// Tencent is pleased to support the open source community by making ncnn available. // // Copyright (C) 2018 THL A29 Limited, a Tencent company. All rights reserved. // // Licensed under the BSD 3-Clause License (the "License"); you may not use this file except // in compliance with the License. You may obtain a copy of the License at // // https://opensource.org/licenses/BSD-3-Clause // // Unless required by applicable law or agreed to in writing, software distributed // under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR // CONDITIONS OF ANY KIND, either express or implied. See the License for the // specific language governing permissions and limitations under the License. #include "net.h" #include #if defined(USE_NCNN_SIMPLEOCV) #include "simpleocv.h" #else #include #include #endif #include #include static int detect_shufflenetv2(const cv::Mat& bgr, std::vector& cls_scores) { ncnn::Net shufflenetv2; shufflenetv2.opt.use_vulkan_compute = true; // https://github.com/miaow1988/ShuffleNet_V2_pytorch_caffe // models can be downloaded from https://github.com/miaow1988/ShuffleNet_V2_pytorch_caffe/releases if (shufflenetv2.load_param("shufflenet_v2_x0.5.param")) exit(-1); if (shufflenetv2.load_model("shufflenet_v2_x0.5.bin")) exit(-1); ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR, bgr.cols, bgr.rows, 224, 224); const float norm_vals[3] = {1 / 255.f, 1 / 255.f, 1 / 255.f}; in.substract_mean_normalize(0, norm_vals); ncnn::Extractor ex = shufflenetv2.create_extractor(); ex.input("data", in); ncnn::Mat out; ex.extract("fc", out); // manually call softmax on the fc output // convert result into probability // skip if your model already has softmax operation { ncnn::Layer* softmax = ncnn::create_layer("Softmax"); ncnn::ParamDict pd; softmax->load_param(pd); softmax->forward_inplace(out, shufflenetv2.opt); delete softmax; } out = out.reshape(out.w * out.h * out.c); cls_scores.resize(out.w); for (int j = 0; j < out.w; j++) { cls_scores[j] = out[j]; } return 0; } static int print_topk(const std::vector& cls_scores, int topk) { // partial sort topk with index int size = cls_scores.size(); std::vector > vec; vec.resize(size); for (int i = 0; i < size; i++) { vec[i] = std::make_pair(cls_scores[i], i); } std::partial_sort(vec.begin(), vec.begin() + topk, vec.end(), std::greater >()); // print topk and score for (int i = 0; i < topk; i++) { float score = vec[i].first; int index = vec[i].second; fprintf(stderr, "%d = %f\n", index, score); } return 0; } int main(int argc, char** argv) { if (argc != 2) { fprintf(stderr, "Usage: %s [imagepath]\n", argv[0]); return -1; } const char* imagepath = argv[1]; cv::Mat m = cv::imread(imagepath, 1); if (m.empty()) { fprintf(stderr, "cv::imread %s failed\n", imagepath); return -1; } std::vector cls_scores; detect_shufflenetv2(m, cls_scores); print_topk(cls_scores, 3); return 0; }