summaryrefslogtreecommitdiff
path: root/src/benchmark.cpp
blob: 40fa461580032398315f27460c7bccfc051f30f1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2017 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.

#include "benchmark.h"

#if (__cplusplus >= 201103L || (defined(_MSVC_LANG) && _MSVC_LANG >= 201103L)) && !defined(__riscv) && !NCNN_SIMPLESTL
#include <chrono>
#include <thread>
#include <numeric>
#include <algorithm>
#else
#ifdef _WIN32
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#else                 // _WIN32
#include <sys/time.h> //gettimeofday()
#include <unistd.h>   // sleep()
#endif                // _WIN32
#endif

#if NCNN_BENCHMARK
#include "layer/convolution.h"
#include "layer/convolutiondepthwise.h"
#include "layer/deconvolution.h"
#include "layer/deconvolutiondepthwise.h"
#include "layer/convolution3d.h"
#include "layer/convolutiondepthwise3d.h"
#include "layer/deconvolution3d.h"
#include "layer/deconvolutiondepthwise3d.h"

#include <stdio.h>
#endif // NCNN_BENCHMARK

namespace ncnn {

double get_current_time()
{
#if (__cplusplus >= 201103L || (defined(_MSVC_LANG) && _MSVC_LANG >= 201103L)) && !defined(__riscv) && !NCNN_SIMPLESTL
    auto now = std::chrono::high_resolution_clock::now();
    auto usec = std::chrono::duration_cast<std::chrono::microseconds>(now.time_since_epoch());
    return usec.count() / 1000.0;
#else
#ifdef _WIN32
    LARGE_INTEGER freq;
    LARGE_INTEGER pc;
    QueryPerformanceFrequency(&freq);
    QueryPerformanceCounter(&pc);

    return pc.QuadPart * 1000.0 / freq.QuadPart;
#else  // _WIN32
    struct timeval tv;
    gettimeofday(&tv, NULL);

    return tv.tv_sec * 1000.0 + tv.tv_usec / 1000.0;
#endif // _WIN32
#endif
}

void sleep(unsigned long long int milliseconds)
{
#if (__cplusplus >= 201103L || (defined(_MSVC_LANG) && _MSVC_LANG >= 201103L)) && !defined(__riscv) && !NCNN_SIMPLESTL
    std::this_thread::sleep_for(std::chrono::milliseconds(milliseconds));
#else
#ifdef _WIN32
    Sleep(milliseconds);
#elif defined(__unix__) || defined(__APPLE__)
    usleep(milliseconds * 1000);
#elif _POSIX_TIMERS
    struct timespec ts;
    ts.tv_sec = milliseconds * 0.001;
    ts.tv_nsec = 0;
    nanosleep(&ts, &ts);
#else
    // TODO How to handle it ?
#endif
#endif
}

#if NCNN_BENCHMARK

void benchmark(const Layer* layer, double start, double end)
{
    fprintf(stderr, "%-24s %-30s %8.2lfms", layer->type.c_str(), layer->name.c_str(), end - start);
    fprintf(stderr, "    |");
    fprintf(stderr, "\n");
}

void benchmark(const Layer* layer, const Mat& bottom_blob, Mat& top_blob, double start, double end)
{
    fprintf(stderr, "%-24s %-30s %8.2lfms", layer->type.c_str(), layer->name.c_str(), end - start);

    char in_shape_str[64] = {'\0'};
    char out_shape_str[64] = {'\0'};

    if (bottom_blob.dims == 1)
    {
        sprintf(in_shape_str, "[%3d *%d]", bottom_blob.w, bottom_blob.elempack);
    }
    if (bottom_blob.dims == 2)
    {
        sprintf(in_shape_str, "[%3d, %3d *%d]", bottom_blob.w, bottom_blob.h, bottom_blob.elempack);
    }
    if (bottom_blob.dims == 3)
    {
        sprintf(in_shape_str, "[%3d, %3d, %3d *%d]", bottom_blob.w, bottom_blob.h, bottom_blob.c, bottom_blob.elempack);
    }
    if (bottom_blob.dims == 4)
    {
        sprintf(in_shape_str, "[%3d, %3d, %3d, %3d *%d]", bottom_blob.w, bottom_blob.h, bottom_blob.d, bottom_blob.c, bottom_blob.elempack);
    }

    if (top_blob.dims == 1)
    {
        sprintf(out_shape_str, "[%3d *%d]", top_blob.w, top_blob.elempack);
    }
    if (top_blob.dims == 2)
    {
        sprintf(out_shape_str, "[%3d, %3d *%d]", top_blob.w, top_blob.h, top_blob.elempack);
    }
    if (top_blob.dims == 3)
    {
        sprintf(out_shape_str, "[%3d, %3d, %3d *%d]", top_blob.w, top_blob.h, top_blob.c, top_blob.elempack);
    }
    if (top_blob.dims == 4)
    {
        sprintf(out_shape_str, "[%3d, %3d, %3d, %3d *%d]", top_blob.w, top_blob.h, top_blob.d, top_blob.c, top_blob.elempack);
    }

    fprintf(stderr, "    | %22s -> %-22s", in_shape_str, out_shape_str);

    if (layer->type == "Convolution")
    {
        fprintf(stderr, "     kernel: %1d x %1d     stride: %1d x %1d",
                ((Convolution*)layer)->kernel_w,
                ((Convolution*)layer)->kernel_h,
                ((Convolution*)layer)->stride_w,
                ((Convolution*)layer)->stride_h);
    }
    else if (layer->type == "ConvolutionDepthWise")
    {
        fprintf(stderr, "     kernel: %1d x %1d     stride: %1d x %1d",
                ((ConvolutionDepthWise*)layer)->kernel_w,
                ((ConvolutionDepthWise*)layer)->kernel_h,
                ((ConvolutionDepthWise*)layer)->stride_w,
                ((ConvolutionDepthWise*)layer)->stride_h);
    }
    else if (layer->type == "Deconvolution")
    {
        fprintf(stderr, "     kernel: %1d x %1d     stride: %1d x %1d",
                ((Deconvolution*)layer)->kernel_w,
                ((Deconvolution*)layer)->kernel_h,
                ((Deconvolution*)layer)->stride_w,
                ((Deconvolution*)layer)->stride_h);
    }
    else if (layer->type == "DeconvolutionDepthWise")
    {
        fprintf(stderr, "     kernel: %1d x %1d     stride: %1d x %1d",
                ((DeconvolutionDepthWise*)layer)->kernel_w,
                ((DeconvolutionDepthWise*)layer)->kernel_h,
                ((DeconvolutionDepthWise*)layer)->stride_w,
                ((DeconvolutionDepthWise*)layer)->stride_h);
    }
    else if (layer->type == "Convolution3D")
    {
        fprintf(stderr, "     kernel: %1d x %1d x %1d    stride: %1d x %1d x %1d",
                ((Convolution3D*)layer)->kernel_w,
                ((Convolution3D*)layer)->kernel_h,
                ((Convolution3D*)layer)->kernel_d,
                ((Convolution3D*)layer)->stride_w,
                ((Convolution3D*)layer)->stride_h,
                ((Convolution3D*)layer)->stride_d);
    }
    else if (layer->type == "ConvolutionDepthWise3D")
    {
        fprintf(stderr, "     kernel: %1d x %1d x %1d    stride: %1d x %1d x %1d",
                ((ConvolutionDepthWise3D*)layer)->kernel_w,
                ((ConvolutionDepthWise3D*)layer)->kernel_h,
                ((ConvolutionDepthWise3D*)layer)->kernel_d,
                ((ConvolutionDepthWise3D*)layer)->stride_w,
                ((ConvolutionDepthWise3D*)layer)->stride_h,
                ((ConvolutionDepthWise3D*)layer)->stride_d);
    }
    else if (layer->type == "Deconvolution3D")
    {
        fprintf(stderr, "     kernel: %1d x %1d x %1d    stride: %1d x %1d x %1d",
                ((Deconvolution3D*)layer)->kernel_w,
                ((Deconvolution3D*)layer)->kernel_h,
                ((Deconvolution3D*)layer)->kernel_d,
                ((Deconvolution3D*)layer)->stride_w,
                ((Deconvolution3D*)layer)->stride_h,
                ((Deconvolution3D*)layer)->stride_d);
    }
    else if (layer->type == "DeconvolutionDepthWise3D")
    {
        fprintf(stderr, "     kernel: %1d x %1d x %1d    stride: %1d x %1d x %1d",
                ((DeconvolutionDepthWise3D*)layer)->kernel_w,
                ((DeconvolutionDepthWise3D*)layer)->kernel_h,
                ((DeconvolutionDepthWise3D*)layer)->kernel_d,
                ((DeconvolutionDepthWise3D*)layer)->stride_w,
                ((DeconvolutionDepthWise3D*)layer)->stride_h,
                ((DeconvolutionDepthWise3D*)layer)->stride_d);
    }
    fprintf(stderr, "\n");
}

#endif // NCNN_BENCHMARK

} // namespace ncnn