NPARMS )
+ ELSE
+ DO 90 I = 1, NPARMS
+ NBMIN( I ) = 1
+ 90 CONTINUE
+ END IF
+*
+* Read the values of NX
+*
+ IF( NEP .OR. SEP .OR. SVD ) THEN
+ READ( NIN, FMT = * )( NXVAL( I ), I = 1, NPARMS )
+ DO 100 I = 1, NPARMS
+ IF( NXVAL( I ).LT.0 ) THEN
+ WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( I ), 0
+ FATAL = .TRUE.
+ ELSE IF( NXVAL( I ).GT.NMAX ) THEN
+ WRITE( NOUT, FMT = 9988 )' NX ', NXVAL( I ), NMAX
+ FATAL = .TRUE.
+ END IF
+ 100 CONTINUE
+ WRITE( NOUT, FMT = 9983 )'NX: ',
+ $ ( NXVAL( I ), I = 1, NPARMS )
+ ELSE
+ DO 110 I = 1, NPARMS
+ NXVAL( I ) = 1
+ 110 CONTINUE
+ END IF
+*
+* Read the values of NSHIFT (if DGG) or NRHS (if SVD
+* or DBB).
+*
+ IF( SVD .OR. DBB .OR. DGG ) THEN
+ READ( NIN, FMT = * )( NSVAL( I ), I = 1, NPARMS )
+ DO 120 I = 1, NPARMS
+ IF( NSVAL( I ).LT.0 ) THEN
+ WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( I ), 0
+ FATAL = .TRUE.
+ ELSE IF( NSVAL( I ).GT.NMAX ) THEN
+ WRITE( NOUT, FMT = 9988 )' NS ', NSVAL( I ), NMAX
+ FATAL = .TRUE.
+ END IF
+ 120 CONTINUE
+ WRITE( NOUT, FMT = 9983 )'NS: ',
+ $ ( NSVAL( I ), I = 1, NPARMS )
+ ELSE
+ DO 130 I = 1, NPARMS
+ NSVAL( I ) = 1
+ 130 CONTINUE
+ END IF
+*
+* Read the values for MAXB.
+*
+ IF( DGG ) THEN
+ READ( NIN, FMT = * )( MXBVAL( I ), I = 1, NPARMS )
+ DO 140 I = 1, NPARMS
+ IF( MXBVAL( I ).LT.0 ) THEN
+ WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( I ), 0
+ FATAL = .TRUE.
+ ELSE IF( MXBVAL( I ).GT.NMAX ) THEN
+ WRITE( NOUT, FMT = 9988 )' MAXB ', MXBVAL( I ), NMAX
+ FATAL = .TRUE.
+ END IF
+ 140 CONTINUE
+ WRITE( NOUT, FMT = 9983 )'MAXB: ',
+ $ ( MXBVAL( I ), I = 1, NPARMS )
+ ELSE
+ DO 150 I = 1, NPARMS
+ MXBVAL( I ) = 1
+ 150 CONTINUE
+ END IF
+*
+* Read the values for INMIN.
+*
+ IF( NEP ) THEN
+ READ( NIN, FMT = * )( INMIN( I ), I = 1, NPARMS )
+ DO 540 I = 1, NPARMS
+ IF( INMIN( I ).LT.0 ) THEN
+ WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( I ), 0
+ FATAL = .TRUE.
+ END IF
+ 540 CONTINUE
+ WRITE( NOUT, FMT = 9983 )'INMIN: ',
+ $ ( INMIN( I ), I = 1, NPARMS )
+ ELSE
+ DO 550 I = 1, NPARMS
+ INMIN( I ) = 1
+ 550 CONTINUE
+ END IF
+*
+* Read the values for INWIN.
+*
+ IF( NEP ) THEN
+ READ( NIN, FMT = * )( INWIN( I ), I = 1, NPARMS )
+ DO 560 I = 1, NPARMS
+ IF( INWIN( I ).LT.0 ) THEN
+ WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( I ), 0
+ FATAL = .TRUE.
+ END IF
+ 560 CONTINUE
+ WRITE( NOUT, FMT = 9983 )'INWIN: ',
+ $ ( INWIN( I ), I = 1, NPARMS )
+ ELSE
+ DO 570 I = 1, NPARMS
+ INWIN( I ) = 1
+ 570 CONTINUE
+ END IF
+*
+* Read the values for INIBL.
+*
+ IF( NEP ) THEN
+ READ( NIN, FMT = * )( INIBL( I ), I = 1, NPARMS )
+ DO 580 I = 1, NPARMS
+ IF( INIBL( I ).LT.0 ) THEN
+ WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( I ), 0
+ FATAL = .TRUE.
+ END IF
+ 580 CONTINUE
+ WRITE( NOUT, FMT = 9983 )'INIBL: ',
+ $ ( INIBL( I ), I = 1, NPARMS )
+ ELSE
+ DO 590 I = 1, NPARMS
+ INIBL( I ) = 1
+ 590 CONTINUE
+ END IF
+*
+* Read the values for ISHFTS.
+*
+ IF( NEP ) THEN
+ READ( NIN, FMT = * )( ISHFTS( I ), I = 1, NPARMS )
+ DO 600 I = 1, NPARMS
+ IF( ISHFTS( I ).LT.0 ) THEN
+ WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( I ), 0
+ FATAL = .TRUE.
+ END IF
+ 600 CONTINUE
+ WRITE( NOUT, FMT = 9983 )'ISHFTS: ',
+ $ ( ISHFTS( I ), I = 1, NPARMS )
+ ELSE
+ DO 610 I = 1, NPARMS
+ ISHFTS( I ) = 1
+ 610 CONTINUE
+ END IF
+*
+* Read the values for IACC22.
+*
+ IF( NEP .OR. DGG ) THEN
+ READ( NIN, FMT = * )( IACC22( I ), I = 1, NPARMS )
+ DO 620 I = 1, NPARMS
+ IF( IACC22( I ).LT.0 ) THEN
+ WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( I ), 0
+ FATAL = .TRUE.
+ END IF
+ 620 CONTINUE
+ WRITE( NOUT, FMT = 9983 )'IACC22: ',
+ $ ( IACC22( I ), I = 1, NPARMS )
+ ELSE
+ DO 630 I = 1, NPARMS
+ IACC22( I ) = 1
+ 630 CONTINUE
+ END IF
+*
+* Read the values for NBCOL.
+*
+ IF( DGG ) THEN
+ READ( NIN, FMT = * )( NBCOL( I ), I = 1, NPARMS )
+ DO 160 I = 1, NPARMS
+ IF( NBCOL( I ).LT.0 ) THEN
+ WRITE( NOUT, FMT = 9989 )'NBCOL ', NBCOL( I ), 0
+ FATAL = .TRUE.
+ ELSE IF( NBCOL( I ).GT.NMAX ) THEN
+ WRITE( NOUT, FMT = 9988 )'NBCOL ', NBCOL( I ), NMAX
+ FATAL = .TRUE.
+ END IF
+ 160 CONTINUE
+ WRITE( NOUT, FMT = 9983 )'NBCOL:',
+ $ ( NBCOL( I ), I = 1, NPARMS )
+ ELSE
+ DO 170 I = 1, NPARMS
+ NBCOL( I ) = 1
+ 170 CONTINUE
+ END IF
+ END IF
+*
+* Calculate and print the machine dependent constants.
+*
+ WRITE( NOUT, FMT = * )
+ EPS = DLAMCH( 'Underflow threshold' )
+ WRITE( NOUT, FMT = 9981 )'underflow', EPS
+ EPS = DLAMCH( 'Overflow threshold' )
+ WRITE( NOUT, FMT = 9981 )'overflow ', EPS
+ EPS = DLAMCH( 'Epsilon' )
+ WRITE( NOUT, FMT = 9981 )'precision', EPS
+*
+* Read the threshold value for the test ratios.
+*
+ READ( NIN, FMT = * )THRESH
+ WRITE( NOUT, FMT = 9982 )THRESH
+ IF( SEP .OR. SVD .OR. DGG ) THEN
+*
+* Read the flag that indicates whether to test LAPACK routines.
+*
+ READ( NIN, FMT = * )TSTCHK
+*
+* Read the flag that indicates whether to test driver routines.
+*
+ READ( NIN, FMT = * )TSTDRV
+ END IF
+*
+* Read the flag that indicates whether to test the error exits.
+*
+ READ( NIN, FMT = * )TSTERR
+*
+* Read the code describing how to set the random number seed.
+*
+ READ( NIN, FMT = * )NEWSD
+*
+* If NEWSD = 2, read another line with 4 integers for the seed.
+*
+ IF( NEWSD.EQ.2 )
+ $ READ( NIN, FMT = * )( IOLDSD( I ), I = 1, 4 )
+*
+ DO 180 I = 1, 4
+ ISEED( I ) = IOLDSD( I )
+ 180 CONTINUE
+*
+ IF( FATAL ) THEN
+ WRITE( NOUT, FMT = 9999 )
+ STOP
+ END IF
+*
+* Read the input lines indicating the test path and its parameters.
+* The first three characters indicate the test path, and the number
+* of test matrix types must be the first nonblank item in columns
+* 4-80.
+*
+ 190 CONTINUE
+*
+ IF( .NOT.( DGX .OR. DXV ) ) THEN
+*
+ 200 CONTINUE
+ READ( NIN, FMT = '(A80)', END = 380 )LINE
+ C3 = LINE( 1: 3 )
+ LENP = LEN( LINE )
+ I = 3
+ ITMP = 0
+ I1 = 0
+ 210 CONTINUE
+ I = I + 1
+ IF( I.GT.LENP ) THEN
+ IF( I1.GT.0 ) THEN
+ GO TO 240
+ ELSE
+ NTYPES = MAXT
+ GO TO 240
+ END IF
+ END IF
+ IF( LINE( I: I ).NE.' ' .AND. LINE( I: I ).NE.',' ) THEN
+ I1 = I
+ C1 = LINE( I1: I1 )
+*
+* Check that a valid integer was read
+*
+ DO 220 K = 1, 10
+ IF( C1.EQ.INTSTR( K: K ) ) THEN
+ IC = K - 1
+ GO TO 230
+ END IF
+ 220 CONTINUE
+ WRITE( NOUT, FMT = 9991 )I, LINE
+ GO TO 200
+ 230 CONTINUE
+ ITMP = 10*ITMP + IC
+ GO TO 210
+ ELSE IF( I1.GT.0 ) THEN
+ GO TO 240
+ ELSE
+ GO TO 210
+ END IF
+ 240 CONTINUE
+ NTYPES = ITMP
+*
+* Skip the tests if NTYPES is <= 0.
+*
+ IF( .NOT.( DEV .OR. DES .OR. DVX .OR. DSX .OR. DGV .OR.
+ $ DGS ) .AND. NTYPES.LE.0 ) THEN
+ WRITE( NOUT, FMT = 9990 )C3
+ GO TO 200
+ END IF
+*
+ ELSE
+ IF( DXV )
+ $ C3 = 'DXV'
+ IF( DGX )
+ $ C3 = 'DGX'
+ END IF
+*
+* Reset the random number seed.
+*
+ IF( NEWSD.EQ.0 ) THEN
+ DO 250 K = 1, 4
+ ISEED( K ) = IOLDSD( K )
+ 250 CONTINUE
+ END IF
+*
+ IF( LSAMEN( 3, C3, 'DHS' ) .OR. LSAMEN( 3, C3, 'NEP' ) ) THEN
+*
+* -------------------------------------
+* NEP: Nonsymmetric Eigenvalue Problem
+* -------------------------------------
+* Vary the parameters
+* NB = block size
+* NBMIN = minimum block size
+* NX = crossover point
+* NS = number of shifts
+* MAXB = minimum submatrix size
+*
+ MAXTYP = 21
+ NTYPES = MIN( MAXTYP, NTYPES )
+ CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
+ CALL XLAENV( 1, 1 )
+ IF( TSTERR )
+ $ CALL DERRHS( 'DHSEQR', NOUT )
+ DO 270 I = 1, NPARMS
+ CALL XLAENV( 1, NBVAL( I ) )
+ CALL XLAENV( 2, NBMIN( I ) )
+ CALL XLAENV( 3, NXVAL( I ) )
+ CALL XLAENV(12, MAX( 11, INMIN( I ) ) )
+ CALL XLAENV(13, INWIN( I ) )
+ CALL XLAENV(14, INIBL( I ) )
+ CALL XLAENV(15, ISHFTS( I ) )
+ CALL XLAENV(16, IACC22( I ) )
+*
+ IF( NEWSD.EQ.0 ) THEN
+ DO 260 K = 1, 4
+ ISEED( K ) = IOLDSD( K )
+ 260 CONTINUE
+ END IF
+ WRITE( NOUT, FMT = 9961 )C3, NBVAL( I ), NBMIN( I ),
+ $ NXVAL( I ), MAX( 11, INMIN(I)),
+ $ INWIN( I ), INIBL( I ), ISHFTS( I ), IACC22( I )
+ CALL DCHKHS( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT,
+ $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
+ $ A( 1, 4 ), A( 1, 5 ), NMAX, A( 1, 6 ),
+ $ A( 1, 7 ), D( 1, 1 ), D( 1, 2 ), D( 1, 3 ),
+ $ D( 1, 4 ), D( 1, 5 ), D( 1, 6 ), A( 1, 8 ),
+ $ A( 1, 9 ), A( 1, 10 ), A( 1, 11 ), A( 1, 12 ),
+ $ D( 1, 7 ), WORK, LWORK, IWORK, LOGWRK, RESULT,
+ $ INFO )
+ IF( INFO.NE.0 )
+ $ WRITE( NOUT, FMT = 9980 )'DCHKHS', INFO
+ 270 CONTINUE
+*
+ ELSE IF( LSAMEN( 3, C3, 'DST' ) .OR. LSAMEN( 3, C3, 'SEP' )
+ $ .OR. LSAMEN( 3, C3, 'SE2' ) ) THEN
+*
+* ----------------------------------
+* SEP: Symmetric Eigenvalue Problem
+* ----------------------------------
+* Vary the parameters
+* NB = block size
+* NBMIN = minimum block size
+* NX = crossover point
+*
+ MAXTYP = 21
+ NTYPES = MIN( MAXTYP, NTYPES )
+ CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
+ CALL XLAENV( 1, 1 )
+ CALL XLAENV( 9, 25 )
+ IF( TSTERR ) THEN
+#if defined(_OPENMP)
+ N_THREADS = OMP_GET_NUM_THREADS()
+ CALL OMP_SET_NUM_THREADS(1)
+#endif
+ CALL DERRST( 'DST', NOUT )
+#if defined(_OPENMP)
+ CALL OMP_SET_NUM_THREADS(N_THREADS)
+#endif
+ END IF
+ DO 290 I = 1, NPARMS
+ CALL XLAENV( 1, NBVAL( I ) )
+ CALL XLAENV( 2, NBMIN( I ) )
+ CALL XLAENV( 3, NXVAL( I ) )
+*
+ IF( NEWSD.EQ.0 ) THEN
+ DO 280 K = 1, 4
+ ISEED( K ) = IOLDSD( K )
+ 280 CONTINUE
+ END IF
+ WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ),
+ $ NXVAL( I )
+ IF( TSTCHK ) THEN
+ IF( LSAMEN( 3, C3, 'SE2' ) ) THEN
+ CALL DCHKST2STG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
+ $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ),
+ $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), D( 1, 5 ),
+ $ D( 1, 6 ), D( 1, 7 ), D( 1, 8 ), D( 1, 9 ),
+ $ D( 1, 10 ), D( 1, 11 ), A( 1, 3 ), NMAX,
+ $ A( 1, 4 ), A( 1, 5 ), D( 1, 12 ), A( 1, 6 ),
+ $ WORK, LWORK, IWORK, LIWORK, RESULT, INFO )
+ ELSE
+ CALL DCHKST( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
+ $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ),
+ $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), D( 1, 5 ),
+ $ D( 1, 6 ), D( 1, 7 ), D( 1, 8 ), D( 1, 9 ),
+ $ D( 1, 10 ), D( 1, 11 ), A( 1, 3 ), NMAX,
+ $ A( 1, 4 ), A( 1, 5 ), D( 1, 12 ), A( 1, 6 ),
+ $ WORK, LWORK, IWORK, LIWORK, RESULT, INFO )
+ ENDIF
+ IF( INFO.NE.0 )
+ $ WRITE( NOUT, FMT = 9980 )'DCHKST', INFO
+ END IF
+ IF( TSTDRV ) THEN
+ IF( LSAMEN( 3, C3, 'SE2' ) ) THEN
+ CALL DDRVST2STG( NN, NVAL, 18, DOTYPE, ISEED, THRESH,
+ $ NOUT, A( 1, 1 ), NMAX, D( 1, 3 ), D( 1, 4 ),
+ $ D( 1, 5 ), D( 1, 6 ), D( 1, 8 ), D( 1, 9 ),
+ $ D( 1, 10 ), D( 1, 11 ), A( 1, 2 ), NMAX,
+ $ A( 1, 3 ), D( 1, 12 ), A( 1, 4 ), WORK,
+ $ LWORK, IWORK, LIWORK, RESULT, INFO )
+ ELSE
+ CALL DDRVST( NN, NVAL, 18, DOTYPE, ISEED, THRESH, NOUT,
+ $ A( 1, 1 ), NMAX, D( 1, 3 ), D( 1, 4 ),
+ $ D( 1, 5 ), D( 1, 6 ), D( 1, 8 ), D( 1, 9 ),
+ $ D( 1, 10 ), D( 1, 11 ), A( 1, 2 ), NMAX,
+ $ A( 1, 3 ), D( 1, 12 ), A( 1, 4 ), WORK,
+ $ LWORK, IWORK, LIWORK, RESULT, INFO )
+ ENDIF
+ IF( INFO.NE.0 )
+ $ WRITE( NOUT, FMT = 9980 )'DDRVST', INFO
+ END IF
+ 290 CONTINUE
+*
+ ELSE IF( LSAMEN( 3, C3, 'DSG' ) ) THEN
+*
+* ----------------------------------------------
+* DSG: Symmetric Generalized Eigenvalue Problem
+* ----------------------------------------------
+* Vary the parameters
+* NB = block size
+* NBMIN = minimum block size
+* NX = crossover point
+*
+ MAXTYP = 21
+ NTYPES = MIN( MAXTYP, NTYPES )
+ CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
+ CALL XLAENV( 9, 25 )
+ DO 310 I = 1, NPARMS
+ CALL XLAENV( 1, NBVAL( I ) )
+ CALL XLAENV( 2, NBMIN( I ) )
+ CALL XLAENV( 3, NXVAL( I ) )
+*
+ IF( NEWSD.EQ.0 ) THEN
+ DO 300 K = 1, 4
+ ISEED( K ) = IOLDSD( K )
+ 300 CONTINUE
+ END IF
+ WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ),
+ $ NXVAL( I )
+ IF( TSTCHK ) THEN
+* CALL DDRVSG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
+* $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX,
+* $ D( 1, 3 ), A( 1, 3 ), NMAX, A( 1, 4 ),
+* $ A( 1, 5 ), A( 1, 6 ), A( 1, 7 ), WORK,
+* $ LWORK, IWORK, LIWORK, RESULT, INFO )
+ CALL DDRVSG2STG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
+ $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX,
+ $ D( 1, 3 ), D( 1, 3 ), A( 1, 3 ), NMAX,
+ $ A( 1, 4 ), A( 1, 5 ), A( 1, 6 ),
+ $ A( 1, 7 ), WORK, LWORK, IWORK, LIWORK,
+ $ RESULT, INFO )
+ IF( INFO.NE.0 )
+ $ WRITE( NOUT, FMT = 9980 )'DDRVSG', INFO
+ END IF
+ 310 CONTINUE
+*
+ ELSE IF( LSAMEN( 3, C3, 'DBD' ) .OR. LSAMEN( 3, C3, 'SVD' ) ) THEN
+*
+* ----------------------------------
+* SVD: Singular Value Decomposition
+* ----------------------------------
+* Vary the parameters
+* NB = block size
+* NBMIN = minimum block size
+* NX = crossover point
+* NRHS = number of right hand sides
+*
+ MAXTYP = 16
+ NTYPES = MIN( MAXTYP, NTYPES )
+ CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
+ CALL XLAENV( 1, 1 )
+ CALL XLAENV( 9, 25 )
+*
+* Test the error exits
+*
+ IF( TSTERR .AND. TSTCHK )
+ $ CALL DERRBD( 'DBD', NOUT )
+ IF( TSTERR .AND. TSTDRV )
+ $ CALL DERRED( 'DBD', NOUT )
+*
+ DO 330 I = 1, NPARMS
+ NRHS = NSVAL( I )
+ CALL XLAENV( 1, NBVAL( I ) )
+ CALL XLAENV( 2, NBMIN( I ) )
+ CALL XLAENV( 3, NXVAL( I ) )
+ IF( NEWSD.EQ.0 ) THEN
+ DO 320 K = 1, 4
+ ISEED( K ) = IOLDSD( K )
+ 320 CONTINUE
+ END IF
+ WRITE( NOUT, FMT = 9995 )C3, NBVAL( I ), NBMIN( I ),
+ $ NXVAL( I ), NRHS
+ IF( TSTCHK ) THEN
+ CALL DCHKBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, NRHS, ISEED,
+ $ THRESH, A( 1, 1 ), NMAX, D( 1, 1 ),
+ $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), A( 1, 2 ),
+ $ NMAX, A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), NMAX,
+ $ A( 1, 6 ), NMAX, A( 1, 7 ), A( 1, 8 ), WORK,
+ $ LWORK, IWORK, NOUT, INFO )
+ IF( INFO.NE.0 )
+ $ WRITE( NOUT, FMT = 9980 )'DCHKBD', INFO
+ END IF
+ IF( TSTDRV )
+ $ CALL DDRVBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, ISEED,
+ $ THRESH, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX,
+ $ A( 1, 3 ), NMAX, A( 1, 4 ), A( 1, 5 ),
+ $ A( 1, 6 ), D( 1, 1 ), D( 1, 2 ), D( 1, 3 ),
+ $ WORK, LWORK, IWORK, NOUT, INFO )
+ 330 CONTINUE
+*
+ ELSE IF( LSAMEN( 3, C3, 'DEV' ) ) THEN
+*
+* --------------------------------------------
+* DEV: Nonsymmetric Eigenvalue Problem Driver
+* DGEEV (eigenvalues and eigenvectors)
+* --------------------------------------------
+*
+ MAXTYP = 21
+ NTYPES = MIN( MAXTYP, NTYPES )
+ IF( NTYPES.LE.0 ) THEN
+ WRITE( NOUT, FMT = 9990 )C3
+ ELSE
+ IF( TSTERR )
+ $ CALL DERRED( C3, NOUT )
+ CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
+ CALL DDRVEV( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT,
+ $ A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ),
+ $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), A( 1, 3 ),
+ $ NMAX, A( 1, 4 ), NMAX, A( 1, 5 ), NMAX, RESULT,
+ $ WORK, LWORK, IWORK, INFO )
+ IF( INFO.NE.0 )
+ $ WRITE( NOUT, FMT = 9980 )'DGEEV', INFO
+ END IF
+ WRITE( NOUT, FMT = 9973 )
+ GO TO 10
+*
+ ELSE IF( LSAMEN( 3, C3, 'DES' ) ) THEN
+*
+* --------------------------------------------
+* DES: Nonsymmetric Eigenvalue Problem Driver
+* DGEES (Schur form)
+* --------------------------------------------
+*
+ MAXTYP = 21
+ NTYPES = MIN( MAXTYP, NTYPES )
+ IF( NTYPES.LE.0 ) THEN
+ WRITE( NOUT, FMT = 9990 )C3
+ ELSE
+ IF( TSTERR )
+ $ CALL DERRED( C3, NOUT )
+ CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
+ CALL DDRVES( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT,
+ $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
+ $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), D( 1, 4 ),
+ $ A( 1, 4 ), NMAX, RESULT, WORK, LWORK, IWORK,
+ $ LOGWRK, INFO )
+ IF( INFO.NE.0 )
+ $ WRITE( NOUT, FMT = 9980 )'DGEES', INFO
+ END IF
+ WRITE( NOUT, FMT = 9973 )
+ GO TO 10
+*
+ ELSE IF( LSAMEN( 3, C3, 'DVX' ) ) THEN
+*
+* --------------------------------------------------------------
+* DVX: Nonsymmetric Eigenvalue Problem Expert Driver
+* DGEEVX (eigenvalues, eigenvectors and condition numbers)
+* --------------------------------------------------------------
+*
+ MAXTYP = 21
+ NTYPES = MIN( MAXTYP, NTYPES )
+ IF( NTYPES.LT.0 ) THEN
+ WRITE( NOUT, FMT = 9990 )C3
+ ELSE
+ IF( TSTERR )
+ $ CALL DERRED( C3, NOUT )
+ CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
+ CALL DDRVVX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN,
+ $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ),
+ $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), A( 1, 3 ),
+ $ NMAX, A( 1, 4 ), NMAX, A( 1, 5 ), NMAX,
+ $ D( 1, 5 ), D( 1, 6 ), D( 1, 7 ), D( 1, 8 ),
+ $ D( 1, 9 ), D( 1, 10 ), D( 1, 11 ), D( 1, 12 ),
+ $ RESULT, WORK, LWORK, IWORK, INFO )
+ IF( INFO.NE.0 )
+ $ WRITE( NOUT, FMT = 9980 )'DGEEVX', INFO
+ END IF
+ WRITE( NOUT, FMT = 9973 )
+ GO TO 10
+*
+ ELSE IF( LSAMEN( 3, C3, 'DSX' ) ) THEN
+*
+* ---------------------------------------------------
+* DSX: Nonsymmetric Eigenvalue Problem Expert Driver
+* DGEESX (Schur form and condition numbers)
+* ---------------------------------------------------
+*
+ MAXTYP = 21
+ NTYPES = MIN( MAXTYP, NTYPES )
+ IF( NTYPES.LT.0 ) THEN
+ WRITE( NOUT, FMT = 9990 )C3
+ ELSE
+ IF( TSTERR )
+ $ CALL DERRED( C3, NOUT )
+ CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
+ CALL DDRVSX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN,
+ $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
+ $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), D( 1, 4 ),
+ $ D( 1, 5 ), D( 1, 6 ), A( 1, 4 ), NMAX,
+ $ A( 1, 5 ), RESULT, WORK, LWORK, IWORK, LOGWRK,
+ $ INFO )
+ IF( INFO.NE.0 )
+ $ WRITE( NOUT, FMT = 9980 )'DGEESX', INFO
+ END IF
+ WRITE( NOUT, FMT = 9973 )
+ GO TO 10
+*
+ ELSE IF( LSAMEN( 3, C3, 'DGG' ) ) THEN
+*
+* -------------------------------------------------
+* DGG: Generalized Nonsymmetric Eigenvalue Problem
+* -------------------------------------------------
+* Vary the parameters
+* NB = block size
+* NBMIN = minimum block size
+* NS = number of shifts
+* MAXB = minimum submatrix size
+* IACC22: structured matrix multiply
+* NBCOL = minimum column dimension for blocks
+*
+ MAXTYP = 26
+ NTYPES = MIN( MAXTYP, NTYPES )
+ CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
+ CALL XLAENV(1,1)
+ IF( TSTCHK .AND. TSTERR )
+ $ CALL DERRGG( C3, NOUT )
+ DO 350 I = 1, NPARMS
+ CALL XLAENV( 1, NBVAL( I ) )
+ CALL XLAENV( 2, NBMIN( I ) )
+ CALL XLAENV( 4, NSVAL( I ) )
+ CALL XLAENV( 8, MXBVAL( I ) )
+ CALL XLAENV( 16, IACC22( I ) )
+ CALL XLAENV( 5, NBCOL( I ) )
+*
+ IF( NEWSD.EQ.0 ) THEN
+ DO 340 K = 1, 4
+ ISEED( K ) = IOLDSD( K )
+ 340 CONTINUE
+ END IF
+ WRITE( NOUT, FMT = 9996 )C3, NBVAL( I ), NBMIN( I ),
+ $ NSVAL( I ), MXBVAL( I ), IACC22( I ), NBCOL( I )
+ TSTDIF = .FALSE.
+ THRSHN = 10.D0
+ IF( TSTCHK ) THEN
+ CALL DCHKGG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH,
+ $ TSTDIF, THRSHN, NOUT, A( 1, 1 ), NMAX,
+ $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ),
+ $ A( 1, 6 ), A( 1, 7 ), A( 1, 8 ), A( 1, 9 ),
+ $ NMAX, A( 1, 10 ), A( 1, 11 ), A( 1, 12 ),
+ $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), D( 1, 4 ),
+ $ D( 1, 5 ), D( 1, 6 ), A( 1, 13 ),
+ $ A( 1, 14 ), WORK, LWORK, LOGWRK, RESULT,
+ $ INFO )
+ IF( INFO.NE.0 )
+ $ WRITE( NOUT, FMT = 9980 )'DCHKGG', INFO
+ END IF
+ 350 CONTINUE
+*
+ ELSE IF( LSAMEN( 3, C3, 'DGS' ) ) THEN
+*
+* -------------------------------------------------
+* DGS: Generalized Nonsymmetric Eigenvalue Problem
+* DGGES (Schur form)
+* -------------------------------------------------
+*
+ MAXTYP = 26
+ NTYPES = MIN( MAXTYP, NTYPES )
+ IF( NTYPES.LE.0 ) THEN
+ WRITE( NOUT, FMT = 9990 )C3
+ ELSE
+ IF( TSTERR )
+ $ CALL DERRGG( C3, NOUT )
+ CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
+ CALL DDRGES( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT,
+ $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
+ $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ),
+ $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), WORK, LWORK,
+ $ RESULT, LOGWRK, INFO )
+ IF( INFO.NE.0 )
+ $ WRITE( NOUT, FMT = 9980 )'DDRGES', INFO
+*
+* Blocked version
+*
+ CALL XLAENV(16, 2)
+ CALL DDRGES3( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT,
+ $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
+ $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ),
+ $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), WORK, LWORK,
+ $ RESULT, LOGWRK, INFO )
+ IF( INFO.NE.0 )
+ $ WRITE( NOUT, FMT = 9980 )'DDRGES3', INFO
+ END IF
+ WRITE( NOUT, FMT = 9973 )
+ GO TO 10
+*
+ ELSE IF( DGX ) THEN
+*
+* -------------------------------------------------
+* DGX: Generalized Nonsymmetric Eigenvalue Problem
+* DGGESX (Schur form and condition numbers)
+* -------------------------------------------------
+*
+ MAXTYP = 5
+ NTYPES = MAXTYP
+ IF( NN.LT.0 ) THEN
+ WRITE( NOUT, FMT = 9990 )C3
+ ELSE
+ IF( TSTERR )
+ $ CALL DERRGG( C3, NOUT )
+ CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
+ CALL XLAENV( 5, 2 )
+ CALL DDRGSX( NN, NCMAX, THRESH, NIN, NOUT, A( 1, 1 ), NMAX,
+ $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ),
+ $ A( 1, 6 ), D( 1, 1 ), D( 1, 2 ), D( 1, 3 ),
+ $ C( 1, 1 ), NCMAX*NCMAX, A( 1, 12 ), WORK,
+ $ LWORK, IWORK, LIWORK, LOGWRK, INFO )
+ IF( INFO.NE.0 )
+ $ WRITE( NOUT, FMT = 9980 )'DDRGSX', INFO
+ END IF
+ WRITE( NOUT, FMT = 9973 )
+ GO TO 10
+*
+ ELSE IF( LSAMEN( 3, C3, 'DGV' ) ) THEN
+*
+* -------------------------------------------------
+* DGV: Generalized Nonsymmetric Eigenvalue Problem
+* DGGEV (Eigenvalue/vector form)
+* -------------------------------------------------
+*
+ MAXTYP = 26
+ NTYPES = MIN( MAXTYP, NTYPES )
+ IF( NTYPES.LE.0 ) THEN
+ WRITE( NOUT, FMT = 9990 )C3
+ ELSE
+ IF( TSTERR )
+ $ CALL DERRGG( C3, NOUT )
+ CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
+ CALL DDRGEV( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT,
+ $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
+ $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ),
+ $ A( 1, 9 ), NMAX, D( 1, 1 ), D( 1, 2 ),
+ $ D( 1, 3 ), D( 1, 4 ), D( 1, 5 ), D( 1, 6 ),
+ $ WORK, LWORK, RESULT, INFO )
+ IF( INFO.NE.0 )
+ $ WRITE( NOUT, FMT = 9980 )'DDRGEV', INFO
+*
+* Blocked version
+*
+ CALL DDRGEV3( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT,
+ $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ),
+ $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ),
+ $ A( 1, 9 ), NMAX, D( 1, 1 ), D( 1, 2 ),
+ $ D( 1, 3 ), D( 1, 4 ), D( 1, 5 ), D( 1, 6 ),
+ $ WORK, LWORK, RESULT, INFO )
+ IF( INFO.NE.0 )
+ $ WRITE( NOUT, FMT = 9980 )'DDRGEV3', INFO
+ END IF
+ WRITE( NOUT, FMT = 9973 )
+ GO TO 10
+*
+ ELSE IF( DXV ) THEN
+*
+* -------------------------------------------------
+* DXV: Generalized Nonsymmetric Eigenvalue Problem
+* DGGEVX (eigenvalue/vector with condition numbers)
+* -------------------------------------------------
+*
+ MAXTYP = 2
+ NTYPES = MAXTYP
+ IF( NN.LT.0 ) THEN
+ WRITE( NOUT, FMT = 9990 )C3
+ ELSE
+ IF( TSTERR )
+ $ CALL DERRGG( C3, NOUT )
+ CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
+ CALL DDRGVX( NN, THRESH, NIN, NOUT, A( 1, 1 ), NMAX,
+ $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), D( 1, 1 ),
+ $ D( 1, 2 ), D( 1, 3 ), A( 1, 5 ), A( 1, 6 ),
+ $ IWORK( 1 ), IWORK( 2 ), D( 1, 4 ), D( 1, 5 ),
+ $ D( 1, 6 ), D( 1, 7 ), D( 1, 8 ), D( 1, 9 ),
+ $ WORK, LWORK, IWORK( 3 ), LIWORK-2, RESULT,
+ $ LOGWRK, INFO )
+*
+ IF( INFO.NE.0 )
+ $ WRITE( NOUT, FMT = 9980 )'DDRGVX', INFO
+ END IF
+ WRITE( NOUT, FMT = 9973 )
+ GO TO 10
+*
+ ELSE IF( LSAMEN( 3, C3, 'DSB' ) ) THEN
+*
+* ------------------------------
+* DSB: Symmetric Band Reduction
+* ------------------------------
+*
+ MAXTYP = 15
+ NTYPES = MIN( MAXTYP, NTYPES )
+ CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
+ IF( TSTERR )
+ $ CALL DERRST( 'DSB', NOUT )
+* CALL DCHKSB( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED, THRESH,
+* $ NOUT, A( 1, 1 ), NMAX, D( 1, 1 ), D( 1, 2 ),
+* $ A( 1, 2 ), NMAX, WORK, LWORK, RESULT, INFO )
+ CALL DCHKSB2STG( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED,
+ $ THRESH, NOUT, A( 1, 1 ), NMAX, D( 1, 1 ),
+ $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), D( 1, 5 ),
+ $ A( 1, 2 ), NMAX, WORK, LWORK, RESULT, INFO )
+ IF( INFO.NE.0 )
+ $ WRITE( NOUT, FMT = 9980 )'DCHKSB', INFO
+*
+ ELSE IF( LSAMEN( 3, C3, 'DBB' ) ) THEN
+*
+* ------------------------------
+* DBB: General Band Reduction
+* ------------------------------
+*
+ MAXTYP = 15
+ NTYPES = MIN( MAXTYP, NTYPES )
+ CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT )
+ DO 370 I = 1, NPARMS
+ NRHS = NSVAL( I )
+*
+ IF( NEWSD.EQ.0 ) THEN
+ DO 360 K = 1, 4
+ ISEED( K ) = IOLDSD( K )
+ 360 CONTINUE
+ END IF
+ WRITE( NOUT, FMT = 9966 )C3, NRHS
+ CALL DCHKBB( NN, MVAL, NVAL, NK, KVAL, MAXTYP, DOTYPE, NRHS,
+ $ ISEED, THRESH, NOUT, A( 1, 1 ), NMAX,
+ $ A( 1, 2 ), 2*NMAX, D( 1, 1 ), D( 1, 2 ),
+ $ A( 1, 4 ), NMAX, A( 1, 5 ), NMAX, A( 1, 6 ),
+ $ NMAX, A( 1, 7 ), WORK, LWORK, RESULT, INFO )
+ IF( INFO.NE.0 )
+ $ WRITE( NOUT, FMT = 9980 )'DCHKBB', INFO
+ 370 CONTINUE
+*
+ ELSE IF( LSAMEN( 3, C3, 'GLM' ) ) THEN
+*
+* -----------------------------------------
+* GLM: Generalized Linear Regression Model
+* -----------------------------------------
+*
+ CALL XLAENV( 1, 1 )
+ IF( TSTERR )
+ $ CALL DERRGG( 'GLM', NOUT )
+ CALL DCKGLM( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX,
+ $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X,
+ $ WORK, D( 1, 1 ), NIN, NOUT, INFO )
+ IF( INFO.NE.0 )
+ $ WRITE( NOUT, FMT = 9980 )'DCKGLM', INFO
+*
+ ELSE IF( LSAMEN( 3, C3, 'GQR' ) ) THEN
+*
+* ------------------------------------------
+* GQR: Generalized QR and RQ factorizations
+* ------------------------------------------
+*
+ CALL XLAENV( 1, 1 )
+ IF( TSTERR )
+ $ CALL DERRGG( 'GQR', NOUT )
+ CALL DCKGQR( NN, MVAL, NN, PVAL, NN, NVAL, NTYPES, ISEED,
+ $ THRESH, NMAX, A( 1, 1 ), A( 1, 2 ), A( 1, 3 ),
+ $ A( 1, 4 ), TAUA, B( 1, 1 ), B( 1, 2 ), B( 1, 3 ),
+ $ B( 1, 4 ), B( 1, 5 ), TAUB, WORK, D( 1, 1 ), NIN,
+ $ NOUT, INFO )
+ IF( INFO.NE.0 )
+ $ WRITE( NOUT, FMT = 9980 )'DCKGQR', INFO
+*
+ ELSE IF( LSAMEN( 3, C3, 'GSV' ) ) THEN
+*
+* ----------------------------------------------
+* GSV: Generalized Singular Value Decomposition
+* ----------------------------------------------
+*
+ CALL XLAENV(1,1)
+ IF( TSTERR )
+ $ CALL DERRGG( 'GSV', NOUT )
+ CALL DCKGSV( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX,
+ $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ),
+ $ A( 1, 3 ), B( 1, 3 ), A( 1, 4 ), TAUA, TAUB,
+ $ B( 1, 4 ), IWORK, WORK, D( 1, 1 ), NIN, NOUT,
+ $ INFO )
+ IF( INFO.NE.0 )
+ $ WRITE( NOUT, FMT = 9980 )'DCKGSV', INFO
+*
+ ELSE IF( LSAMEN( 3, C3, 'CSD' ) ) THEN
+*
+* ----------------------------------------------
+* CSD: CS Decomposition
+* ----------------------------------------------
+*
+ CALL XLAENV(1,1)
+ IF( TSTERR )
+ $ CALL DERRGG( 'CSD', NOUT )
+ CALL DCKCSD( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX,
+ $ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), A( 1, 4 ),
+ $ A( 1, 5 ), A( 1, 6 ), A( 1, 7 ), IWORK, WORK,
+ $ D( 1, 1 ), NIN, NOUT, INFO )
+ IF( INFO.NE.0 )
+ $ WRITE( NOUT, FMT = 9980 )'DCKCSD', INFO
+*
+ ELSE IF( LSAMEN( 3, C3, 'LSE' ) ) THEN
+*
+* --------------------------------------
+* LSE: Constrained Linear Least Squares
+* --------------------------------------
+*
+ CALL XLAENV( 1, 1 )
+ IF( TSTERR )
+ $ CALL DERRGG( 'LSE', NOUT )
+ CALL DCKLSE( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX,
+ $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X,
+ $ WORK, D( 1, 1 ), NIN, NOUT, INFO )
+ IF( INFO.NE.0 )
+ $ WRITE( NOUT, FMT = 9980 )'DCKLSE', INFO
+*
+ ELSE
+ WRITE( NOUT, FMT = * )
+ WRITE( NOUT, FMT = * )
+ WRITE( NOUT, FMT = 9992 )C3
+ END IF
+ IF( .NOT.( DGX .OR. DXV ) )
+ $ GO TO 190
+ 380 CONTINUE
+ WRITE( NOUT, FMT = 9994 )
+ S2 = DSECND( )
+ WRITE( NOUT, FMT = 9993 )S2 - S1
+*
+ DEALLOCATE (A, STAT = AllocateStatus)
+ DEALLOCATE (B, STAT = AllocateStatus)
+ DEALLOCATE (C, STAT = AllocateStatus)
+ DEALLOCATE (WORK, STAT = AllocateStatus)
+*
+ 9999 FORMAT( / ' Execution not attempted due to input errors' )
+ 9997 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4 )
+ 9996 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NS =', I4,
+ $ ', MAXB =', I4, ', IACC22 =', I4, ', NBCOL =', I4 )
+ 9995 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4,
+ $ ', NRHS =', I4 )
+ 9994 FORMAT( / / ' End of tests' )
+ 9993 FORMAT( ' Total time used = ', F12.2, ' seconds', / )
+ 9992 FORMAT( 1X, A3, ': Unrecognized path name' )
+ 9991 FORMAT( / / ' *** Invalid integer value in column ', I2,
+ $ ' of input', ' line:', / A79 )
+ 9990 FORMAT( / / 1X, A3, ' routines were not tested' )
+ 9989 FORMAT( ' Invalid input value: ', A, '=', I6, '; must be >=',
+ $ I6 )
+ 9988 FORMAT( ' Invalid input value: ', A, '=', I6, '; must be <=',
+ $ I6 )
+ 9987 FORMAT( ' Tests of the Nonsymmetric Eigenvalue Problem routines' )
+ 9986 FORMAT( ' Tests of the Symmetric Eigenvalue Problem routines' )
+ 9985 FORMAT( ' Tests of the Singular Value Decomposition routines' )
+ 9984 FORMAT( / ' The following parameter values will be used:' )
+ 9983 FORMAT( 4X, A, 10I6, / 10X, 10I6 )
+ 9982 FORMAT( / ' Routines pass computational tests if test ratio is ',
+ $ 'less than', F8.2, / )
+ 9981 FORMAT( ' Relative machine ', A, ' is taken to be', D16.6 )
+ 9980 FORMAT( ' *** Error code from ', A, ' = ', I4 )
+ 9979 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver',
+ $ / ' DGEEV (eigenvalues and eigevectors)' )
+ 9978 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver',
+ $ / ' DGEES (Schur form)' )
+ 9977 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert',
+ $ ' Driver', / ' DGEEVX (eigenvalues, eigenvectors and',
+ $ ' condition numbers)' )
+ 9976 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert',
+ $ ' Driver', / ' DGEESX (Schur form and condition',
+ $ ' numbers)' )
+ 9975 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
+ $ 'Problem routines' )
+ 9974 FORMAT( ' Tests of DSBTRD', / ' (reduction of a symmetric band ',
+ $ 'matrix to tridiagonal form)' )
+ 9973 FORMAT( / 1X, 71( '-' ) )
+ 9972 FORMAT( / ' LAPACK VERSION ', I1, '.', I1, '.', I1 )
+ 9971 FORMAT( / ' Tests of the Generalized Linear Regression Model ',
+ $ 'routines' )
+ 9970 FORMAT( / ' Tests of the Generalized QR and RQ routines' )
+ 9969 FORMAT( / ' Tests of the Generalized Singular Value',
+ $ ' Decomposition routines' )
+ 9968 FORMAT( / ' Tests of the Linear Least Squares routines' )
+ 9967 FORMAT( ' Tests of DGBBRD', / ' (reduction of a general band ',
+ $ 'matrix to real bidiagonal form)' )
+ 9966 FORMAT( / / 1X, A3, ': NRHS =', I4 )
+ 9965 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
+ $ 'Problem Expert Driver DGGESX' )
+ 9964 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
+ $ 'Problem Driver DGGES' )
+ 9963 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
+ $ 'Problem Driver DGGEV' )
+ 9962 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ',
+ $ 'Problem Expert Driver DGGEVX' )
+ 9961 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4,
+ $ ', INMIN=', I4,
+ $ ', INWIN =', I4, ', INIBL =', I4, ', ISHFTS =', I4,
+ $ ', IACC22 =', I4)
+ 9960 FORMAT( / ' Tests of the CS Decomposition routines' )
+*
+* End of DCHKEE
+*
+ END