summaryrefslogtreecommitdiff
path: root/examples/yolact.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'examples/yolact.cpp')
-rw-r--r--examples/yolact.cpp549
1 files changed, 549 insertions, 0 deletions
diff --git a/examples/yolact.cpp b/examples/yolact.cpp
new file mode 100644
index 0000000..44e24f3
--- /dev/null
+++ b/examples/yolact.cpp
@@ -0,0 +1,549 @@
+// Tencent is pleased to support the open source community by making ncnn available.
+//
+// Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved.
+//
+// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
+// in compliance with the License. You may obtain a copy of the License at
+//
+// https://opensource.org/licenses/BSD-3-Clause
+//
+// Unless required by applicable law or agreed to in writing, software distributed
+// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
+// CONDITIONS OF ANY KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations under the License.
+
+#include "net.h"
+
+#if defined(USE_NCNN_SIMPLEOCV)
+#include "simpleocv.h"
+#else
+#include <opencv2/core/core.hpp>
+#include <opencv2/highgui/highgui.hpp>
+#include <opencv2/imgproc/imgproc.hpp>
+#endif
+#include <stdio.h>
+#include <vector>
+
+struct Object
+{
+ cv::Rect_<float> rect;
+ int label;
+ float prob;
+ std::vector<float> maskdata;
+ cv::Mat mask;
+};
+
+static inline float intersection_area(const Object& a, const Object& b)
+{
+ cv::Rect_<float> inter = a.rect & b.rect;
+ return inter.area();
+}
+
+static void qsort_descent_inplace(std::vector<Object>& objects, int left, int right)
+{
+ int i = left;
+ int j = right;
+ float p = objects[(left + right) / 2].prob;
+
+ while (i <= j)
+ {
+ while (objects[i].prob > p)
+ i++;
+
+ while (objects[j].prob < p)
+ j--;
+
+ if (i <= j)
+ {
+ // swap
+ std::swap(objects[i], objects[j]);
+
+ i++;
+ j--;
+ }
+ }
+
+ #pragma omp parallel sections
+ {
+ #pragma omp section
+ {
+ if (left < j) qsort_descent_inplace(objects, left, j);
+ }
+ #pragma omp section
+ {
+ if (i < right) qsort_descent_inplace(objects, i, right);
+ }
+ }
+}
+
+static void qsort_descent_inplace(std::vector<Object>& objects)
+{
+ if (objects.empty())
+ return;
+
+ qsort_descent_inplace(objects, 0, objects.size() - 1);
+}
+
+static void nms_sorted_bboxes(const std::vector<Object>& faceobjects, std::vector<int>& picked, float nms_threshold, bool agnostic = false)
+{
+ picked.clear();
+
+ const int n = faceobjects.size();
+
+ std::vector<float> areas(n);
+ for (int i = 0; i < n; i++)
+ {
+ areas[i] = faceobjects[i].rect.area();
+ }
+
+ for (int i = 0; i < n; i++)
+ {
+ const Object& a = faceobjects[i];
+
+ int keep = 1;
+ for (int j = 0; j < (int)picked.size(); j++)
+ {
+ const Object& b = faceobjects[picked[j]];
+
+ if (!agnostic && a.label != b.label)
+ continue;
+
+ // intersection over union
+ float inter_area = intersection_area(a, b);
+ float union_area = areas[i] + areas[picked[j]] - inter_area;
+ // float IoU = inter_area / union_area
+ if (inter_area / union_area > nms_threshold)
+ keep = 0;
+ }
+
+ if (keep)
+ picked.push_back(i);
+ }
+}
+
+static int detect_yolact(const cv::Mat& bgr, std::vector<Object>& objects)
+{
+ ncnn::Net yolact;
+
+ yolact.opt.use_vulkan_compute = true;
+
+ // original model converted from https://github.com/dbolya/yolact
+ // yolact_resnet50_54_800000.pth
+ // the ncnn model https://github.com/nihui/ncnn-assets/tree/master/models
+ if (yolact.load_param("yolact.param"))
+ exit(-1);
+ if (yolact.load_model("yolact.bin"))
+ exit(-1);
+
+ const int target_size = 550;
+
+ int img_w = bgr.cols;
+ int img_h = bgr.rows;
+
+ ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR2RGB, img_w, img_h, target_size, target_size);
+
+ const float mean_vals[3] = {123.68f, 116.78f, 103.94f};
+ const float norm_vals[3] = {1.0 / 58.40f, 1.0 / 57.12f, 1.0 / 57.38f};
+ in.substract_mean_normalize(mean_vals, norm_vals);
+
+ ncnn::Extractor ex = yolact.create_extractor();
+
+ ex.input("input.1", in);
+
+ ncnn::Mat maskmaps;
+ ncnn::Mat location;
+ ncnn::Mat mask;
+ ncnn::Mat confidence;
+
+ ex.extract("619", maskmaps); // 138x138 x 32
+
+ ex.extract("816", location); // 4 x 19248
+ ex.extract("818", mask); // maskdim 32 x 19248
+ ex.extract("820", confidence); // 81 x 19248
+
+ int num_class = confidence.w;
+ int num_priors = confidence.h;
+
+ // make priorbox
+ ncnn::Mat priorbox(4, num_priors);
+ {
+ const int conv_ws[5] = {69, 35, 18, 9, 5};
+ const int conv_hs[5] = {69, 35, 18, 9, 5};
+
+ const float aspect_ratios[3] = {1.f, 0.5f, 2.f};
+ const float scales[5] = {24.f, 48.f, 96.f, 192.f, 384.f};
+
+ float* pb = priorbox;
+
+ for (int p = 0; p < 5; p++)
+ {
+ int conv_w = conv_ws[p];
+ int conv_h = conv_hs[p];
+
+ float scale = scales[p];
+
+ for (int i = 0; i < conv_h; i++)
+ {
+ for (int j = 0; j < conv_w; j++)
+ {
+ // +0.5 because priors are in center-size notation
+ float cx = (j + 0.5f) / conv_w;
+ float cy = (i + 0.5f) / conv_h;
+
+ for (int k = 0; k < 3; k++)
+ {
+ float ar = aspect_ratios[k];
+
+ ar = sqrt(ar);
+
+ float w = scale * ar / 550;
+ float h = scale / ar / 550;
+
+ // This is for backward compatibility with a bug where I made everything square by accident
+ // cfg.backbone.use_square_anchors:
+ h = w;
+
+ pb[0] = cx;
+ pb[1] = cy;
+ pb[2] = w;
+ pb[3] = h;
+
+ pb += 4;
+ }
+ }
+ }
+ }
+ }
+
+ const float confidence_thresh = 0.05f;
+ const float nms_threshold = 0.5f;
+ const int keep_top_k = 200;
+
+ std::vector<std::vector<Object> > class_candidates;
+ class_candidates.resize(num_class);
+
+ for (int i = 0; i < num_priors; i++)
+ {
+ const float* conf = confidence.row(i);
+ const float* loc = location.row(i);
+ const float* pb = priorbox.row(i);
+ const float* maskdata = mask.row(i);
+
+ // find class id with highest score
+ // start from 1 to skip background
+ int label = 0;
+ float score = 0.f;
+ for (int j = 1; j < num_class; j++)
+ {
+ float class_score = conf[j];
+ if (class_score > score)
+ {
+ label = j;
+ score = class_score;
+ }
+ }
+
+ // ignore background or low score
+ if (label == 0 || score <= confidence_thresh)
+ continue;
+
+ // CENTER_SIZE
+ float var[4] = {0.1f, 0.1f, 0.2f, 0.2f};
+
+ float pb_cx = pb[0];
+ float pb_cy = pb[1];
+ float pb_w = pb[2];
+ float pb_h = pb[3];
+
+ float bbox_cx = var[0] * loc[0] * pb_w + pb_cx;
+ float bbox_cy = var[1] * loc[1] * pb_h + pb_cy;
+ float bbox_w = (float)(exp(var[2] * loc[2]) * pb_w);
+ float bbox_h = (float)(exp(var[3] * loc[3]) * pb_h);
+
+ float obj_x1 = bbox_cx - bbox_w * 0.5f;
+ float obj_y1 = bbox_cy - bbox_h * 0.5f;
+ float obj_x2 = bbox_cx + bbox_w * 0.5f;
+ float obj_y2 = bbox_cy + bbox_h * 0.5f;
+
+ // clip
+ obj_x1 = std::max(std::min(obj_x1 * bgr.cols, (float)(bgr.cols - 1)), 0.f);
+ obj_y1 = std::max(std::min(obj_y1 * bgr.rows, (float)(bgr.rows - 1)), 0.f);
+ obj_x2 = std::max(std::min(obj_x2 * bgr.cols, (float)(bgr.cols - 1)), 0.f);
+ obj_y2 = std::max(std::min(obj_y2 * bgr.rows, (float)(bgr.rows - 1)), 0.f);
+
+ // append object
+ Object obj;
+ obj.rect = cv::Rect_<float>(obj_x1, obj_y1, obj_x2 - obj_x1 + 1, obj_y2 - obj_y1 + 1);
+ obj.label = label;
+ obj.prob = score;
+ obj.maskdata = std::vector<float>(maskdata, maskdata + mask.w);
+
+ class_candidates[label].push_back(obj);
+ }
+
+ objects.clear();
+ for (int i = 0; i < (int)class_candidates.size(); i++)
+ {
+ std::vector<Object>& candidates = class_candidates[i];
+
+ qsort_descent_inplace(candidates);
+
+ std::vector<int> picked;
+ nms_sorted_bboxes(candidates, picked, nms_threshold);
+
+ for (int j = 0; j < (int)picked.size(); j++)
+ {
+ int z = picked[j];
+ objects.push_back(candidates[z]);
+ }
+ }
+
+ qsort_descent_inplace(objects);
+
+ // keep_top_k
+ if (keep_top_k < (int)objects.size())
+ {
+ objects.resize(keep_top_k);
+ }
+
+ // generate mask
+ for (int i = 0; i < (int)objects.size(); i++)
+ {
+ Object& obj = objects[i];
+
+ cv::Mat mask(maskmaps.h, maskmaps.w, CV_32FC1);
+ {
+ mask = cv::Scalar(0.f);
+
+ for (int p = 0; p < maskmaps.c; p++)
+ {
+ const float* maskmap = maskmaps.channel(p);
+ float coeff = obj.maskdata[p];
+ float* mp = (float*)mask.data;
+
+ // mask += m * coeff
+ for (int j = 0; j < maskmaps.w * maskmaps.h; j++)
+ {
+ mp[j] += maskmap[j] * coeff;
+ }
+ }
+ }
+
+ cv::Mat mask2;
+ cv::resize(mask, mask2, cv::Size(img_w, img_h));
+
+ // crop obj box and binarize
+ obj.mask = cv::Mat(img_h, img_w, CV_8UC1);
+ {
+ obj.mask = cv::Scalar(0);
+
+ for (int y = 0; y < img_h; y++)
+ {
+ if (y < obj.rect.y || y > obj.rect.y + obj.rect.height)
+ continue;
+
+ const float* mp2 = mask2.ptr<const float>(y);
+ uchar* bmp = obj.mask.ptr<uchar>(y);
+
+ for (int x = 0; x < img_w; x++)
+ {
+ if (x < obj.rect.x || x > obj.rect.x + obj.rect.width)
+ continue;
+
+ bmp[x] = mp2[x] > 0.5f ? 255 : 0;
+ }
+ }
+ }
+ }
+
+ return 0;
+}
+
+static void draw_objects(const cv::Mat& bgr, const std::vector<Object>& objects)
+{
+ static const char* class_names[] = {"background",
+ "person", "bicycle", "car", "motorcycle", "airplane", "bus",
+ "train", "truck", "boat", "traffic light", "fire hydrant",
+ "stop sign", "parking meter", "bench", "bird", "cat", "dog",
+ "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe",
+ "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
+ "skis", "snowboard", "sports ball", "kite", "baseball bat",
+ "baseball glove", "skateboard", "surfboard", "tennis racket",
+ "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl",
+ "banana", "apple", "sandwich", "orange", "broccoli", "carrot",
+ "hot dog", "pizza", "donut", "cake", "chair", "couch",
+ "potted plant", "bed", "dining table", "toilet", "tv", "laptop",
+ "mouse", "remote", "keyboard", "cell phone", "microwave", "oven",
+ "toaster", "sink", "refrigerator", "book", "clock", "vase",
+ "scissors", "teddy bear", "hair drier", "toothbrush"
+ };
+
+ static const unsigned char colors[81][3] = {
+ {56, 0, 255},
+ {226, 255, 0},
+ {0, 94, 255},
+ {0, 37, 255},
+ {0, 255, 94},
+ {255, 226, 0},
+ {0, 18, 255},
+ {255, 151, 0},
+ {170, 0, 255},
+ {0, 255, 56},
+ {255, 0, 75},
+ {0, 75, 255},
+ {0, 255, 169},
+ {255, 0, 207},
+ {75, 255, 0},
+ {207, 0, 255},
+ {37, 0, 255},
+ {0, 207, 255},
+ {94, 0, 255},
+ {0, 255, 113},
+ {255, 18, 0},
+ {255, 0, 56},
+ {18, 0, 255},
+ {0, 255, 226},
+ {170, 255, 0},
+ {255, 0, 245},
+ {151, 255, 0},
+ {132, 255, 0},
+ {75, 0, 255},
+ {151, 0, 255},
+ {0, 151, 255},
+ {132, 0, 255},
+ {0, 255, 245},
+ {255, 132, 0},
+ {226, 0, 255},
+ {255, 37, 0},
+ {207, 255, 0},
+ {0, 255, 207},
+ {94, 255, 0},
+ {0, 226, 255},
+ {56, 255, 0},
+ {255, 94, 0},
+ {255, 113, 0},
+ {0, 132, 255},
+ {255, 0, 132},
+ {255, 170, 0},
+ {255, 0, 188},
+ {113, 255, 0},
+ {245, 0, 255},
+ {113, 0, 255},
+ {255, 188, 0},
+ {0, 113, 255},
+ {255, 0, 0},
+ {0, 56, 255},
+ {255, 0, 113},
+ {0, 255, 188},
+ {255, 0, 94},
+ {255, 0, 18},
+ {18, 255, 0},
+ {0, 255, 132},
+ {0, 188, 255},
+ {0, 245, 255},
+ {0, 169, 255},
+ {37, 255, 0},
+ {255, 0, 151},
+ {188, 0, 255},
+ {0, 255, 37},
+ {0, 255, 0},
+ {255, 0, 170},
+ {255, 0, 37},
+ {255, 75, 0},
+ {0, 0, 255},
+ {255, 207, 0},
+ {255, 0, 226},
+ {255, 245, 0},
+ {188, 255, 0},
+ {0, 255, 18},
+ {0, 255, 75},
+ {0, 255, 151},
+ {255, 56, 0},
+ {245, 255, 0}
+ };
+
+ cv::Mat image = bgr.clone();
+
+ int color_index = 0;
+
+ for (size_t i = 0; i < objects.size(); i++)
+ {
+ const Object& obj = objects[i];
+
+ if (obj.prob < 0.15)
+ continue;
+
+ fprintf(stderr, "%d = %.5f at %.2f %.2f %.2f x %.2f\n", obj.label, obj.prob,
+ obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height);
+
+ const unsigned char* color = colors[color_index % 81];
+ color_index++;
+
+ cv::rectangle(image, obj.rect, cv::Scalar(color[0], color[1], color[2]));
+
+ char text[256];
+ sprintf(text, "%s %.1f%%", class_names[obj.label], obj.prob * 100);
+
+ int baseLine = 0;
+ cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
+
+ int x = obj.rect.x;
+ int y = obj.rect.y - label_size.height - baseLine;
+ if (y < 0)
+ y = 0;
+ if (x + label_size.width > image.cols)
+ x = image.cols - label_size.width;
+
+ cv::rectangle(image, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)),
+ cv::Scalar(255, 255, 255), -1);
+
+ cv::putText(image, text, cv::Point(x, y + label_size.height),
+ cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0));
+
+ // draw mask
+ for (int y = 0; y < image.rows; y++)
+ {
+ const uchar* mp = obj.mask.ptr(y);
+ uchar* p = image.ptr(y);
+ for (int x = 0; x < image.cols; x++)
+ {
+ if (mp[x] == 255)
+ {
+ p[0] = cv::saturate_cast<uchar>(p[0] * 0.5 + color[0] * 0.5);
+ p[1] = cv::saturate_cast<uchar>(p[1] * 0.5 + color[1] * 0.5);
+ p[2] = cv::saturate_cast<uchar>(p[2] * 0.5 + color[2] * 0.5);
+ }
+ p += 3;
+ }
+ }
+ }
+
+ cv::imwrite("result.png", image);
+ cv::imshow("image", image);
+ cv::waitKey(0);
+}
+
+int main(int argc, char** argv)
+{
+ if (argc != 2)
+ {
+ fprintf(stderr, "Usage: %s [imagepath]\n", argv[0]);
+ return -1;
+ }
+
+ const char* imagepath = argv[1];
+
+ cv::Mat m = cv::imread(imagepath, 1);
+ if (m.empty())
+ {
+ fprintf(stderr, "cv::imread %s failed\n", imagepath);
+ return -1;
+ }
+
+ std::vector<Object> objects;
+ detect_yolact(m, objects);
+
+ draw_objects(m, objects);
+
+ return 0;
+}