diff options
Diffstat (limited to 'examples/yolact.cpp')
-rw-r--r-- | examples/yolact.cpp | 549 |
1 files changed, 549 insertions, 0 deletions
diff --git a/examples/yolact.cpp b/examples/yolact.cpp new file mode 100644 index 0000000..44e24f3 --- /dev/null +++ b/examples/yolact.cpp @@ -0,0 +1,549 @@ +// Tencent is pleased to support the open source community by making ncnn available. +// +// Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved. +// +// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except +// in compliance with the License. You may obtain a copy of the License at +// +// https://opensource.org/licenses/BSD-3-Clause +// +// Unless required by applicable law or agreed to in writing, software distributed +// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR +// CONDITIONS OF ANY KIND, either express or implied. See the License for the +// specific language governing permissions and limitations under the License. + +#include "net.h" + +#if defined(USE_NCNN_SIMPLEOCV) +#include "simpleocv.h" +#else +#include <opencv2/core/core.hpp> +#include <opencv2/highgui/highgui.hpp> +#include <opencv2/imgproc/imgproc.hpp> +#endif +#include <stdio.h> +#include <vector> + +struct Object +{ + cv::Rect_<float> rect; + int label; + float prob; + std::vector<float> maskdata; + cv::Mat mask; +}; + +static inline float intersection_area(const Object& a, const Object& b) +{ + cv::Rect_<float> inter = a.rect & b.rect; + return inter.area(); +} + +static void qsort_descent_inplace(std::vector<Object>& objects, int left, int right) +{ + int i = left; + int j = right; + float p = objects[(left + right) / 2].prob; + + while (i <= j) + { + while (objects[i].prob > p) + i++; + + while (objects[j].prob < p) + j--; + + if (i <= j) + { + // swap + std::swap(objects[i], objects[j]); + + i++; + j--; + } + } + + #pragma omp parallel sections + { + #pragma omp section + { + if (left < j) qsort_descent_inplace(objects, left, j); + } + #pragma omp section + { + if (i < right) qsort_descent_inplace(objects, i, right); + } + } +} + +static void qsort_descent_inplace(std::vector<Object>& objects) +{ + if (objects.empty()) + return; + + qsort_descent_inplace(objects, 0, objects.size() - 1); +} + +static void nms_sorted_bboxes(const std::vector<Object>& faceobjects, std::vector<int>& picked, float nms_threshold, bool agnostic = false) +{ + picked.clear(); + + const int n = faceobjects.size(); + + std::vector<float> areas(n); + for (int i = 0; i < n; i++) + { + areas[i] = faceobjects[i].rect.area(); + } + + for (int i = 0; i < n; i++) + { + const Object& a = faceobjects[i]; + + int keep = 1; + for (int j = 0; j < (int)picked.size(); j++) + { + const Object& b = faceobjects[picked[j]]; + + if (!agnostic && a.label != b.label) + continue; + + // intersection over union + float inter_area = intersection_area(a, b); + float union_area = areas[i] + areas[picked[j]] - inter_area; + // float IoU = inter_area / union_area + if (inter_area / union_area > nms_threshold) + keep = 0; + } + + if (keep) + picked.push_back(i); + } +} + +static int detect_yolact(const cv::Mat& bgr, std::vector<Object>& objects) +{ + ncnn::Net yolact; + + yolact.opt.use_vulkan_compute = true; + + // original model converted from https://github.com/dbolya/yolact + // yolact_resnet50_54_800000.pth + // the ncnn model https://github.com/nihui/ncnn-assets/tree/master/models + if (yolact.load_param("yolact.param")) + exit(-1); + if (yolact.load_model("yolact.bin")) + exit(-1); + + const int target_size = 550; + + int img_w = bgr.cols; + int img_h = bgr.rows; + + ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR2RGB, img_w, img_h, target_size, target_size); + + const float mean_vals[3] = {123.68f, 116.78f, 103.94f}; + const float norm_vals[3] = {1.0 / 58.40f, 1.0 / 57.12f, 1.0 / 57.38f}; + in.substract_mean_normalize(mean_vals, norm_vals); + + ncnn::Extractor ex = yolact.create_extractor(); + + ex.input("input.1", in); + + ncnn::Mat maskmaps; + ncnn::Mat location; + ncnn::Mat mask; + ncnn::Mat confidence; + + ex.extract("619", maskmaps); // 138x138 x 32 + + ex.extract("816", location); // 4 x 19248 + ex.extract("818", mask); // maskdim 32 x 19248 + ex.extract("820", confidence); // 81 x 19248 + + int num_class = confidence.w; + int num_priors = confidence.h; + + // make priorbox + ncnn::Mat priorbox(4, num_priors); + { + const int conv_ws[5] = {69, 35, 18, 9, 5}; + const int conv_hs[5] = {69, 35, 18, 9, 5}; + + const float aspect_ratios[3] = {1.f, 0.5f, 2.f}; + const float scales[5] = {24.f, 48.f, 96.f, 192.f, 384.f}; + + float* pb = priorbox; + + for (int p = 0; p < 5; p++) + { + int conv_w = conv_ws[p]; + int conv_h = conv_hs[p]; + + float scale = scales[p]; + + for (int i = 0; i < conv_h; i++) + { + for (int j = 0; j < conv_w; j++) + { + // +0.5 because priors are in center-size notation + float cx = (j + 0.5f) / conv_w; + float cy = (i + 0.5f) / conv_h; + + for (int k = 0; k < 3; k++) + { + float ar = aspect_ratios[k]; + + ar = sqrt(ar); + + float w = scale * ar / 550; + float h = scale / ar / 550; + + // This is for backward compatibility with a bug where I made everything square by accident + // cfg.backbone.use_square_anchors: + h = w; + + pb[0] = cx; + pb[1] = cy; + pb[2] = w; + pb[3] = h; + + pb += 4; + } + } + } + } + } + + const float confidence_thresh = 0.05f; + const float nms_threshold = 0.5f; + const int keep_top_k = 200; + + std::vector<std::vector<Object> > class_candidates; + class_candidates.resize(num_class); + + for (int i = 0; i < num_priors; i++) + { + const float* conf = confidence.row(i); + const float* loc = location.row(i); + const float* pb = priorbox.row(i); + const float* maskdata = mask.row(i); + + // find class id with highest score + // start from 1 to skip background + int label = 0; + float score = 0.f; + for (int j = 1; j < num_class; j++) + { + float class_score = conf[j]; + if (class_score > score) + { + label = j; + score = class_score; + } + } + + // ignore background or low score + if (label == 0 || score <= confidence_thresh) + continue; + + // CENTER_SIZE + float var[4] = {0.1f, 0.1f, 0.2f, 0.2f}; + + float pb_cx = pb[0]; + float pb_cy = pb[1]; + float pb_w = pb[2]; + float pb_h = pb[3]; + + float bbox_cx = var[0] * loc[0] * pb_w + pb_cx; + float bbox_cy = var[1] * loc[1] * pb_h + pb_cy; + float bbox_w = (float)(exp(var[2] * loc[2]) * pb_w); + float bbox_h = (float)(exp(var[3] * loc[3]) * pb_h); + + float obj_x1 = bbox_cx - bbox_w * 0.5f; + float obj_y1 = bbox_cy - bbox_h * 0.5f; + float obj_x2 = bbox_cx + bbox_w * 0.5f; + float obj_y2 = bbox_cy + bbox_h * 0.5f; + + // clip + obj_x1 = std::max(std::min(obj_x1 * bgr.cols, (float)(bgr.cols - 1)), 0.f); + obj_y1 = std::max(std::min(obj_y1 * bgr.rows, (float)(bgr.rows - 1)), 0.f); + obj_x2 = std::max(std::min(obj_x2 * bgr.cols, (float)(bgr.cols - 1)), 0.f); + obj_y2 = std::max(std::min(obj_y2 * bgr.rows, (float)(bgr.rows - 1)), 0.f); + + // append object + Object obj; + obj.rect = cv::Rect_<float>(obj_x1, obj_y1, obj_x2 - obj_x1 + 1, obj_y2 - obj_y1 + 1); + obj.label = label; + obj.prob = score; + obj.maskdata = std::vector<float>(maskdata, maskdata + mask.w); + + class_candidates[label].push_back(obj); + } + + objects.clear(); + for (int i = 0; i < (int)class_candidates.size(); i++) + { + std::vector<Object>& candidates = class_candidates[i]; + + qsort_descent_inplace(candidates); + + std::vector<int> picked; + nms_sorted_bboxes(candidates, picked, nms_threshold); + + for (int j = 0; j < (int)picked.size(); j++) + { + int z = picked[j]; + objects.push_back(candidates[z]); + } + } + + qsort_descent_inplace(objects); + + // keep_top_k + if (keep_top_k < (int)objects.size()) + { + objects.resize(keep_top_k); + } + + // generate mask + for (int i = 0; i < (int)objects.size(); i++) + { + Object& obj = objects[i]; + + cv::Mat mask(maskmaps.h, maskmaps.w, CV_32FC1); + { + mask = cv::Scalar(0.f); + + for (int p = 0; p < maskmaps.c; p++) + { + const float* maskmap = maskmaps.channel(p); + float coeff = obj.maskdata[p]; + float* mp = (float*)mask.data; + + // mask += m * coeff + for (int j = 0; j < maskmaps.w * maskmaps.h; j++) + { + mp[j] += maskmap[j] * coeff; + } + } + } + + cv::Mat mask2; + cv::resize(mask, mask2, cv::Size(img_w, img_h)); + + // crop obj box and binarize + obj.mask = cv::Mat(img_h, img_w, CV_8UC1); + { + obj.mask = cv::Scalar(0); + + for (int y = 0; y < img_h; y++) + { + if (y < obj.rect.y || y > obj.rect.y + obj.rect.height) + continue; + + const float* mp2 = mask2.ptr<const float>(y); + uchar* bmp = obj.mask.ptr<uchar>(y); + + for (int x = 0; x < img_w; x++) + { + if (x < obj.rect.x || x > obj.rect.x + obj.rect.width) + continue; + + bmp[x] = mp2[x] > 0.5f ? 255 : 0; + } + } + } + } + + return 0; +} + +static void draw_objects(const cv::Mat& bgr, const std::vector<Object>& objects) +{ + static const char* class_names[] = {"background", + "person", "bicycle", "car", "motorcycle", "airplane", "bus", + "train", "truck", "boat", "traffic light", "fire hydrant", + "stop sign", "parking meter", "bench", "bird", "cat", "dog", + "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", + "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", + "skis", "snowboard", "sports ball", "kite", "baseball bat", + "baseball glove", "skateboard", "surfboard", "tennis racket", + "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", + "banana", "apple", "sandwich", "orange", "broccoli", "carrot", + "hot dog", "pizza", "donut", "cake", "chair", "couch", + "potted plant", "bed", "dining table", "toilet", "tv", "laptop", + "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", + "toaster", "sink", "refrigerator", "book", "clock", "vase", + "scissors", "teddy bear", "hair drier", "toothbrush" + }; + + static const unsigned char colors[81][3] = { + {56, 0, 255}, + {226, 255, 0}, + {0, 94, 255}, + {0, 37, 255}, + {0, 255, 94}, + {255, 226, 0}, + {0, 18, 255}, + {255, 151, 0}, + {170, 0, 255}, + {0, 255, 56}, + {255, 0, 75}, + {0, 75, 255}, + {0, 255, 169}, + {255, 0, 207}, + {75, 255, 0}, + {207, 0, 255}, + {37, 0, 255}, + {0, 207, 255}, + {94, 0, 255}, + {0, 255, 113}, + {255, 18, 0}, + {255, 0, 56}, + {18, 0, 255}, + {0, 255, 226}, + {170, 255, 0}, + {255, 0, 245}, + {151, 255, 0}, + {132, 255, 0}, + {75, 0, 255}, + {151, 0, 255}, + {0, 151, 255}, + {132, 0, 255}, + {0, 255, 245}, + {255, 132, 0}, + {226, 0, 255}, + {255, 37, 0}, + {207, 255, 0}, + {0, 255, 207}, + {94, 255, 0}, + {0, 226, 255}, + {56, 255, 0}, + {255, 94, 0}, + {255, 113, 0}, + {0, 132, 255}, + {255, 0, 132}, + {255, 170, 0}, + {255, 0, 188}, + {113, 255, 0}, + {245, 0, 255}, + {113, 0, 255}, + {255, 188, 0}, + {0, 113, 255}, + {255, 0, 0}, + {0, 56, 255}, + {255, 0, 113}, + {0, 255, 188}, + {255, 0, 94}, + {255, 0, 18}, + {18, 255, 0}, + {0, 255, 132}, + {0, 188, 255}, + {0, 245, 255}, + {0, 169, 255}, + {37, 255, 0}, + {255, 0, 151}, + {188, 0, 255}, + {0, 255, 37}, + {0, 255, 0}, + {255, 0, 170}, + {255, 0, 37}, + {255, 75, 0}, + {0, 0, 255}, + {255, 207, 0}, + {255, 0, 226}, + {255, 245, 0}, + {188, 255, 0}, + {0, 255, 18}, + {0, 255, 75}, + {0, 255, 151}, + {255, 56, 0}, + {245, 255, 0} + }; + + cv::Mat image = bgr.clone(); + + int color_index = 0; + + for (size_t i = 0; i < objects.size(); i++) + { + const Object& obj = objects[i]; + + if (obj.prob < 0.15) + continue; + + fprintf(stderr, "%d = %.5f at %.2f %.2f %.2f x %.2f\n", obj.label, obj.prob, + obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height); + + const unsigned char* color = colors[color_index % 81]; + color_index++; + + cv::rectangle(image, obj.rect, cv::Scalar(color[0], color[1], color[2])); + + char text[256]; + sprintf(text, "%s %.1f%%", class_names[obj.label], obj.prob * 100); + + int baseLine = 0; + cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine); + + int x = obj.rect.x; + int y = obj.rect.y - label_size.height - baseLine; + if (y < 0) + y = 0; + if (x + label_size.width > image.cols) + x = image.cols - label_size.width; + + cv::rectangle(image, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)), + cv::Scalar(255, 255, 255), -1); + + cv::putText(image, text, cv::Point(x, y + label_size.height), + cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0)); + + // draw mask + for (int y = 0; y < image.rows; y++) + { + const uchar* mp = obj.mask.ptr(y); + uchar* p = image.ptr(y); + for (int x = 0; x < image.cols; x++) + { + if (mp[x] == 255) + { + p[0] = cv::saturate_cast<uchar>(p[0] * 0.5 + color[0] * 0.5); + p[1] = cv::saturate_cast<uchar>(p[1] * 0.5 + color[1] * 0.5); + p[2] = cv::saturate_cast<uchar>(p[2] * 0.5 + color[2] * 0.5); + } + p += 3; + } + } + } + + cv::imwrite("result.png", image); + cv::imshow("image", image); + cv::waitKey(0); +} + +int main(int argc, char** argv) +{ + if (argc != 2) + { + fprintf(stderr, "Usage: %s [imagepath]\n", argv[0]); + return -1; + } + + const char* imagepath = argv[1]; + + cv::Mat m = cv::imread(imagepath, 1); + if (m.empty()) + { + fprintf(stderr, "cv::imread %s failed\n", imagepath); + return -1; + } + + std::vector<Object> objects; + detect_yolact(m, objects); + + draw_objects(m, objects); + + return 0; +} |